Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c57e12be
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c57e12be
编写于
7月 10, 2022
作者:
L
Leo Chen
提交者:
GitHub
7月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine dist_grad kernel (#44182)
* refine dist_grad kernel * fix cpu kernel bug
上级
ee5cb5f2
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
93 addition
and
271 deletion
+93
-271
paddle/phi/kernels/cpu/dist_grad_kernel.cc
paddle/phi/kernels/cpu/dist_grad_kernel.cc
+0
-22
paddle/phi/kernels/dist_grad_kernel.cc
paddle/phi/kernels/dist_grad_kernel.cc
+93
-0
paddle/phi/kernels/gpu/dist_grad_kernel.cu
paddle/phi/kernels/gpu/dist_grad_kernel.cu
+0
-26
paddle/phi/kernels/impl/dist_grad_kernel_impl.h
paddle/phi/kernels/impl/dist_grad_kernel_impl.h
+0
-223
未找到文件。
paddle/phi/kernels/cpu/dist_grad_kernel.cc
已删除
100644 → 0
浏览文件 @
ee5cb5f2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/dist_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/dist_grad_kernel_impl.h"
PD_REGISTER_KERNEL
(
dist_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
DistGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/dist_grad_kernel.cc
0 → 100644
浏览文件 @
c57e12be
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/dist_grad_kernel.h"
#include <tuple>
#include <vector>
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/elementwise_subtract_kernel.h"
#include "paddle/phi/kernels/p_norm_grad_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/kernels/scale_kernel.h"
namespace
phi
{
std
::
pair
<
std
::
vector
<
int64_t
>
,
std
::
vector
<
int64_t
>>
GetReduceDims
(
const
DDim
&
src_dim
,
const
DDim
&
dst_dim
)
{
std
::
vector
<
int64_t
>
reduce_dims
,
new_dims
;
auto
pre_dims
=
src_dim
.
size
()
-
dst_dim
.
size
();
for
(
auto
i
=
0
;
i
<
pre_dims
;
++
i
)
{
reduce_dims
.
push_back
(
i
);
}
for
(
auto
i
=
pre_dims
;
i
<
src_dim
.
size
();
++
i
)
{
if
(
dst_dim
[
i
-
pre_dims
]
==
1
&&
src_dim
[
i
]
!=
1
)
{
reduce_dims
.
push_back
(
i
);
}
else
{
new_dims
.
push_back
(
dst_dim
[
i
-
pre_dims
]);
}
}
return
{
reduce_dims
,
new_dims
};
}
template
<
typename
T
,
typename
Context
>
void
DistGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
float
p
,
DenseTensor
*
x_grad
,
DenseTensor
*
y_grad
)
{
auto
t
=
Subtract
<
T
,
Context
>
(
dev_ctx
,
x
,
y
);
DenseTensor
x_grad_tmp
;
x_grad_tmp
.
Resize
(
t
.
dims
());
DenseTensor
y_grad_tmp
;
y_grad_tmp
.
Resize
(
t
.
dims
());
PNormGradKernel
<
T
,
Context
>
(
dev_ctx
,
t
,
out
,
out_grad
,
p
,
-
1
,
1e-12
,
false
,
true
,
&
x_grad_tmp
);
ScaleKernel
<
T
,
Context
>
(
dev_ctx
,
x_grad_tmp
,
-
1.0
,
0.0
,
false
,
&
y_grad_tmp
);
// do reduce, the implemetation of cpu SumKernel has bug, it changes
// the dims of output iternally, so we Resize x/y_grad twice.
auto
res_x
=
GetReduceDims
(
x_grad_tmp
.
dims
(),
x
.
dims
());
if
(
!
std
::
get
<
0
>
(
res_x
).
empty
())
{
x_grad
->
Resize
(
phi
::
make_ddim
(
std
::
get
<
1
>
(
res_x
)));
SumKernel
<
T
,
Context
>
(
dev_ctx
,
x_grad_tmp
,
std
::
get
<
0
>
(
res_x
),
x
.
