Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c4e54acd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c4e54acd
编写于
4月 06, 2022
作者:
W
weishengying
提交者:
GitHub
4月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add rewrite pattern form paddle op tp trt op (#41323)
上级
5c6e4bff
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
296 addition
and
120 deletion
+296
-120
paddle/infrt/dialect/tensorrt/convert.h
paddle/infrt/dialect/tensorrt/convert.h
+96
-89
paddle/infrt/dialect/tensorrt/pd_lower_to_trt.td
paddle/infrt/dialect/tensorrt/pd_lower_to_trt.td
+4
-6
paddle/infrt/dialect/tensorrt/trt_op_converter_pass.cc
paddle/infrt/dialect/tensorrt/trt_op_converter_pass.cc
+111
-18
paddle/infrt/dialect/tensorrt/trt_ops.td
paddle/infrt/dialect/tensorrt/trt_ops.td
+8
-7
paddle/infrt/kernel/tensorrt/trt_kernels.cc
paddle/infrt/kernel/tensorrt/trt_kernels.cc
+6
-0
paddle/infrt/kernel/tensorrt/trt_layers.h
paddle/infrt/kernel/tensorrt/trt_layers.h
+71
-0
未找到文件。
paddle/infrt/dialect/tensorrt/convert.h
浏览文件 @
c4e54acd
...
@@ -58,58 +58,110 @@ template <>
...
@@ -58,58 +58,110 @@ template <>
}
}
static
mlir
::
Value
createTRTConv2dOp
(
mlir
::
PatternRewriter
&
rewriter
,
// NOLINT
static
mlir
::
Value
createTRTConv2dOp
(
mlir
::
PatternRewriter
&
rewriter
,
// NOLINT
mlir
::
Operation
*
op
)
{
mlir
::
Operation
*
op
,
mlir
::
Value
input
,
mlir
::
Value
filter
)
{
auto
conv_op
=
::
llvm
::
dyn_cast
<
infrt
::
pd
::
Conv2dOp
>
(
op
);
auto
conv_op
=
::
llvm
::
dyn_cast
<
infrt
::
pd
::
Conv2dOp
>
(
op
);
::
mlir
::
SmallVector
<::
mlir
::
Value
,
4
>
operands
;
::
mlir
::
SmallVector
<::
mlir
::
Value
,
4
>
operands
;
::
mlir
::
Operation
::
operand_range
Input
=
conv_op
.
getODSOperands
(
0
);
operands
.
push_back
(
input
);
::
mlir
::
Operation
::
operand_range
Filter
=
conv_op
.
getODSOperands
(
1
);
operands
.
push_back
(
filter
);
operands
.
push_back
((
*
Input
.
begin
()));
operands
.
push_back
((
*
Filter
.
begin
()));
::
mlir
::
SmallVector
<::
mlir
::
Type
,
4
>
resultTypes
;
::
mlir
::
SmallVector
<::
mlir
::
Type
,
4
>
resultTypes
;
for
(
auto
v
:
conv_op
.
getODSResults
(
0
))
{
for
(
auto
v
:
conv_op
.
getODSResults
(
0
))
{
resultTypes
.
push_back
(
v
.
getType
());
resultTypes
.
push_back
(
v
.
getType
());
}
}
::
mlir
::
SmallVector
<::
mlir
::
NamedAttribute
,
8
>
attributes
;
::
mlir
::
SmallVector
<::
mlir
::
NamedAttribute
,
8
>
attributes
;
{
// TODO(weishengying) : get out_channel_num for filter shape
auto
*
filter_producer
=
filter
.
getDefiningOp
();
auto
tblgen_attr
=
rewriter
.
getSI32IntegerAttr
(
3
);
auto
create_inited_tensor_op
=
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"out_channel_num"
),
llvm
::
dyn_cast
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
tblgen_attr
);
filter_producer
);
CHECK_NOTNULL
(
create_inited_tensor_op
);
mlir
::
ArrayAttr
dims
=
create_inited_tensor_op
.
dims
();
CHECK_EQ
(
dims
.
size
(),
4U
);
CHECK
(
dims
[
0
].
getType
().
isIntOrIndex
());
const
int32_t
n_output
=
dims
[
0
].
cast
<
mlir
::
IntegerAttr
>
().
getInt
();
const
int32_t
filter_h
=
dims
[
2
].
cast
<
mlir
::
IntegerAttr
>
().
getInt
();
const
int32_t
filter_w
=
dims
[
3
].
cast
<
mlir
::
IntegerAttr
>
().
getInt
();
auto
padding_attr
=
conv_op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"paddings"
);
llvm
::
SmallVector
<
int32_t
,
4
>
paddings
(
padding_attr
.
