Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c5a14ed4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c5a14ed4
编写于
1月 19, 2018
作者:
W
wanghaox
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mine_hard_examples operator
上级
38c61053
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
431 addition
and
0 deletion
+431
-0
paddle/operators/mine_hard_examples_op.cc
paddle/operators/mine_hard_examples_op.cc
+184
-0
paddle/operators/mine_hard_examples_op.h
paddle/operators/mine_hard_examples_op.h
+148
-0
python/paddle/v2/fluid/tests/test_mine_hard_examples_op.py
python/paddle/v2/fluid/tests/test_mine_hard_examples_op.py
+99
-0
未找到文件。
paddle/operators/mine_hard_examples_op.cc
0 → 100644
浏览文件 @
c5a14ed4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/mine_hard_examples_op.h"
namespace
paddle
{
namespace
operators
{
class
MineHardExamplesOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ClsLoss"
),
"Input(ClsLoss) of MineHardExamplesOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"MatchIndics"
),
"Input(MatchIndics) of MineHardExamplesOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"MatchDis"
),
"Input(MatchDis) of MineHardExamplesOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"NegIndics"
),
"Output(NegIndics) of MineHardExamplesOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"UpdatedMatchIndics"
),
"Output(UpdatedMatchIndics) of MineHardExamplesOp should not be null."
);
auto
cls_loss_dims
=
ctx
->
GetInputDim
(
"ClsLoss"
);
auto
idx_dims
=
ctx
->
GetInputDim
(
"MatchIndics"
);
auto
dis_dims
=
ctx
->
GetInputDim
(
"MatchDis"
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
.
size
(),
2UL
,
"The shape of ClsLoss is [N, Np]."
);
PADDLE_ENFORCE_EQ
(
idx_dims
.
size
(),
2UL
,
"The shape of MatchIndics is [N, Np]."
);
PADDLE_ENFORCE_EQ
(
dis_dims
.
size
(),
2UL
,
"The shape of MatchDis is [N, Np]."
);
if
(
ctx
->
HasInput
(
"LocLoss"
))
{
auto
loc_loss_dims
=
ctx
->
GetInputDim
(
"LocLoss"
);
PADDLE_ENFORCE_EQ
(
loc_loss_dims
.
size
(),
2UL
,
"The shape of LocLoss is [N, Np]."
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
0
],
loc_loss_dims
[
0
],
"Batch size of ClsLoss and LocLoss must be the same."
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
1
],
loc_loss_dims
[
1
],
"Prior box number of ClsLoss and LocLoss must be the same."
);
}
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
0
],
idx_dims
[
0
],
"Batch size of ClsLoss and MatchIndics must be the same."
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
1
],
idx_dims
[
1
],
"Prior box number of ClsLoss and MatchIndics must be the same."
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
0
],
dis_dims
[
0
],
"Batch size of ClsLoss and MatchDis must be the same."
);
PADDLE_ENFORCE_EQ
(
cls_loss_dims
[
1
],
idx_dims
[
1
],
"Prior box number of ClsLoss and MatchDis must be the same."
);
auto
mining_type
=
GetMiningType
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"mining_type"
));
PADDLE_ENFORCE_NE
(
mining_type
,
MiningType
::
kNone
,
"mining_type must be hard_example or max_negative"
);
if
(
mining_type
==
MiningType
::
kMaxNegative
)
{
auto
neg_pos_ratio
=
ctx
->
Attrs
().
Get
<
float
>
(
"neg_pos_ratio"
);
auto
neg_dis_threshold
=
ctx
->
Attrs
().
Get
<
float
>
(
"neg_dis_threshold"
);
PADDLE_ENFORCE_GT
(
neg_pos_ratio
,
0.0
f
,
"neg_pos_ratio must greater than zero in max_negative mode"
);
PADDLE_ENFORCE_GT
(
neg_dis_threshold
,
0.0
f
,
"neg_dis_threshold must greater than zero in max_negative mode"
);
}
else
if
(
mining_type
==
MiningType
::
kHardExample
)
{
auto
sample_size
=
ctx
->
Attrs
().
Get
<
int
>
(
"sample_size"
);
PADDLE_ENFORCE_GT
(
sample_size
,
0
,
"sample_size must greater than zero in hard_example mode"
);
}
ctx
->
SetOutputDim
(
"UpdatedMatchIndics"
,
idx_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"ClsLoss"
)
->
type
()),
ctx
.
device_context
());
}
};
class
MineHardExamplesOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
MineHardExamplesOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"ClsLoss"
,
"(Tensor, default Tensor<float>), The classification loss wit shape "
"[N, Np], N is the batch size and Np is the number of prior box."