dtype
(),
false
,
x_grad
);
x_grad
->
Resize
(
x
.
dims
());
}
else
{
x_grad
->
ShareBufferWith
(
x_grad_tmp
);
}
auto
res_y
=
GetReduceDims
(
y_grad_tmp
.
dims
(),
y
.
dims
());
if
(
!
std
::
get
<
0
>
(
res_y
).
empty
())
{
y_grad
->
Resize
(
phi
::
make_ddim
(
std
::
get
<
1
>
(
res_y
)));
SumKernel
<
T
,
Context
>
(
dev_ctx
,
y_grad_tmp
,
std
::
get
<
0
>
(
res_y
),
y
.
dtype
(),
false
,
y_grad
);
y_grad
->
Resize
(
y
.
dims
());
}
else
{
y_grad
->
ShareBufferWith
(
y_grad_tmp
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
dist_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
DistGradKernel
,
float
,
double
)
{}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL
(
dist_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
DistGradKernel
,
float
,
double
)
{}
#endif
paddle/phi/kernels/gpu/dist_grad_kernel.cu
已删除
100644 → 0
浏览文件 @
ee5cb5f2
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/dist_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/dist_grad_kernel_impl.h"
#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL
(
dist_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
DistGradKernel
,
float
)
{}
#else
PD_REGISTER_KERNEL
(
dist_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
DistGradKernel
,
float
,
double
)
{}
#endif
paddle/phi/kernels/impl/dist_grad_kernel_impl.h
已删除
100644 → 0
浏览文件 @
ee5cb5f2
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
phi
{
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
ETensor
=
phi
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
template
<
int
Rank
>
static
void
GetBraodcastDims
(
const
phi
::
DDim
&
x_dims
,
const
phi
::
DDim
&
y_dims
,
Eigen
::
DSizes
<
int
,
Rank
>*
x_bcast_dims
,
Eigen
::
DSizes
<
int
,
Rank
>*
y_bcast_dims
)
{
int
bcast_dims_remainder
=
0
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
if
(
x_dims
[
i
]
>=
y_dims
[
i
])
{
(
*
x_bcast_dims
)[
i
]
=
1
;
(
*
y_bcast_dims
)[
i
]
=
x_dims
[
i
]
/
y_dims
[
i
];
bcast_dims_remainder
+=
x_dims
[
i
]
%
y_dims
[
i
];
}
else
{
(
*
y_bcast_dims
)[
i
]
=
1
;
(
*
x_bcast_dims
)[
i
]
=
y_dims
[
i
]
/
x_dims
[
i
];
bcast_dims_remainder
+=
y_dims
[
i
]
%
x_dims
[
i
];
}
}
PADDLE_ENFORCE_EQ
(
bcast_dims_remainder
,
0
,
phi
::
errors
::
PreconditionNotMet
(
"The input tensor of Op(dist) could not be broadcast, "
"X's shape is [%s], Y's shape is [%s]."
,
x_dims
,
y_dims
));
}
static
phi
::
DDim
GetNewDims
(
const
phi
::
DDim
&
in_dims
,
int
rank
)
{
std
::
vector
<
int64_t
>
new_dims_vec
(
rank
);
if
(
in_dims
.
size
()
<
rank
)
{
for
(
int
i
=
0
;
i
<
rank
-
in_dims
.
size
();
++
i
)
{
new_dims_vec
[
i
]
=
1
;
}
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
new_dims_vec
[
i
+
rank
-
in_dims
.
size
()]
=
in_dims
[
i
];
}
}
else
{
new_dims_vec
=
vectorize
(
in_dims
);
}
return
phi
::
make_ddim
(
new_dims_vec
);
}
template
<
typename
Context
,
typename
T
,
int
Rank
>
static
void
DistGradFunction
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
float
p
,
DenseTensor
*
x_grad
,
DenseTensor
*
y_grad
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
auto
out_dims
=
out
.