size
());
for
(
size_t
i
=
0
;
i
<
padding_attr
.
size
();
i
++
)
{
paddings
[
i
]
=
padding_attr
[
i
].
cast
<
mlir
::
IntegerAttr
>
().
getInt
();
}
}
{
// TODO(weishengying) : get kernel_size for filter shape
auto
dilations_attr
=
conv_op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"dilations"
);
auto
tblgen_attr
=
rewriter
.
getI32ArrayAttr
({
3
,
3
});
llvm
::
SmallVector
<
int32_t
>
dilations
(
dilations_attr
.
size
());
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"kernel_size"
),
tblgen_attr
);
for
(
size_t
i
=
0
;
i
<
dilations_attr
.
size
();
i
++
)
{
dilations
[
i
]
=
dilations_attr
[
i
].
cast
<
mlir
::
IntegerAttr
>
().
getInt
();
}
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"strides"
);
llvm
::
SmallVector
<
int32_t
,
2
>
nv_paddings
(
2
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"strides"
),
tblgen_attr
);
llvm
::
SmallVector
<
int32_t
,
4
>
nv_pre_paddings
(
2
);
llvm
::
SmallVector
<
int32_t
,
4
>
nv_post_paddings
(
2
);
llvm
::
SmallVector
<
int32_t
,
2
>
nv_dilations
({
dilations
[
0
],
dilations
[
1
]});
int32_t
nv_padding_mode
=
0
;
// nvinfer1::PaddingMode::kEXPLICIT_ROUND_DOWN
auto
padding_algorithm_attr
=
conv_op
->
getAttrOfType
<::
mlir
::
StringAttr
>
(
"padding_algorithm"
);
if
(
padding_algorithm_attr
.
strref
()
==
"VALID"
)
{
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
i
++
)
{
paddings
[
i
]
=
0
;
}
}
}
{
if
(
padding_algorithm_attr
.
strref
()
==
"SAME"
)
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"paddings"
);
nv_padding_mode
=
2
;
// nvinfer1::PaddingMode::kSAME_UPPER
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"paddings"
),
tblgen_attr
);
nv_dilations
[
0
]
=
1
;
nv_dilations
[
1
]
=
1
;
}
}
{
auto
tblgen_attr
=
if
(
paddings
.
size
()
==
2
)
{
op
->
getAttrOfType
<::
mlir
::
StringAttr
>
(
"padding_algorithm"
);
nv_paddings
[
0
]
=
paddings
[
0
];
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"padding_mode"
),
nv_paddings
[
1
]
=
paddings
[
1
];
tblgen_attr
);
}
else
{
CHECK_EQ
(
paddings
.
size
(),
4U
);
nv_pre_paddings
[
0
]
=
paddings
[
0
];
nv_pre_paddings
[
1
]
=
paddings
[
2
];
nv_post_paddings
[
0
]
=
paddings
[
1
];
nv_post_paddings
[
1
]
=
paddings
[
3
];
}
}
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"out_channel_num"
),
rewriter
.
getSI32IntegerAttr
(
n_output
));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"kernel_size"
),
rewriter
.
getI32ArrayAttr
({
filter_h
,
filter_w
}));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"dilations"
),
rewriter
.
getI32ArrayAttr
({
nv_dilations
[
0
],
nv_dilations
[
1
]}));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"padding_mode"
),
rewriter
.
getSI32IntegerAttr
(
nv_padding_mode
));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"paddings"
),
rewriter
.
getI32ArrayAttr
({
paddings
[
0
],
paddings
[
1
]}));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"pre_paddings"
),
rewriter
.
getI32ArrayAttr
({
nv_pre_paddings
[
0
],
nv_pre_paddings
[
1
]}));
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"post_paddings"
),
rewriter
.
getI32ArrayAttr
({
nv_post_paddings
[
0
],
nv_post_paddings
[
1
]}));
{
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
IntegerAttr
>
(
"groups"
);
auto
tblgen_attr
=
conv_
op
->
getAttrOfType
<::
mlir
::
IntegerAttr
>
(
"groups"
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"groups"
),
tblgen_attr
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"groups"
),
tblgen_attr
);
}
}
{
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"dilations"
);
auto
tblgen_attr
=
conv_op
->
getAttrOfType
<::
mlir
::
ArrayAttr
>
(
"strides"
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"dilations"
),
tblgen_attr
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"strides"
),
tblgen_attr
);
}
{
auto
tblgen_attr
=
op
->
getAttrOfType
<::
mlir
::
StringAttr
>
(
"data_format"
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"data_format"
),
tblgen_attr
);
}
}
return
rewriter
.
create
<
trt
::
ConvolutionOp
>
(
return
rewriter
.
create
<
trt
::
ConvolutionOp
>
(
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
);
conv_
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
);
}
}
static
inline
mlir
::
ArrayAttr
TransposeWeight
(
static
inline
mlir
::
ArrayAttr
TransposeWeight
(
...
