Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c5f4a9cc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c5f4a9cc
编写于
8月 09, 2022
作者:
C
carryyu
提交者:
GitHub
8月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add post layer norm (#44931)
上级
9336dd3e
变更
2
展开全部
隐藏空白更改
内联
并排
Showing
2 changed file
with
397 addition
and
192 deletion
+397
-192
paddle/fluid/operators/fused/fused_multi_transformer_op.cu
paddle/fluid/operators/fused/fused_multi_transformer_op.cu
+230
-84
python/paddle/fluid/tests/unittests/test_fused_multi_transformer_op.py
.../fluid/tests/unittests/test_fused_multi_transformer_op.py
+167
-108
未找到文件。
paddle/fluid/operators/fused/fused_multi_transformer_op.cu
浏览文件 @
c5f4a9cc
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_fused_multi_transformer_op.py
浏览文件 @
c5f4a9cc
...
...
@@ -39,6 +39,7 @@ default_main_program().random_seed = 42
class
TestFusedMultiTransformerOp
(
OpTest
):
def
setUp
(
self
):
self
.
config
()
self
.
generate_input_data
()
...
...
@@ -61,39 +62,33 @@ class TestFusedMultiTransformerOp(OpTest):
bias_attr
=
paddle
.
fluid
.
ParamAttr
(
initializer
=
paddle
.
fluid
.
initializer
.
Constant
(
value
=
0.0005
))
self
.
q_proj
=
Linear
(
self
.
embed_dim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
bias_attr
)
self
.
q_proj
=
Linear
(
self
.
embed_dim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
bias_attr
)
#bias_attr=self.bias_attr)
self
.
k_proj
=
Linear
(
self
.
kdim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
)
self
.
v_proj
=
Linear
(
self
.
vdim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
)
self
.
out_proj
=
Linear
(
self
.
embed_dim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
)
self
.
ffn1_proj
=
Linear
(
self
.
embed_dim
,
4
*
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
)
self
.
ffn2_proj
=
Linear
(
4
*
self
.
embed_dim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
)
self
.
k_proj
=
Linear
(
self
.
kdim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
)
self
.
v_proj
=
Linear
(
self
.
vdim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
)
self
.
out_proj
=
Linear
(
self
.
embed_dim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
)
self
.
ffn1_proj
=
Linear
(
self
.
embed_dim
,
4
*
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
)
self
.
ffn2_proj
=
Linear
(
4
*
self
.
embed_dim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
)
paddle
.
set_default_dtype
(
np
.
float32
)
self
.
norm
=
LayerNorm
(
self
.
embed_dim
)
...
...
@@ -228,8 +223,10 @@ class TestFusedMultiTransformerOp(OpTest):
# [B, n_head, seq_len, head_dim] * [B, n_head, out_seq_len, head_dim]
# --> [B, n_head, seq_len, out_seq_len]
qk_out
=
layers
.
matmul
(
x
=
q_out
,
y
=
k_out
,
transpose_y
=
True
,
alpha
=
self
.
head_dim
**-
0.5
)
qk_out
=
layers
.
matmul
(
x
=
q_out
,
y
=
k_out
,
transpose_y
=
True
,
alpha
=
self
.
head_dim
**-
0.5
)
if
self
.
debug
:
print
(
'qk out is'
)
...
...
@@ -249,11 +246,10 @@ class TestFusedMultiTransformerOp(OpTest):
print
(
'softmax out is'
)
print
(
softmax_out
[
0
][
0
][
0
])
if
self
.
dropout_prob
:
dropout_out
=
F
.
dropout
(
softmax_out
,
self
.
dropout_prob
,
training
=
self
.
training
,
mode
=
"upscale_in_train"
)
dropout_out
=
F
.
dropout
(
softmax_out
,
self
.
dropout_prob
,
training
=
self
.
training
,
mode
=
"upscale_in_train"
)
# [B, n_head, seq_len, out_seq_len] * [B, n_head, out_seq_len, head_dim]
# --> [B, n_head, seq_len, head_dim]
qktv_out
=
tensor
.
matmul
(
dropout_out
,
v_out
)
...
...
@@ -265,8 +261,7 @@ class TestFusedMultiTransformerOp(OpTest):
print
(
'fmha out is'
)
print
(
fmha_out
[
0
][
0
][
0
])
out_linear_in
=
tensor
.
reshape
(
x
=
fmha_out
,
shape
=
[
0
,
0
,
fmha_out
.
shape
[
2
]
*
fmha_out
.
shape
[
3
]])
x
=
fmha_out
,
shape
=
[
0
,
0
,
fmha_out
.
shape
[
2
]
*
fmha_out
.
shape
[
3
]])
out
=
self
.
out_proj
(
out_linear_in
)
residual_out
=
residual
+
self
.
dropout
(
out
)
...