dims
();
phi
::
DDim
x_new_dims
=
GetNewDims
(
x_dims
,
Rank
);
phi
::
DDim
y_new_dims
=
GetNewDims
(
y_dims
,
Rank
);
phi
::
DDim
out_new_dims
=
GetNewDims
(
out_dims
,
Rank
);
auto
x_t
=
ETensor
<
T
,
Rank
>::
From
(
x
,
x_new_dims
);
auto
y_t
=
ETensor
<
T
,
Rank
>::
From
(
y
,
y_new_dims
);
auto
out_t
=
ETensor
<
T
,
Rank
>::
From
(
out
,
out_new_dims
);
Eigen
::
DSizes
<
int
,
Rank
>
x_bcast_dims
;
Eigen
::
DSizes
<
int
,
Rank
>
y_bcast_dims
;
Eigen
::
DSizes
<
int
,
Rank
>
out_bcast_dims
;
GetBraodcastDims
<
Rank
>
(
x_new_dims
,
y_new_dims
,
&
x_bcast_dims
,
&
y_bcast_dims
);
std
::
vector
<
int64_t
>
new_dims_vec
(
Rank
);
for
(
int
i
=
0
;
i
<
Rank
;
++
i
)
{
new_dims_vec
[
i
]
=
std
::
max
(
x_new_dims
[
i
],
y_new_dims
[
i
]);
out_bcast_dims
[
i
]
=
new_dims_vec
[
i
];
}
phi
::
DDim
new_dims
=
phi
::
make_ddim
(
new_dims_vec
);
auto
&
place
=
*
dev_ctx
.
eigen_device
();
auto
out_grad_t
=
ETensor
<
T
,
Rank
>::
From
(
out_grad
,
out_new_dims
);
DenseTensor
grad
;
grad
.
Resize
(
new_dims
);
dev_ctx
.
template
Alloc
<
T
>(
&
grad
);
auto
grad_t
=
ETensor
<
T
,
Rank
>::
From
(
grad
);
auto
x_minux_y
=
x_t
.
broadcast
(
x_bcast_dims
)
-
y_t
.
broadcast
(
y_bcast_dims
);
auto
x_minux_y_abs
=
x_minux_y
.
abs
();
auto
sign
=
(
x_minux_y
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>()
*
static_cast
<
T
>
(
1.0
)
+
(
x_minux_y
<
static_cast
<
T
>
(
0
)).
template
cast
<
T
>()
*
static_cast
<
T
>
(
-
1.0
);
T
epsilon
=
static_cast
<
T
>
(
1.0e-10
f
);
// 1: Lp-norm(z), z = x-y, compute dz
if
(
p
==
0
)
{
phi
::
funcs
::
SetConstant
<
Context
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
&
grad
,
static_cast
<
T
>
(
0
));
}
else
if
(
p
==
INFINITY
||
p
==
-
INFINITY
)
{
// p=inf or -inf, Lp-norm = |z_i|, the j-th element of dz tends to 0 if
// j!=i, or equals to sign(z_i) * dout if j=i.
if
(
paddle
::
platform
::
is_cpu_place
(
dev_ctx
.
GetPlace
()))
{
grad_t
.
device
(
place
)
=
(
x_minux_y_abs
==
out_t
.
broadcast
(
out_bcast_dims
))
.
template
cast
<
T
>()
*
sign
.
eval
()
*
out_grad_t
.
broadcast
(
out_bcast_dims
);
}
else
{
grad_t
.
device
(
place
)
=
(
x_minux_y_abs
==
out_t
.
broadcast
(
out_bcast_dims
))
.
template
cast
<
T
>()
*
sign
*
out_grad_t
.
broadcast
(
out_bcast_dims
);
}
}
else
{
// dz = pow(abs(x-y)/out, p-1) * sign(x-y) * dout
if
(
paddle
::
platform
::
is_cpu_place
(
dev_ctx
.