@@ -193,51 +245,6 @@ inline ::llvm::SmallVector<::mlir::Value, 4> createTrtFcOp(
...
@@ -193,51 +245,6 @@ inline ::llvm::SmallVector<::mlir::Value, 4> createTrtFcOp(
return
tblgen_repl_values
;
return
tblgen_repl_values
;
}
}
static
mlir
::
Value
createTRTShuffledOp
(
mlir
::
PatternRewriter
&
rewriter
,
// NOLINT
mlir
::
Operation
*
op
,
const
mlir
::
Value
&
input
,
const
mlir
::
Attribute
&
start
,
const
mlir
::
Attribute
&
stop
)
{
auto
flatten_op
=
::
llvm
::
dyn_cast
<
infrt
::
pd
::
Flatten_contiguous_rangeOp
>
(
op
);
::
mlir
::
SmallVector
<::
mlir
::
Value
,
4
>
operands
;
operands
.
push_back
(
input
);
::
mlir
::
SmallVector
<::
mlir
::
Type
,
4
>
resultTypes
;
for
(
auto
v
:
flatten_op
.
getODSResults
(
0
))
{
resultTypes
.
push_back
(
v
.
getType
());
}
::
mlir
::
SmallVector
<::
mlir
::
NamedAttribute
,
8
>
attributes
;
mlir
::
IntegerAttr
start_attr
=
start
.
dyn_cast
<
mlir
::
IntegerAttr
>
();
mlir
::
IntegerAttr
stop_attr
=
stop
.
dyn_cast
<
mlir
::
IntegerAttr
>
();
int
start_axis
=
start_attr
.
getSInt
();
int
stop_axis
=
stop_attr
.
getSInt
();
// TODO(weishengying) : get dim form DenseTonsor
int
dims
=
4
;
// TODO(weishengying) : get input_dims form DenseTonsor
int
input_dims
[
4
]
=
{
1
,
2048
,
1
,
1
};
int
dim_prod
=
1
;
std
::
vector
<
int
>
flatten_dim
(
dims
-
(
stop_axis
-
start_axis
));
for
(
int
i
=
0
,
j
=
0
;
i
<
dims
;
++
i
)
{
if
(
start_axis
<=
i
+
1
&&
i
+
1
<=
stop_axis
)
{
int
dim_i
=
input_dims
[
i
];
dim_prod
*=
dim_i
;
if
(
i
+
1
==
stop_axis
)
{
flatten_dim
[
j
++
]
=
dim_prod
;
}
}
else
{
flatten_dim
[
j
++
]
=
input_dims
[
i
];
}
}
auto
reshape_arrt
=
rewriter
.
getI32ArrayAttr
(
flatten_dim
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"reshape"
),
reshape_arrt
);
return
rewriter
.
create
<
trt
::
ShuffleOp
>
(
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
);
}
inline
mlir
::
IntegerAttr
CreatePoolingType
(
inline
mlir
::
IntegerAttr
CreatePoolingType
(
mlir
::
PatternRewriter
&
builder
,
// NOLINT
mlir
::
PatternRewriter
&
builder
,
// NOLINT
mlir
::
StringAttr
pool_type
)
{
mlir
::
StringAttr
pool_type
)
{
...
@@ -339,17 +346,17 @@ inline ::llvm::SmallVector<::mlir::Value, 4> CreatePaddleTrtPoolingOp(
...
@@ -339,17 +346,17 @@ inline ::llvm::SmallVector<::mlir::Value, 4> CreatePaddleTrtPoolingOp(
PoolingOp
pool_op
;
PoolingOp
pool_op
;
{
{
auto
ods_loc
=
builder
.
getFusedLoc
({
input_producer
->
getLoc
()});
auto
ods_loc
=
builder
.
getFusedLoc
({
input_producer
->
getLoc
()});
builder
.
create
<
PoolingOp
>
(
ods_loc
,
pool_op
=
builder
.
create
<
PoolingOp
>
(
ods_loc
,
input
.
getType
(),
input
.
getType
(),
input
,
input
,
pool_type_attr
,
pool_type_attr
,
ksize
,
ksize
,
strides
,
strides
,
paddings_attr
,
paddings_attr
,
padding_mode_attr
,
padding_mode_attr
,
exclusive
,
exclusive
,
adaptive
,
adaptive
,
padding_algorithm
);
padding_algorithm
);
}
}
for
(
auto
v
:
for
(
auto
v
:
...