...
@@ -296,44 +291,44 @@ class TestFusedMultiTransformerOp(OpTest):
def
GetFusedMultiTransformerOut
(
self
):
paddle
.
disable_static
(
place
=
paddle
.
CUDAPlace
(
0
))
q_proj_weight
=
paddle
.
to_tensor
(
self
.
q_proj
.
weight
,
stop_gradient
=
False
)
k_proj_weight
=
paddle
.
to_tensor
(
self
.
k_proj
.
weight
,
stop_gradient
=
False
)
v_proj_weight
=
paddle
.
to_tensor
(
self
.
v_proj
.
weight
,
stop_gradient
=
False
)
out_linear_weight
=
paddle
.
to_tensor
(
self
.
out_proj
.
weight
,
stop_gradient
=
False
)
ffn1_weight
=
paddle
.
to_tensor
(
self
.
ffn1_proj
.
weight
,
stop_gradient
=
False
)
ffn2_weight
=
paddle
.
to_tensor
(
self
.
ffn2_proj
.
weight
,
stop_gradient
=
False
)
q_proj_weight
=
paddle
.
to_tensor
(
self
.
q_proj
.
weight
,
stop_gradient
=
False
)
k_proj_weight
=
paddle
.
to_tensor
(
self
.
k_proj
.
weight
,
stop_gradient
=
False
)
v_proj_weight
=
paddle
.
to_tensor
(
self
.
v_proj
.
weight
,
stop_gradient
=
False
)
out_linear_weight
=
paddle
.
to_tensor
(
self
.
out_proj
.
weight
,
stop_gradient
=
False
)
ffn1_weight
=
paddle
.
to_tensor
(
self
.
ffn1_proj
.
weight
,
stop_gradient
=
False
)
ffn2_weight
=
paddle
.
to_tensor
(
self
.
ffn2_proj
.
weight
,
stop_gradient
=
False
)
if
self
.
bias_attr
is
False
:
qkv_bias_tensor
=
None
out_linear_bias
=
None
else
:
q_proj_bias
=
paddle
.
to_tensor
(
self
.
q_proj
.
bias
,
stop_gradient
=
False
)
k_proj_bias
=
paddle
.
to_tensor
(
self
.
k_proj
.
bias
,
stop_gradient
=
False
)
v_proj_bias
=
paddle
.
to_tensor
(
self
.
v_proj
.
bias
,
stop_gradient
=
False
)
q_proj_bias
=
paddle
.
to_tensor
(
self
.
q_proj
.
bias
,
stop_gradient
=
False
)
k_proj_bias
=
paddle
.
to_tensor
(
self
.
k_proj
.
bias
,
stop_gradient
=
False
)
v_proj_bias
=
paddle
.
to_tensor
(
self
.
v_proj
.
bias
,
stop_gradient
=
False
)
qkv_bias
=
np
.
concatenate
(
(
q_proj_bias
.
numpy
(),
k_proj_bias
.
numpy
(),
v_proj_bias
.
numpy
()))
qkv_bias
=
qkv_bias
.
reshape
((
3
,
self
.
num_heads
,
self
.
head_dim
))
qkv_bias_tensor
=
paddle
.
to_tensor
(
qkv_bias
,
stop_gradient
=
False
)
out_linear_bias
=
paddle
.
to_tensor
(
self
.
out_proj
.
bias
,
stop_gradient
=
False
)
ffn1_bias
=
paddle
.
to_tensor
(
self
.
ffn1_proj
.
bias
,
stop_gradient
=
False
)
ffn2_bias
=
paddle
.
to_tensor
(
self
.
ffn2_proj
.
bias
,
stop_gradient
=
False
)
out_linear_bias
=
paddle
.
to_tensor
(
self
.
out_proj
.
bias
,
stop_gradient
=
False
)
ffn1_bias
=
paddle
.
to_tensor
(
self
.
ffn1_proj
.
bias
,
stop_gradient
=
False
)
ffn2_bias
=
paddle
.
to_tensor
(
self
.
ffn2_proj
.
bias
,
stop_gradient
=
False
)
ln_scale
=
paddle
.
to_tensor
(
self
.
norm
.
weight
,
stop_gradient
=
False
)
ln_bias
=
paddle
.
to_tensor
(
self
.
norm
.
bias
,
stop_gradient
=
False
)
ffn_ln_scale
=
paddle
.
to_tensor
(
self
.
ffn_norm
.
weight
,
stop_gradient
=
False
)
ffn_ln_scale
=
paddle
.
to_tensor
(
self
.
ffn_norm
.
weight
,
stop_gradient
=
False
)
ffn_ln_bias
=
paddle
.
to_tensor
(
self
.
ffn_norm
.
bias
,
stop_gradient
=
False
)
q_proj_weight
=
q_proj_weight
.
numpy
().
transpose
((
1
,
0
))
...
