Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c5fb4fd4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c5fb4fd4
编写于
3月 04, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize import of eqToseq_net_v2 for book
上级
d194ce73
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
40 addition
and
37 deletion
+40
-37
demo/seqToseq/api_train_v2.py
demo/seqToseq/api_train_v2.py
+1
-0
demo/seqToseq/seqToseq_net_v2.py
demo/seqToseq/seqToseq_net_v2.py
+39
-37
未找到文件。
demo/seqToseq/api_train_v2.py
浏览文件 @
c5fb4fd4
...
...
@@ -72,6 +72,7 @@ def main():
# define network topology
cost
=
seqToseq_net_v2
(
source_dict_dim
,
target_dict_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-4
)
def
event_handler
(
event
):
...
...
demo/seqToseq/seqToseq_net_v2.py
浏览文件 @
c5fb4fd4
import
paddle.v2.activation
as
activation
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
import
paddle.v2.networks
as
networks
import
paddle.v2
as
paddle
def
seqToseq_net_v2
(
source_dict_dim
,
target_dict_dim
):
...
...
@@ -12,64 +8,70 @@ def seqToseq_net_v2(source_dict_dim, target_dict_dim):
encoder_size
=
512
# dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id
=
layer
.
data
(
src_word_id
=
paddle
.
layer
.
data
(
name
=
'source_language_word'
,
type
=
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
layer
.
embedding
(
type
=
paddle
.
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
paddle
.
layer
.
embedding
(
input
=
src_word_id
,
size
=
word_vector_dim
,
param_attr
=
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
src_forward
=
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
)
src_backward
=
networks
.
simple_gru
(
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
src_forward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
)
src_backward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
,
reverse
=
True
)
encoded_vector
=
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
encoded_vector
=
paddle
.
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
#### Decoder
with
layer
.
mixed
(
size
=
decoder_size
)
as
encoded_proj
:
encoded_proj
+=
layer
.
full_matrix_projection
(
input
=
encoded_vector
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
)
as
encoded_proj
:
encoded_proj
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
encoded_vector
)
backward_first
=
layer
.
first_seq
(
input
=
src_backward
)
backward_first
=
paddle
.
layer
.
first_seq
(
input
=
src_backward
)
with
layer
.
mixed
(
size
=
decoder_size
,
act
=
activation
.
Tanh
())
as
decoder_boot
:
decoder_boot
+=
layer
.
full_matrix_projection
(
input
=
backward_first
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
())
as
decoder_boot
:
decoder_boot
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
backward_first
)
def
gru_decoder_with_attention
(
enc_vec
,
enc_proj
,
current_word
):
decoder_mem
=
layer
.
memory
(
decoder_mem
=
paddle
.
layer
.
memory
(
name
=
'gru_decoder'
,
size
=
decoder_size
,
boot_layer
=
decoder_boot
)
context
=
networks
.
simple_attention
(
context
=
paddle
.
networks
.
simple_attention
(
encoded_sequence
=
enc_vec
,
encoded_proj
=
enc_proj
,
decoder_state
=
decoder_mem
)
with
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
layer
.
full_matrix_projection
(
input
=
current_word
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
gru_step
=
layer
.
gru_step
(
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
input
=
decoder_inputs
,
output_mem
=
decoder_mem
,
size
=
decoder_size
)
with
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
activation
.
Softmax
())
as
out
:
out
+=
layer
.
full_matrix_projection
(
input
=
gru_step
)
with
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
())
as
out
:
out
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
return
out
decoder_group_name
=
"decoder_group"
group_input1
=
layer
.
StaticInputV2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input2
=
layer
.
StaticInputV2
(
input
=
encoded_proj
,
is_seq
=
True
)
group_input1
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input2
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_proj
,
is_seq
=
True
)
group_inputs
=
[
group_input1
,
group_input2
]
trg_embedding
=
layer
.
embedding
(
input
=
layer
.
data
(
trg_embedding
=
paddle
.
layer
.
embedding
(
input
=
paddle
.
layer
.
data
(
name
=
'target_language_word'
,
type
=
data_type
.
integer_value_sequence
(
target_dict_dim
)),
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
...
...
@@ -77,14 +79,14 @@ def seqToseq_net_v2(source_dict_dim, target_dict_dim):
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
layer
.
recurrent_group
(
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
)
lbl
=
layer
.
data
(
lbl
=
paddle
.
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录