...
paddle/infrt/dialect/tensorrt/pd_lower_to_trt.td
浏览文件 @
c4e54acd
...
@@ -25,11 +25,11 @@ def PD2TRT_Relu6_Lower : Pat<
...
@@ -25,11 +25,11 @@ def PD2TRT_Relu6_Lower : Pat<
(PD_Relu6Op $X, $threshold),
(PD_Relu6Op $X, $threshold),
(TRT_ActivationOp $X, (TRT_createNvinferEnumAttr<"nvinfer1::ActivationType", "kCLIP">), (INFRT_createF32Attr<"0.0">), $threshold)>;
(TRT_ActivationOp $X, (TRT_createNvinferEnumAttr<"nvinfer1::ActivationType", "kCLIP">), (INFRT_createF32Attr<"0.0">), $threshold)>;
def createTRTConv2dOp : NativeCodeCall<"createTRTConv2dOp($_builder, $0.getDefiningOp())">;
def createTRTConv2dOp : NativeCodeCall<"createTRTConv2dOp($_builder, $0.getDefiningOp()
, $1, $2
)">;
def PD2TRT_Conv2d_Lower : Pat<
def PD2TRT_Conv2d_Lower : Pat<
(PD_Conv2dOp:$old_value $Input, $Filter, $strides, $paddings, $padding_algorithm, $groups, $dilations, $data_format),
(PD_Conv2dOp:$old_value $Input, $Filter, $strides, $paddings, $padding_algorithm, $groups, $dilations, $data_format),
(createTRTConv2dOp $old_value)>;
(createTRTConv2dOp $old_value
, $Input, $Filter
)>;
def createTrtPoolingOp : NativeCodeCall<"::infrt::trt::CreatePaddleTrtPoolingOp($_builder, $0, $1, $2, $3, $4, $5, $6, $7, $8, $9, $10)">;
def createTrtPoolingOp : NativeCodeCall<"::infrt::trt::CreatePaddleTrtPoolingOp($_builder, $0, $1, $2, $3, $4, $5, $6, $7, $8, $9, $10)">;
def PD2TRT_Pooling_Lower : Pat<
def PD2TRT_Pooling_Lower : Pat<
...
@@ -50,9 +50,7 @@ def PD2TRT_Fc_Lower : Pat<
...
@@ -50,9 +50,7 @@ def PD2TRT_Fc_Lower : Pat<
(PD_Elementwise_addOp:$elt_out (PD_Matmul_v2Op $X, $Y, $trans_x, $trans_y), $elt_y, $axis),
(PD_Elementwise_addOp:$elt_out (PD_Matmul_v2Op $X, $Y, $trans_x, $trans_y), $elt_y, $axis),
(createTrtFcOp $X, $Y, $elt_y, $elt_out)>;
(createTrtFcOp $X, $Y, $elt_y, $elt_out)>;
def createTRTShuffledOp : NativeCodeCall<"createTRTShuffledOp($_builder, $0.getDefiningOp(), $1, $2, $3)">;
def PD2TRT_Flatten_contiguous_range_Lower : Pat<
def PD2TRT_Flatten_contiguous_range_Lower : Pat<
(PD_Flatten_contiguous_rangeOp
:$out
$input, $start_axis, $end_axis),
(PD_Flatten_contiguous_rangeOp $input, $start_axis, $end_axis),
(
createTRTShuffledOp $out,
$input, $start_axis, $end_axis)>;
(
TRT_ShuffleOp
$input, $start_axis, $end_axis)>;
#endif // PD_LOWER_TO_TRT
#endif // PD_LOWER_TO_TRT
paddle/infrt/dialect/tensorrt/trt_op_converter_pass.cc
浏览文件 @
c4e54acd
...
@@ -92,20 +92,122 @@ struct PD2TRT_Batch_Norm_Lower : public ::mlir::RewritePattern {
...