...
@@ -351,12 +346,11 @@ class TestFusedMultiTransformerOp(OpTest):
cache_kvs
=
[]
max_seq_length
=
(
self
.
cache_length
+
128
)
//
128
*
128
cache_kv
=
np
.
zeros
(
[
2
,
self
.
batch_size
,
self
.
num_heads
,
max_seq_length
,
self
.
head_dim
],
dtype
=
self
.
x_type
)
cache_kv
=
np
.
zeros
([
2
,
self
.
batch_size
,
self
.
num_heads
,
max_seq_length
,
self
.
head_dim
],
dtype
=
self
.
x_type
)
elems
=
4
if
self
.
x_type
is
np
.
float16
:
...
...
@@ -384,8 +378,9 @@ class TestFusedMultiTransformerOp(OpTest):
assert
self
.
query_length
==
self
.
cache_length
cache_kv
[:]
=
0
else
:
time_step
=
paddle
.
to_tensor
(
[
self
.
cache_length
],
dtype
=
'int32'
,
place
=
paddle
.
CPUPlace
())
time_step
=
paddle
.
to_tensor
([
self
.
cache_length
],
dtype
=
'int32'
,
place
=
paddle
.
CPUPlace
())
if
self
.
has_attn_mask
:
attn_mask
=
paddle
.
to_tensor
(
self
.
attn_mask
,
stop_gradient
=
False
)
else
:
...
...
@@ -417,31 +412,29 @@ class TestFusedMultiTransformerOp(OpTest):
ffn_ln_scales
.
append
(
ffn_ln_scale
)
ffn_ln_biases
.
append
(
ffn_ln_bias
)
if
self
.
has_cache_kv
:
cache_kvs
.
append
(
paddle
.
to_tensor
(
cache_kv
,
stop_gradient
=
False
))
final_out
=
fused_multi_transformer
(
x
,
ln_scales
,
ln_biases
,
qkv_weights
,
qkv_biases
,
out_weights
,
out_biases
,
ffn_ln_scales
,
ffn_ln_biases
,
ffn1_weights
,
ffn1_biases
,
ffn2_weights
,
ffn2_biases
,
pre_layer_norm
=
self
.
pre_layer_norm
,
epsilon
=
epsilon
,
cache_kvs
=
cache_kvs
,
time_step
=
time_step
,
attn_mask
=
attn_mask
,
dropout_rate
=
self
.
dropout_prob
,
training
=
self
.
training
)
cache_kvs
.
append
(
paddle
.
to_tensor
(
cache_kv
,
stop_gradient
=
False
))
final_out
=
fused_multi_transformer
(
x
,
ln_scales
,
ln_biases
,
qkv_weights
,
qkv_biases
,
out_weights
,
out_biases
,
ffn_ln_scales
,
ffn_ln_biases
,
ffn1_weights
,
ffn1_biases
,
ffn2_weights
,
ffn2_biases
,
pre_layer_norm
=
self
.
pre_layer_norm
,
epsilon
=
epsilon
,
cache_kvs
=
cache_kvs
,
time_step
=
time_step
,
attn_mask
=
attn_mask
,
dropout_rate
=
self
.
dropout_prob
,
training
=
self
.
training
)
if
self
.
has_cache_kv
:
return
final_out
[
0
],
final_out
[
1
]
...
...
@@ -463,9 +456,9 @@ class TestFusedMultiTransformerOp(OpTest):
if
self
.
debug
:
print
(
"cache_k out timestep=128"
)
print
(
cache_kv_out
[
0
].
reshape
(
[
2
,
bsz
,
num_head
,
v_elems
,
max_seq_len
,
elems
])[
0
,
0
,
0
,
:,
self
.
cache_length
,
:])
print
(
cache_kv_out
[
0
].
reshape
(
[
2
,
bsz
,
num_head
,
v_elems
,
max_seq_len
,
elems
])[
0
,
0
,
0
,
:,
self
.
cache_length
,
:])
print
(
"cache_v out timestep=128"
)
print
(
cache_kv_out
[
0
][
1
,
0
,
0
,
self
.
cache_length
,
:])
...
