提交 c58ba827 编写于 作者: Y yi.wu

update

上级 7b54b30b
...@@ -156,7 +156,7 @@ Parameters(strides, paddings) are two elements. These two elements represent hei ...@@ -156,7 +156,7 @@ Parameters(strides, paddings) are two elements. These two elements represent hei
and width, respectively. and width, respectively.
The input(X) size and output(Out) size may be different. The input(X) size and output(Out) size may be different.
Example: For an example:
Input: Input:
Input shape: $(N, C_{in}, H_{in}, W_{in})$ Input shape: $(N, C_{in}, H_{in}, W_{in})$
Filter shape: $(C_{in}, C_{out}, H_f, W_f)$ Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
......
...@@ -53,17 +53,14 @@ sequence of observed tags. ...@@ -53,17 +53,14 @@ sequence of observed tags.
The output of this operator changes according to whether Input(Label) is given: The output of this operator changes according to whether Input(Label) is given:
1. Input(Label) is given: 1. Input(Label) is given:
This happens in training. This operator is used to co-work with the chunk_eval This happens in training. This operator is used to co-work with the chunk_eval
operator. operator.
When Input(Label) is given, the crf_decoding operator returns a row vector When Input(Label) is given, the crf_decoding operator returns a row vector
with shape [N x 1] whose values are fixed to be 0, indicating an incorrect with shape [N x 1] whose values are fixed to be 0, indicating an incorrect
prediction, or 1 indicating a tag is correctly predicted. Such an output is the prediction, or 1 indicating a tag is correctly predicted. Such an output is the
input to chunk_eval operator. input to chunk_eval operator.
2. Input(Label) is not given: 2. Input(Label) is not given:
This is the standard decoding process. This is the standard decoding process.
The crf_decoding operator returns a row vector with shape [N x 1] whose values The crf_decoding operator returns a row vector with shape [N x 1] whose values
......
...@@ -149,7 +149,9 @@ The operator has three steps: ...@@ -149,7 +149,9 @@ The operator has three steps:
1. Dividing each region proposal into equal-sized sections with 1. Dividing each region proposal into equal-sized sections with
the pooled_width and pooled_height the pooled_width and pooled_height
2. Finding the largest value in each section 2. Finding the largest value in each section
3. Copying these max values to the output buffer 3. Copying these max values to the output buffer
ROI Pooling for Faster-RCNN. The link below is a further introduction: ROI Pooling for Faster-RCNN. The link below is a further introduction:
......
...@@ -109,8 +109,6 @@ class BlockGuardServ(BlockGuard): ...@@ -109,8 +109,6 @@ class BlockGuardServ(BlockGuard):
class ListenAndServ(object): class ListenAndServ(object):
""" """
ListenAndServ layer.
ListenAndServ is used to create a rpc server bind and listen ListenAndServ is used to create a rpc server bind and listen
on specific TCP port, this server will run the sub-block when on specific TCP port, this server will run the sub-block when
received variables from clients. received variables from clients.
...@@ -121,6 +119,9 @@ class ListenAndServ(object): ...@@ -121,6 +119,9 @@ class ListenAndServ(object):
fan_in(int): how many client are expected to report to this server, default: 1. fan_in(int): how many client are expected to report to this server, default: 1.
optimizer_mode(bool): whether to run the server as a parameter server, default: True. optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Returns:
None
Examples: Examples:
.. code-block:: python .. code-block:: python
......
...@@ -806,7 +806,7 @@ def crf_decoding(input, param_attr, label=None): ...@@ -806,7 +806,7 @@ def crf_decoding(input, param_attr, label=None):
label(${label_type}): ${label_comment} label(${label_type}): ${label_comment}
Returns: Returns:
${viterbi_path_comment} Variable: ${viterbi_path_comment}
""" """
helper = LayerHelper('crf_decoding', **locals()) helper = LayerHelper('crf_decoding', **locals())
transition = helper.get_parameter(param_attr.name) transition = helper.get_parameter(param_attr.name)
...@@ -828,7 +828,7 @@ def cos_sim(X, Y): ...@@ -828,7 +828,7 @@ def cos_sim(X, Y):
Args: Args:
X (Variable): ${x_comment} X (Variable): ${x_comment}
Y (Variable): ${x_comment} Y (Variable): ${y_comment}
Returns: Returns:
Variable: the output of cosine(X, Y). Variable: the output of cosine(X, Y).
...@@ -1036,9 +1036,9 @@ def chunk_eval(input, ...@@ -1036,9 +1036,9 @@ def chunk_eval(input,
excluded_chunk_types (list): ${excluded_chunk_types_comment} excluded_chunk_types (list): ${excluded_chunk_types_comment}
Returns: Returns:
tuple: tuple containing: (precision, recall, f1_score, tuple: tuple containing: precision, recall, f1_score,
num_infer_chunks, num_label_chunks, num_infer_chunks, num_label_chunks,
num_correct_chunks) num_correct_chunks
""" """
helper = LayerHelper("chunk_eval", **locals()) helper = LayerHelper("chunk_eval", **locals())
...@@ -3050,8 +3050,6 @@ def nce(input, ...@@ -3050,8 +3050,6 @@ def nce(input,
def transpose(x, perm, name=None): def transpose(x, perm, name=None):
""" """
**transpose Layer**
Permute the dimensions of `input` according to `perm`. Permute the dimensions of `input` according to `perm`.
The `i`-th dimension of the returned tensor will correspond to the The `i`-th dimension of the returned tensor will correspond to the
...@@ -3918,7 +3916,7 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0): ...@@ -3918,7 +3916,7 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
spatial_scale (float): ${spatial_scale_comment} Default: 1.0 spatial_scale (float): ${spatial_scale_comment} Default: 1.0
Returns: Returns:
roi_pool (Variable): ${out_comment}. Variable: ${out_comment}.
Examples: Examples:
.. code-block:: python .. code-block:: python
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册