@@ -92,20 +92,122 @@ struct PD2TRT_Batch_Norm_Lower : public ::mlir::RewritePattern {
::
mlir
::
Operation
::
operand_range
Input
=
casted_op
.
getODSOperands
(
0
);
::
mlir
::
Operation
::
operand_range
Input
=
casted_op
.
getODSOperands
(
0
);
::
mlir
::
Operation
::
operand_range
Scale
=
casted_op
.
getODSOperands
(
1
);
::
mlir
::
Operation
::
operand_range
Scale
=
casted_op
.
getODSOperands
(
1
);
::
mlir
::
Operation
::
operand_range
Bias
=
casted_op
.
getODSOperands
(
2
);
::
mlir
::
Operation
::
operand_range
Bias
=
casted_op
.
getODSOperands
(
2
);
::
mlir
::
Operation
::
operand_range
Mean
=
casted_op
.
getODSOperands
(
3
);
::
mlir
::
Operation
::
operand_range
Variance
=
casted_op
.
getODSOperands
(
4
);
operands
.
push_back
(
Input
[
0
]);
operands
.
push_back
(
Bias
[
0
]);
operands
.
push_back
(
Scale
[
0
]);
// TODO(weishengying) : recompute this via params
// TODO(weishengying) : recompute this via params
operands
.
push_back
((
*
Input
.
begin
()));
auto
*
scale_producer
=
Scale
[
0
].
getDefiningOp
();
operands
.
push_back
((
*
Scale
.
begin
()));
auto
create_scale_tensor_op
=
operands
.
push_back
((
*
Bias
.
begin
()));
llvm
::
dyn_cast
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
operands
.
push_back
((
*
Bias
.
begin
()));
scale_producer
);
CHECK_NOTNULL
(
create_scale_tensor_op
);
trt
::
ScaleNdOp
scaleNd_op
;
auto
*
bias_producer
=
Bias
[
0
].
getDefiningOp
();
// inputs
auto
create_bias_tensor_op
=
::
mlir
::
SmallVector
<::
mlir
::
Value
,
4
>
trt_inputs
;
llvm
::
dyn_cast
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
for
(
auto
v
:
operands
)
{
bias_producer
);
trt_inputs
.
push_back
(
v
);
CHECK_NOTNULL
(
create_bias_tensor_op
);
auto
*
mean_producer
=
Mean
[
0
].
getDefiningOp
();
auto
create_mean_tensor_op
=
llvm
::
dyn_cast
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
mean_producer
);
CHECK_NOTNULL
(
create_mean_tensor_op
);
auto
*
variance_producer
=
Variance
[
0
].
getDefiningOp
();
auto
create_variance_tensor_op
=
llvm
::
dyn_cast
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
variance_producer
);
CHECK_NOTNULL
(
create_variance_tensor_op
);
llvm
::
SmallVector
<
double
>
scale_data
;
mlir
::
ArrayAttr
scale_array_attr
=
create_scale_tensor_op
.
values
();
CHECK_GT
(
scale_array_attr
.
size
(),
0U
);
CHECK
(
scale_array_attr
[
0
].
getType
().
isF32
());
scale_data
.
resize
(
scale_array_attr
.
size
());
for
(
size_t
i
=
0
;
i
<
scale_array_attr
.
size
();
i
++
)
{
scale_data
[
i
]
=
scale_array_attr
[
i
].
cast
<
mlir
::
FloatAttr
>
().
getValueAsDouble
();
}
llvm
::
SmallVector
<
double
>
bias_data
;
mlir
::
ArrayAttr
bias_array_attr
=
create_bias_tensor_op
.
values
();
CHECK_GT
(
bias_array_attr
.
size
(),
0U
);
CHECK
(
bias_array_attr
[
0
].
getType
().
isF32
());
bias_data
.
resize
(
bias_array_attr
.
size
());
for
(
size_t
i
=
0
;
i
<
bias_array_attr
.
size
();
i
++
)
{
bias_data
[
i
]
=
bias_array_attr
[
i
].
cast
<
mlir
::
FloatAttr
>
().
getValueAsDouble
();
}
}
llvm
::
SmallVector
<
double
>
mean_data
;
mlir
::
ArrayAttr
mean_array_attr
=
create_mean_tensor_op
.
values
();
CHECK_GT
(
mean_array_attr
.
size
(),
0U
);
CHECK
(
mean_array_attr
[
0
].
getType
().
isF32
());
mean_data
.
resize
(
mean_array_attr
.
size
());
for
(
size_t
i
=
0
;
i
<
mean_array_attr
.
size
();
i
++
)
{
mean_data
[
i
]
=
mean_array_attr
[
i
].
cast
<
mlir
::
FloatAttr
>
().
getValueAsDouble
();
}
llvm
::
SmallVector
<
double
>
variance_data
;
mlir
::
ArrayAttr
variance_array_attr
=
create_variance_tensor_op
.
values
();
CHECK_GT
(
variance_array_attr
.
size
(),
0U
);
CHECK
(
variance_array_attr
[
0
].
getType
().
isF32
());
variance_data
.
resize
(
variance_array_attr
.
size
());
for
(
size_t
i
=
0
;
i
<
variance_array_attr
.
size
();
i
++
)
{
variance_data
[
i
]
=
variance_array_attr
[
i
].
