提交 c5d71077 编写于 作者: P peterzhang2029

refine var name

上级 0a6262d5
......@@ -43,25 +43,25 @@ class BilinearTensorProductKernel : public framework::OpKernel<T> {
auto batch_size = x->dims()[0];
auto weight_dims = weight->dims();
int Out_dim = weight_dims[0];
int X_dim = weight_dims[1];
int Y_dim = weight_dims[2];
int out_dim = weight_dims[0];
auto x_dim = weight_dims[1];
auto y_dim = weight_dims[2];
auto place = ctx.GetEigenDevice<Place>();
// Create the intermediate variable to caculate the result of
// Input(X) multiplied by Input(Weight_i), the formula is:
// left_mul = X Weight_i.
Tensor left_mul;
left_mul.mutable_data<T>(framework::make_ddim({batch_size, Y_dim}),
left_mul.mutable_data<T>(framework::make_ddim({batch_size, y_dim}),
ctx.GetPlace());
auto left_mul_mat = EigenMatrix<T>::From(left_mul);
for (int i = 0; i < Out_dim; ++i) {
for (int i = 0; i < out_dim; ++i) {
auto output_col_vec = output_mat.chip(i, 1);
Tensor weight_mat =
weight->Slice(i, i + 1).Resize(framework::make_ddim({X_dim, Y_dim}));
weight->Slice(i, i + 1).Resize(framework::make_ddim({x_dim, y_dim}));
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasNoTrans,
batch_size, Y_dim, X_dim, 1, x->data<T>(),
batch_size, y_dim, x_dim, 1, x->data<T>(),
weight_mat.data<T>(), 0, left_mul.data<T>());
output_col_vec.device(place) =
(left_mul_mat * y_mat).sum(Eigen::DSizes<int, 1>(1));
......@@ -89,9 +89,9 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
auto batch_size = x->dims()[0];
auto weight_dims = weight->dims();
int Out_dim = weight_dims[0];
int X_dim = weight_dims[1];
int Y_dim = weight_dims[2];
int out_dim = weight_dims[0];
auto x_dim = weight_dims[1];
auto y_dim = weight_dims[2];
auto x_mat = EigenMatrix<T>::From(*x);
auto y_mat = EigenMatrix<T>::From(*y);
......@@ -100,13 +100,13 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
// Create the intermediate variable to caculate the Output(Y@Grad).
Tensor x_scale;
x_scale.mutable_data<T>(framework::make_ddim({batch_size, X_dim}),
x_scale.mutable_data<T>(framework::make_ddim({batch_size, x_dim}),
ctx.GetPlace());
auto x_scale_mat = EigenMatrix<T>::From(x_scale);
// Create the intermediate variable to caculate the Output(X@Grad).
Tensor y_scale;
y_scale.mutable_data<T>(framework::make_ddim({batch_size, Y_dim}),
y_scale.mutable_data<T>(framework::make_ddim({batch_size, y_dim}),
ctx.GetPlace());
auto y_scale_mat = EigenMatrix<T>::From(y_scale);
......@@ -126,11 +126,11 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
// Caculate the Output(X@Grad) and Output(Y@Grad).
if (d_x || d_y) {
Eigen::DSizes<int, 2> bcast_for_x(1, Y_dim);
Eigen::DSizes<int, 2> bcast_for_y(1, X_dim);
for (int i = 0; i < Out_dim; ++i) {
Eigen::DSizes<int, 2> bcast_for_x(1, y_dim);
Eigen::DSizes<int, 2> bcast_for_y(1, x_dim);
for (int i = 0; i < out_dim; ++i) {
Tensor weight_i = weight->Slice(i, i + 1).Resize(
framework::make_ddim({X_dim, Y_dim}));
framework::make_ddim({x_dim, y_dim}));
auto output_vec = d_out_mat.chip(i, 1);
if (d_x) {
y_scale_mat.device(place) =
......@@ -138,7 +138,7 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
.broadcast(bcast_for_x) *
y_mat;
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasTrans,
batch_size, X_dim, Y_dim, 1, y_scale.data<T>(),
batch_size, x_dim, y_dim, 1, y_scale.data<T>(),
weight_i.data<T>(), 1, d_x->data<T>());
}
if (d_y) {
......@@ -147,7 +147,7 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
.broadcast(bcast_for_y) *
x_mat;
math::gemm<Place, T>(ctx.device_context(), CblasNoTrans, CblasNoTrans,
batch_size, Y_dim, X_dim, 1, x_scale.data<T>(),
batch_size, y_dim, x_dim, 1, x_scale.data<T>(),
weight_i.data<T>(), 1, d_y->data<T>());
}
}
......@@ -156,17 +156,17 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
// Caculate the gradient of Input(Weight).
if (d_weight) {
d_weight->mutable_data<T>(ctx.GetPlace());
Eigen::DSizes<int, 2> bcast_for_weight(1, X_dim);
for (int i = 0; i < Out_dim; ++i) {
Eigen::DSizes<int, 2> bcast_for_weight(1, x_dim);
for (int i = 0; i < out_dim; ++i) {
Tensor d_weight_i = d_weight->Slice(i, i + 1).Resize(
framework::make_ddim({X_dim, Y_dim}));
framework::make_ddim({x_dim, y_dim}));
auto output_vec = d_out_mat.chip(i, 1);
x_scale_mat.device(place) =
output_vec.reshape(Eigen::DSizes<int, 2>(batch_size, 1))
.broadcast(bcast_for_weight) *
x_mat;
math::gemm<Place, T>(ctx.device_context(), CblasTrans, CblasNoTrans,
X_dim, Y_dim, batch_size, 1, x_scale.data<T>(),
x_dim, y_dim, batch_size, 1, x_scale.data<T>(),
y->data<T>(), 0, d_weight_i.data<T>());
}
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册