GetPlace
()))
{
grad_t
.
device
(
place
)
=
(
x_minux_y_abs
/
(
out_t
+
epsilon
).
broadcast
(
out_bcast_dims
))
.
pow
(
p
-
1
)
*
sign
.
eval
()
*
out_grad_t
.
broadcast
(
out_bcast_dims
);
}
else
{
grad_t
.
device
(
place
)
=
(
x_minux_y_abs
/
(
out_t
+
epsilon
).
broadcast
(
out_bcast_dims
))
.
pow
(
p
-
1
)
*
sign
*
out_grad_t
.
broadcast
(
out_bcast_dims
);
}
}
Eigen
::
DSizes
<
int
,
Rank
*
2
>
x_reshape_dims
;
Eigen
::
DSizes
<
int
,
Rank
*
2
>
y_reshape_dims
;
Eigen
::
DSizes
<
int
,
Rank
>
reduce_dims
;
for
(
int
i
=
0
;
i
<
x_new_dims
.
size
();
++
i
)
{
x_reshape_dims
[
2
*
i
]
=
x_bcast_dims
[
i
];
x_reshape_dims
[
2
*
i
+
1
]
=
x_new_dims
[
i
];
y_reshape_dims
[
2
*
i
]
=
y_bcast_dims
[
i
];
y_reshape_dims
[
2
*
i
+
1
]
=
y_new_dims
[
i
];
reduce_dims
[
i
]
=
2
*
i
;
}
// 2: if x or y is broadcasted in forward function,
// the grad need to be sum along the broadcasted dimensions
if
(
x_grad
)
{
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
auto
x_grad_t
=
ETensor
<
T
,
Rank
>::
From
(
*
x_grad
,
x_new_dims
);
x_grad_t
.
device
(
place
)
=
grad_t
.
reshape
(
x_reshape_dims
)
.
sum
(
reduce_dims
)
.
reshape
(
x_grad_t
.
dimensions
());
}
if
(
y_grad
)
{
dev_ctx
.
template
Alloc
<
T
>(
y_grad
);
auto
y_grad_t
=
ETensor
<
T
,
Rank
>::
From
(
*
y_grad
,
y_new_dims
);
y_grad_t
.
device
(
place
)
=
-
grad_t
.
reshape
(
y_reshape_dims
)
.
sum
(
reduce_dims
)
.
reshape
(
y_grad_t
.
dimensions
());
}
}
template
<
typename
T
,
typename
Context
>
void
DistGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
float
p
,
DenseTensor
*
x_grad
,
DenseTensor
*
y_grad
)
{
auto
x_rank
=
x
.
dims
().
size
();
auto
y_rank
=
y
.
dims
().
size
();
auto
rank
=
std
::
max
(
x_rank
,
y_rank
);
PADDLE_ENFORCE_LE
(
rank
,
6
,
phi
::
errors
::
Unimplemented
(
"Op(dist) only support tensors with no more than 6 "
"dimensions, but X's rank is %d, Y's rank is %d."
,
x_rank
,
y_rank
));
switch
(
rank
)
{
case
1
:
DistGradFunction
<
Context
,
T
,
1
>
(
dev_ctx
,
x
,
y
,
out
,
out_grad
,
p
,
x_grad
,
y_grad
);
break
;
case
2
:
DistGradFunction
<
Context
,
T
,
2
>
(
dev_ctx
,
x
,
y
,
out
,
out_grad
,
p
,
x_grad
,
y_grad
);
break
;
case
3
:
DistGradFunction
<
Context
,
T
,
3
>
(
dev_ctx
,
x
,
y
,
out
,
out_grad
,
p
,
x_grad
,
y_grad
);
break
;
case
4
:
DistGradFunction
<
Context
,
T
,
4
>
(
dev_ctx
,
x
,
y
,
out
,
out_grad
,
p
,
x_grad
,
y_grad
);
break
;
case
5
:
DistGradFunction
<
Context
,
T
,
5
>
(
dev_ctx
,
x
,
y
,
out
,
out_grad
,
p
,
x_grad
,
y_grad
);
break
;
case
6
:
DistGradFunction
<
Context
,
T
,
6
>
(
dev_ctx
,
x
,
y
,
out
,
out_grad
,
p
,
x_grad
,
y_grad
);
break
;
}
}
}
// namespace phi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录