);
AddInput
(
"LocLoss"
,
"(Tensor, optional, default Tensor<float>), The localization loss "
"wit shape [N, Np], N is the batch size and Np is the number of "
"prior box."
)
.
AsDispensable
();
AddInput
(
"MatchIndics"
,
"(Tensor, Tensor<int>), Matched indices with shape [N, Np], N is "
"the batch size and Np is the number of prior box. "
"MatchIndics[i][j] equal -1 means box[j] does not match any "
"entity, otherwise means Box[j] is matched to row."
);
AddInput
(
"MatchDis"
,
"(Tensor, default Tensor<float>) Matched indices with shape [N, "
"Np], N is the batch size and Np is the number of prior box."
);
AddAttr
<
float
>
(
"neg_pos_ratio"
,
"(float) The ratio of the negative box to the positive "
"box. Use only when mining_type is equal to max_negative."
)
.
SetDefault
(
1.0
);
AddAttr
<
float
>
(
"neg_dis_threshold"
,
"(float) The negative box dis value threshold. "
"Use only when mining_type is equal to max_negative."
)
.
SetDefault
(
0.5
);
AddAttr
<
int
>
(
"sample_size"
,
"(float) The max sample size of negative box. Use only when "
"mining_type is equal to hard_example."
)
.
SetDefault
(
0
);
AddAttr
<
std
::
string
>
(
"mining_type"
,
"(float) The mining algorithm name, the value is "
"hard_example or max_negative."
)
.
SetDefault
(
"max_negative"
)
.
InEnum
({
"hard_example"
,
"max_negative"
});
AddOutput
(
"NegIndics"
,
"(LoDTensor) The output of negative example indics.a lod tensor "
"with shape [Neg, 1]. The size of lod[0] is batch size, "
"and each element is the box index. "
"For example, the batch size is 2, the lod is [[0, 1, 2]], "
"the sample 0's box 1(MatchIndics[0][1]) is selected, "
"and sample 1's box 0 is selected. The output NegIndics is "
"[[1], [0]]."
);
AddOutput
(
"UpdatedMatchIndics"
,
"(Tensor) The output of updated MatchIndics, a tensor with "
"shape [N, M]. Only update when mining_type is equal to "
"hard_example. The input MatchIndics elements will be update to "
"-1 when it not in the highest loss list"
);
AddComment
(
R"DOC(
Mine hard examples Operator.
This operator implements hard example mining to select a subset of negative box indics.
For each image, selects the box with highest losses. subject to the condition that the box cannot have
an MatchDis > neg_dis_threshold when mining_type is equals max_negative. The selected number is
min(sample_size, max_negative_box_number) when mining_type is equals hard_example,
or min(neg_pos_ratio * positive_box_number, max_negative_box_number) when mining_type is
equals max_negative, where the max_negative_box_number is the count of MatchIndics elements with value -1.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
mine_hard_examples
,
ops
::
MineHardExamplesOp
,
ops
::
MineHardExamplesOpMaker
);
REGISTER_OP_CPU_KERNEL
(
mine_hard_examples
,
ops
::
MineHardExamplesKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MineHardExamplesKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/operators/mine_hard_examples_op.h
0 → 100755
浏览文件 @
c5a14ed4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
enum
MiningType
{
kNone
=
0
,
kMaxNegative
,
kHardExample
};
template
<
typename
T
>
bool
SortScoreDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
inline
bool
IsEligibleMining
(
const
MiningType
mining_type
,
const
int
match_idx
,
const
float
match_dis
,
const
float
neg_dis_threshold
)
{
if
(
mining_type
==
MiningType
::
kMaxNegative
)
{
return
match_idx
==
-
1
&&
match_dis
<
neg_dis_threshold
;
}
else
if
(
mining_type
==
MiningType
::
kHardExample
)
{
return
true
;
}
else
{
return
false
;
}
}
MiningType
GetMiningType
(
std
::
string
str
)
{
if
(
str
==
"max_negative"
)
{
return
MiningType
::
kMaxNegative
;
}
else
if
(
str
==
"hard_example"
)
{
return
MiningType
::
kHardExample
;
}
else
{
return
MiningType
::
kNone
;
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
MineHardExamplesKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_cls_loss
=
ctx
.