cast
<
mlir
::
FloatAttr
>
().
getValueAsDouble
();
}
double
eps
=
casted_op
.
epsilonAttr
().
getValueAsDouble
();
llvm
::
SmallVector
<
float
>
combile_scale_data
;
combile_scale_data
.
resize
(
scale_data
.
size
());
llvm
::
SmallVector
<
float
>
combile_bias_data
;
combile_bias_data
.
resize
(
bias_data
.
size
());
size_t
ele_num
=
combile_scale_data
.
size
();
for
(
size_t
i
=
0
;
i
<
ele_num
;
i
++
)
{
float
scale
=
scale_data
[
i
];
float
bias
=
bias_data
[
i
];
float
mean
=
mean_data
[
i
];
float
variance
=
variance_data
[
i
];
combile_scale_data
[
i
]
=
scale
/
sqrtf
(
variance
+
eps
);
combile_bias_data
[
i
]
=
bias
-
mean
*
combile_scale_data
[
i
];
}
rewriter
.
setInsertionPoint
(
create_scale_tensor_op
);
auto
new_scale_op
=
rewriter
.
create
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
create_scale_tensor_op
->
getLoc
(),
create_scale_tensor_op
.
output
().
getType
(),
create_scale_tensor_op
.
context
(),
create_bias_tensor_op
.
dims
(),
::
infrt
::
LayoutAttr
::
get
(
rewriter
.
getContext
(),
::
infrt
::
LayoutType
::
NCHW
),
create_scale_tensor_op
.
lod
(),
rewriter
.
getF32ArrayAttr
(
combile_scale_data
));
rewriter
.
replaceOp
(
create_scale_tensor_op
,
new_scale_op
->
getResults
());
rewriter
.
setInsertionPoint
(
create_bias_tensor_op
);
auto
new_bias_op
=
rewriter
.
create
<::
infrt
::
phi
::
CreateHostInitedDenseTensorOp
>
(
create_bias_tensor_op
->
getLoc
(),
create_bias_tensor_op
.
output
().
getType
(),
create_bias_tensor_op
.
context
(),
create_bias_tensor_op
.
dims
(),
::
infrt
::
LayoutAttr
::
get
(
rewriter
.
getContext
(),
::
infrt
::
LayoutType
::
NCHW
),
create_bias_tensor_op
.
lod
(),
rewriter
.
getF32ArrayAttr
(
combile_bias_data
));
rewriter
.
replaceOp
(
create_bias_tensor_op
,
new_bias_op
->
getResults
());
rewriter
.
setInsertionPoint
(
op
);
trt
::
ScaleNdOp
scaleNd_op
;
// resultTypes
// resultTypes
::
mlir
::
SmallVector
<::
mlir
::
Type
,
4
>
resultTypes
;
::
mlir
::
SmallVector
<::
mlir
::
Type
,
4
>
resultTypes
;
for
(
auto
v
:
casted_op
.
getODSResults
(
0
))
{
for
(
auto
v
:
casted_op
.
getODSResults
(
0
))
{
...
@@ -114,15 +216,6 @@ struct PD2TRT_Batch_Norm_Lower : public ::mlir::RewritePattern {
...
@@ -114,15 +216,6 @@ struct PD2TRT_Batch_Norm_Lower : public ::mlir::RewritePattern {
// attributes
// attributes
::
mlir
::
SmallVector
<::
mlir
::
NamedAttribute
,
8
>
attributes
;
::
mlir
::
SmallVector
<::
mlir
::
NamedAttribute
,
8
>
attributes
;
{
auto
mode_attr
=
rewriter
.
getI32IntegerAttr
(
1
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"mode"
),
mode_attr
);
}
{
auto
axis_attr
=
rewriter
.
getI32IntegerAttr
(
-
1
);
attributes
.
emplace_back
(
rewriter
.
getStringAttr
(
"axis"
),
axis_attr
);
}
auto
result
=
rewriter
auto
result
=
rewriter
.
create
<
trt
::
ScaleNdOp
>
(
.
create
<
trt
::
ScaleNdOp
>
(
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
)
op
->
getLoc
(),
resultTypes
,
operands
,
attributes
)
...
...
paddle/infrt/dialect/tensorrt/trt_ops.td
浏览文件 @
c4e54acd
...
@@ -81,7 +81,9 @@ def TRT_ConvolutionOp : TRT_Op<"Convolution", [NoSideEffect]> {
...