...
@@ -486,18 +479,25 @@ class TestFusedMultiTransformerOp(OpTest):
cache_v
=
cache_kv_out
[
i
][
1
,
:,
:,
:
self
.
cache_length
,
:]
np
.
testing
.
assert_allclose
(
cache_k_ref
,
cache_k
,
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
np
.
testing
.
assert_allclose
(
cache_v_ref
,
cache_v
,
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
np
.
testing
.
assert_allclose
(
cache_k_ref
,
cache_k
,
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
np
.
testing
.
assert_allclose
(
cache_v_ref
,
cache_v
,
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
if
i
==
0
:
break
np
.
testing
.
assert_allclose
(
final_out_ref
,
final_out
,
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
np
.
testing
.
assert_allclose
(
final_out_ref
,
final_out
,
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
class
TestFusedMultiTransformerOpFp16
(
TestFusedMultiTransformerOp
):
def
config
(
self
):
super
().
config
()
self
.
x_type
=
np
.
float16
...
...
@@ -505,6 +505,7 @@ class TestFusedMultiTransformerOpFp16(TestFusedMultiTransformerOp):
class
TestFusedMultiTransformerOpCacheKV
(
TestFusedMultiTransformerOp
):
def
config
(
self
):
super
().
config
()
self
.
has_cache_kv
=
True
...
...
@@ -514,6 +515,7 @@ class TestFusedMultiTransformerOpCacheKV(TestFusedMultiTransformerOp):
class
TestFusedMultiTransformerOpCacheKVFp16
(
TestFusedMultiTransformerOp
):
def
config
(
self
):
super
().
config
()
self
.
has_cache_kv
=
True
...
...
@@ -523,6 +525,7 @@ class TestFusedMultiTransformerOpCacheKVFp16(TestFusedMultiTransformerOp):
class
TestFusedMultiTransformerOpGenCacheKV
(
TestFusedMultiTransformerOp
):
def
config
(
self
):
super
().
config
()
self
.
has_cache_kv
=
True
...
...
@@ -530,12 +533,68 @@ class TestFusedMultiTransformerOpGenCacheKV(TestFusedMultiTransformerOp):
class
TestFusedMultiTransformerOpGenCacheKVFp16
(
TestFusedMultiTransformerOp
):
def
config
(
self
):
super
().
config
()
self
.
has_cache_kv
=
True
self
.
gen_cache_kv
=
True
self
.
x_type
=
np
.
float16
self
.
layers
=
3
# odd layers
class
TestFusedMultiTransformerOpPostLayerNormFp16
(
TestFusedMultiTransformerOp
):
def
config
(
self
):
super
().
config
()
self
.
x_type
=
np
.
float16
self
.
layers
=
3
# odd layers
self
.
pre_layer_norm
=
False
class
TestFusedMultiTransformerOpCacheKVPostLayerNorm
(
TestFusedMultiTransformerOp
):
def
config
(
self
):
super
().
config
()
self
.
has_cache_kv
=
True
self
.
query_length
=
1
self
.
key_length
,
self
.
value_length
=
1
,
1
self
.
layers
=
3
# odd layers
self
.
pre_layer_norm
=
False
class
TestFusedMultiTransformerOpCacheKVPostLayerNormFp16
(
TestFusedMultiTransformerOp
):
def
config
(
self
):
super
().
config
()
self
.
has_cache_kv
=
True
self
.
query_length
=
1
self
.
key_length
,
self
.
value_length
=
1
,
1
self
.
x_type
=
np
.
float16
self
.
pre_layer_norm
=
False
class
TestFusedMultiTransformerOpGenCacheKVPostLayerNorm
(
TestFusedMultiTransformerOp
):
def
config
(
self
):
super
().
config
()
self
.
has_cache_kv
=
True
self
.
gen_cache_kv
=
True
self
.
pre_layer_norm
=
False
class
TestFusedMultiTransformerOpGenCacheKVPostLayerNormFp16
(
TestFusedMultiTransformerOp
):
def
config
(
self
):
super
().
config
()
self
.
has_cache_kv
=
True
self
.
gen_cache_kv
=
True
self
.
x_type
=
np
.
float16
self
.
layers
=
3
# odd layers
self
.
pre_layer_norm
=
False
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录