Input
<
framework
::
Tensor
>
(
"ClsLoss"
);
auto
*
in_loc_loss
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LocLoss"
);
auto
*
in_matched_indics
=
ctx
.
Input
<
framework
::
Tensor
>
(
"MatchIndics"
);
auto
*
in_match_dis
=
ctx
.
Input
<
framework
::
Tensor
>
(
"MatchDis"
);
float
neg_pos_ratio
=
ctx
.
Attr
<
float
>
(
"neg_pos_ratio"
);
T
neg_dis_threshold
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"neg_dis_threshold"
));
int
sample_size
=
ctx
.
Attr
<
int
>
(
"sample_size"
);
MiningType
mining_type
=
GetMiningType
(
ctx
.
Attr
<
std
::
string
>
(
"mining_type"
));
auto
out_neg_indics
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"NegIndics"
);
auto
out_match_indics
=
ctx
.
Output
<
framework
::
Tensor
>
(
"UpdatedMatchIndics"
);
framework
::
Copy
(
*
in_matched_indics
,
ctx
.
GetPlace
(),
out_match_indics
);
int
batch_size
=
in_matched_indics
->
dims
()[
0
];
int
prior_num
=
in_matched_indics
->
dims
()[
1
];
auto
match_indices
=
framework
::
EigenMatrix
<
int
>::
From
(
*
in_matched_indics
);
auto
match_indices_et
=
framework
::
EigenMatrix
<
int
>::
From
(
*
out_match_indics
);
auto
match_dis
=
framework
::
EigenMatrix
<
float
>::
From
(
*
in_match_dis
);
auto
cls_loss
=
framework
::
EigenMatrix
<
float
>::
From
(
*
in_cls_loss
);
auto
loc_loss
=
framework
::
EigenMatrix
<
float
>::
From
(
*
in_loc_loss
);
std
::
vector
<
std
::
vector
<
int
>>
all_neg_indices
;
int
all_neg_num
=
0
;
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
std
::
vector
<
std
::
pair
<
float
,
size_t
>>
loss_idx
;
int
neg_sel
=
0
;
for
(
int
m
=
0
;
m
<
prior_num
;
++
m
)
{
if
(
IsEligibleMining
(
mining_type
,
match_indices
(
n
,
m
),
match_dis
(
n
,
m
),
neg_dis_threshold
))
{
T
loss
=
cls_loss
(
n
,
m
);
if
(
mining_type
==
MiningType
::
kHardExample
)
{
loss
=
cls_loss
(
n
,
m
)
+
loc_loss
(
n
,
m
);
}
loss_idx
.
push_back
(
std
::
make_pair
(
loss
,
m
));
++
neg_sel
;
}
}
if
(
mining_type
==
MiningType
::
kMaxNegative
)
{
int
num_pos
=
0
;
for
(
int
m
=
0
;
m
<
prior_num
;
++
m
)
{
if
(
match_indices
(
n
,
m
)
!=
-
1
)
++
num_pos
;
}
neg_sel
=
std
::
min
(
static_cast
<
int
>
(
num_pos
*
neg_pos_ratio
),
neg_sel
);
}
else
if
(
mining_type
==
MiningType
::
kHardExample
)
{
neg_sel
=
std
::
min
(
sample_size
,
neg_sel
);
}
std
::
sort
(
loss_idx
.
begin
(),
loss_idx
.
end
(),
SortScoreDescend
<
int
>
);
std
::
set
<
int
>
sel_indices
;
std
::
vector
<
int
>
neg_indices
;
for
(
int
n
=
0
;
n
<
neg_sel
;
++
n
)
{
sel_indices
.
insert
(
loss_idx
[
n
].
second
);
}
for
(
int
m
=
0
;
m
<
prior_num
;
++
m
)
{
if
(
match_indices
(
n
,
m
)
>
-
1
)
{
if
(
mining_type
==
MiningType
::
kHardExample
&&
sel_indices
.
find
(
m
)
==
sel_indices
.
end
())
{
match_indices_et
(
n
,
m
)
=
-
1
;
}
}
else
{
if
(
sel_indices
.
find
(
m
)
!=
sel_indices
.
end
())
{
neg_indices
.
push_back
(
m
);
}
}
}
all_neg_indices
.
push_back
(
neg_indices
);
all_neg_num
+=
neg_indices
.
size
();
}
framework
::
LoD
out_neg_indics_lod
;
out_neg_indics_lod
.
resize
(
1
);
int
neg_offset
=
0
;
auto
neg_data
=
out_neg_indics
->
mutable_data
<
int
>
(
framework
::
make_ddim
({
all_neg_num
,
1
}),
ctx
.