@@ -81,7 +81,9 @@ def TRT_ConvolutionOp : TRT_Op<"Convolution", [NoSideEffect]> {
I32ArrayAttr:$kernel_size,
I32ArrayAttr:$kernel_size,
I32ArrayAttr:$strides,
I32ArrayAttr:$strides,
I32ArrayAttr:$paddings,
I32ArrayAttr:$paddings,
StrAttr:$padding_mode,
I32ArrayAttr:$pre_paddings,
I32ArrayAttr:$post_paddings,
DefaultValuedAttr<SI32Attr, "0">:$padding_mode, //kEXPLICIT_ROUND_DOWN
SI32Attr:$groups,
SI32Attr:$groups,
I32ArrayAttr:$dilations
I32ArrayAttr:$dilations
);
);
...
@@ -97,11 +99,11 @@ def TRT_PoolingOp : TRT_Op<"Pooling", [NoSideEffect]> {
...
@@ -97,11 +99,11 @@ def TRT_PoolingOp : TRT_Op<"Pooling", [NoSideEffect]> {
}];
}];
let arguments = (ins
let arguments = (ins
DenseTensor:$input_tensor,
DenseTensor:$input_tensor,
I32Attr:$pool_type,
S
I32Attr:$pool_type,
I32ArrayAttr:$window_size,
I32ArrayAttr:$window_size,
I32ArrayAttr:$strides,
I32ArrayAttr:$strides,
I32ArrayAttr:$paddings,
I32ArrayAttr:$paddings,
I32Attr:$padding_mode,
S
I32Attr:$padding_mode,
BoolAttr:$exclusive,
BoolAttr:$exclusive,
BoolAttr:$adaptive,
BoolAttr:$adaptive,
StrAttr:$padding_algorithm
StrAttr:$padding_algorithm
...
@@ -195,11 +197,9 @@ def TRT_ScaleNdOp : TRT_Op<"ScaleNd", [NoSideEffect]> {
...
@@ -195,11 +197,9 @@ def TRT_ScaleNdOp : TRT_Op<"ScaleNd", [NoSideEffect]> {
}];
}];
let arguments = (ins
let arguments = (ins
DenseTensor:$input_tensor,
DenseTensor:$input_tensor,
I32Attr:$mode,
DenseTensor:$shift,
DenseTensor:$shift,
DenseTensor:$scale,
DenseTensor:$scale,
DenseTensor:$power,
Optional<DenseTensor>:$power
I32Attr:$axis
);
);
let results = (outs DenseTensor:$Out);
let results = (outs DenseTensor:$Out);
...
@@ -214,7 +214,8 @@ def TRT_ShuffleOp : TRT_Op<"Shuffle", [NoSideEffect]> {
...
@@ -214,7 +214,8 @@ def TRT_ShuffleOp : TRT_Op<"Shuffle", [NoSideEffect]> {
}];
}];
let arguments = (ins
let arguments = (ins
DenseTensor:$input_tensor,
DenseTensor:$input_tensor,
I32ArrayAttr:$reshape
DefaultValuedAttr<SI32Attr, "1">:$start_axis,
DefaultValuedAttr<SI32Attr, "1">:$stop_axis
);
);
let results = (outs DenseTensor:$Out);
let results = (outs DenseTensor:$Out);
...
...
paddle/infrt/kernel/tensorrt/trt_kernels.cc
浏览文件 @
c4e54acd
...
@@ -141,6 +141,12 @@ namespace tensorrt {
...
@@ -141,6 +141,12 @@ namespace tensorrt {
ConvFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
ConvFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
}
else
if
(
trt
::
PoolingOp
op
=
llvm
::
dyn_cast
<
trt
::
PoolingOp
>
(
operation
))
{
}
else
if
(
trt
::
PoolingOp
op
=
llvm
::
dyn_cast
<
trt
::
PoolingOp
>
(
operation
))
{
PoolFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
PoolFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
}
else
if
(
trt
::
ShuffleOp
op
=
llvm
::
dyn_cast
<
trt
::
ShuffleOp
>
(
operation
))
{
ShuffleFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
}
else
if
(
trt
::
ScaleNdOp
op
=
llvm
::
dyn_cast
<
trt
::
ScaleNdOp
>
(
operation
))
{
ScaleNdFunc
(
op
,
network
.
get
(),
value_to_trt_tensor_map
,
value_to_tensor_map
);
}
else
{
}
else
{
CHECK
(
false
)
<<
"not supported operation."
;
CHECK
(
false
)
<<
"not supported operation."
;
}
}
...
...
paddle/infrt/kernel/tensorrt/trt_layers.h
浏览文件 @
c4e54acd
...
@@ -151,6 +151,77 @@ inline void FcFunc(trt::FullyConnectedOp& op, // NOLINT
...