GetPlace
());
out_neg_indics_lod
[
0
].
push_back
(
neg_offset
);
for
(
auto
neg_indices
:
all_neg_indices
)
{
for
(
auto
neg_idx
:
neg_indices
)
{
neg_data
[
neg_offset
++
]
=
neg_idx
;
}
out_neg_indics_lod
[
0
].
push_back
(
neg_offset
);
}
out_neg_indics
->
set_lod
(
out_neg_indics_lod
);
return
;
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/fluid/tests/test_mine_hard_examples_op.py
0 → 100755
浏览文件 @
c5a14ed4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
unittest
import
numpy
as
np
import
sys
import
math
from
op_test
import
OpTest
class
TestMineHardExamplesOp
(
OpTest
):
def
set_data
(
self
):
self
.
init_test_data
()
self
.
inputs
=
{
'ClsLoss'
:
self
.
cls_loss
,
'LocLoss'
:
self
.
loc_loss
,
'MatchIndics'
:
self
.
match_indices
,
'MatchDis'
:
self
.
match_dis
}
self
.
attrs
=
{
'neg_pos_ratio'
:
self
.
neg_pos_ratio
,
'neg_overlap'
:
self
.
neg_overlap
,
'sample_size'
:
self
.
sample_size
,
'mining_type'
:
self
.
mining_type
}
self
.
outputs
=
{
'NegIndics'
:
(
self
.
neg_indices
,
self
.
neg_indices_lod
),
'UpdatedMatchIndics'
:
self
.
updated_match_indices
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
return
def
setUp
(
self
):
self
.
op_type
=
"mine_hard_examples"
self
.
set_data
()
def
init_test_data
(
self
):
self
.
neg_pos_ratio
=
1.0
self
.
neg_overlap
=
0.5
self
.
sample_size
=
0
self
.
mining_type
=
"max_negative"
self
.
cls_loss
=
np
.
array
([[
0.1
,
0.1
,
0.3
],
[
0.3
,
0.1
,
0.1
]]).
astype
(
'float32'
)
self
.
loc_loss
=
np
.
array
([[
0.1
,
0.2
,
0.3
],
[
0.3
,
0.4
,
0.1
]]).
astype
(
'float32'
)
self
.
match_dis
=
np
.
array
([[
0.2
,
0.4
,
0.8
],
[
0.1
,
0.9
,
0.3
]]).
astype
(
'float32'
)
self
.
match_indices
=
np
.
array
([[
0
,
-
1
,
-
1
],
[
-
1
,
0
,
-
1
]]).
astype
(
'int32'
)
self
.
updated_match_indices
=
self
.
match_indices
self
.
neg_indices_lod
=
[[
0
,
1
,
2
]]
self
.
neg_indices
=
np
.
array
([[
1
],
[
0
]]).
astype
(
'int32'
)
class
TestMineHardExamplesOpHardExample
(
TestMineHardExamplesOp
):
def
init_test_data
(
self
):
super
(
TestMineHardExamplesOpHardExample
,
self
).
init_test_data
()
self
.
mining_type
=
"hard_example"
self
.
sample_size
=
2
self
.
cls_loss
=
np
.
array
([[
0.5
,
0.1
,
0.3
],
[
0.3
,
0.1
,
0.1
]]).
astype
(
'float32'
)
self
.
loc_loss
=
np
.
array
([[
0.2
,
0.2
,
0.3
],
[
0.3
,
0.1
,
0.2
]]).
astype
(
'float32'
)
self
.
match_indices
=
np
.
array
([[
0
,
-
1
,
-
1
],
[
-
1
,
0
,
-
1
]]).
astype
(
'int32'
)
self
.
updated_match_indices
=
np
.
array
([[
0
,
-
1
,
-
1
],
[
-
1
,
-
1
,
-
1
]]).
astype
(
'int32'
)
self
.
neg_indices_lod
=
[[
0
,
1
,
3
]]
self
.
neg_indices
=
np
.
array
([[
2
],
[
0
],
[
2
]]).
astype
(
'int32'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录