@@ -151,6 +151,77 @@ inline void FcFunc(trt::FullyConnectedOp& op, // NOLINT
nvinfer1
::
ITensor
*
out_tensor
=
layer
->
getOutput
(
0
);
nvinfer1
::
ITensor
*
out_tensor
=
layer
->
getOutput
(
0
);
value_to_trt_tensor_map
[
out_repr
]
=
out_tensor
;
value_to_trt_tensor_map
[
out_repr
]
=
out_tensor
;
}
}
inline
void
ShuffleFunc
(
trt
::
ShuffleOp
&
op
,
// NOLINT
nvinfer1
::
INetworkDefinition
*
network
,
ValueToITensorMap
&
value_to_trt_tensor_map
,
// NOLINT
ValueToTensorMap
&
value_to_tensor_map
)
{
// NOLINT
mlir
::
Value
input_tensor_repr
=
op
.
input_tensor
();
nvinfer1
::
ITensor
*
input
=
value_to_trt_tensor_map
[
input_tensor_repr
];
int
dims
=
input
->
getDimensions
().
nbDims
;
int
start_axis
=
op
.
start_axisAttr
().
getInt
();
int
stop_axis
=
op
.
start_axisAttr
().
getInt
();
nvinfer1
::
IShuffleLayer
*
layer
=
nullptr
;
if
(
start_axis
<
0
)
start_axis
+=
dims
+
1
;
if
(
stop_axis
<
0
)
stop_axis
+=
dims
+
1
;
int
dim_prod
=
1
;
nvinfer1
::
Dims
flatten_dim
;
flatten_dim
.
nbDims
=
dims
-
(
stop_axis
-
start_axis
);
for
(
int
i
=
0
,
j
=
0
;
i
<
dims
;
++
i
)
{
if
(
start_axis
<=
i
+
1
&&
i
+
1
<=
stop_axis
)
{
int
dim_i
=
input
->
getDimensions
().
d
[
i
];
CHECK_GT
(
dim_i
,
0
);
dim_prod
*=
dim_i
;
if
(
i
+
1
==
stop_axis
)
{
flatten_dim
.
d
[
j
++
]
=
dim_prod
;
}
}
else
{
flatten_dim
.
d
[
j
++
]
=
input
->
getDimensions
().
d
[
i
];
}
}
layer
=
network
->
addShuffle
(
*
value_to_trt_tensor_map
[
input_tensor_repr
]);
CHECK_NOTNULL
(
layer
);
layer
->
setReshapeDimensions
(
flatten_dim
);
for
(
size_t
i
=
0
;
i
<
op
->
getNumResults
();
++
i
)
{
nvinfer1
::
ITensor
*
out_tensor
=
layer
->
getOutput
(
i
);
mlir
::
Value
out_value
=
op
->
getResult
(
i
);
value_to_trt_tensor_map
[
out_value
]
=
out_tensor
;
}
}
inline
void
ScaleNdFunc
(
trt
::
ScaleNdOp
&
op
,
// NOLINT
nvinfer1
::
INetworkDefinition
*
network
,
ValueToITensorMap
&
value_to_trt_tensor_map
,
// NOLINT
ValueToTensorMap
&
value_to_tensor_map
)
{
// NOLINT
mlir
::
Value
input_tensor_repr
=
op
.
input_tensor
();
nvinfer1
::
ITensor
*
input
=
value_to_trt_tensor_map
[
input_tensor_repr
];
mlir
::
Value
shift_tensor_repr
=
op
.
shift
();
nvinfer1
::
Weights
shift
=
TensorToWeights
(
value_to_tensor_map
[
shift_tensor_repr
]);
mlir
::
Value
scale_tensor_repr
=
op
.
scale
();
nvinfer1
::
Weights
scale
=
TensorToWeights
(
value_to_tensor_map
[
scale_tensor_repr
]);
nvinfer1
::
Weights
power_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
nvinfer1
::
IScaleLayer
*
layer
=
nullptr
;
layer
=
network
->
addScaleNd
(
*
input
,
nvinfer1
::
ScaleMode
::
kCHANNEL
,
shift
,
scale
,
power_weights
,
0
);
CHECK_NOTNULL
(
layer
);
for
(
size_t
i
=
0
;
i
<
op
->
getNumResults
();
++
i
)
{
nvinfer1
::
ITensor
*
out_tensor
=
layer
->
getOutput
(
i
);
mlir
::
Value
out_value
=
op
->
getResult
(
i
);
value_to_trt_tensor_map
[
out_value
]
=
out_tensor
;
}
}
}
// namespace tensorrt
}
// namespace tensorrt
}
// namespace kernel
}
// namespace kernel
}
// namespace infrt
}
// namespace infrt
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录