Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c4cd99f3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c4cd99f3
编写于
1月 10, 2021
作者:
W
WangXi
提交者:
GitHub
1月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix adamw apply gradient (#30130) (#30207)
上级
6d1fb79d
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
44 addition
and
88 deletion
+44
-88
python/paddle/fluid/tests/unittests/test_adamw_op.py
python/paddle/fluid/tests/unittests/test_adamw_op.py
+6
-4
python/paddle/optimizer/adam.py
python/paddle/optimizer/adam.py
+2
-0
python/paddle/optimizer/adamw.py
python/paddle/optimizer/adamw.py
+36
-84
未找到文件。
python/paddle/fluid/tests/unittests/test_adamw_op.py
浏览文件 @
c4cd99f3
...
...
@@ -29,10 +29,12 @@ class TestAdamWOp(unittest.TestCase):
parameters
=
linear
.
parameters
(),
apply_decay_param_fun
=
lambda
name
:
True
,
weight_decay
=
0.01
)
out
=
linear
(
a
)
out
.
backward
()
adam
.
step
()
adam
.
clear_gradients
()
for
_
in
range
(
2
):
out
=
linear
(
a
)
out
.
backward
()
adam
.
step
()
adam
.
clear_gradients
()
def
test_adamw_op_coverage
(
self
):
paddle
.
disable_static
()
...
...
python/paddle/optimizer/adam.py
浏览文件 @
c4cd99f3
...
...
@@ -16,6 +16,7 @@ from .optimizer import Optimizer
from
..fluid
import
core
from
..fluid
import
framework
from
..fluid.framework
import
Variable
from
..fluid.dygraph
import
base
as
imperative_base
import
paddle
...
...
@@ -247,6 +248,7 @@ class Adam(Optimizer):
return
adam_op
@
imperative_base
.
no_grad
@
framework
.
dygraph_only
def
step
(
self
):
"""
...
...
python/paddle/optimizer/adamw.py
浏览文件 @
c4cd99f3
...
...
@@ -129,6 +129,7 @@ class AdamW(Adam):
self
.
_params_name
=
set
()
self
.
_apply_decay_param_fun
=
apply_decay_param_fun
self
.
_coeff
=
coeff
self
.
_lr_to_coeff
=
dict
()
super
(
AdamW
,
self
).
__init__
(
learning_rate
=
learning_rate
,
parameters
=
parameters
,
...
...
@@ -139,97 +140,48 @@ class AdamW(Adam):
name
=
name
,
lazy_mode
=
lazy_mode
)
def
_
scale_parameters
(
self
,
params_and_grads
):
def
_
append_decoupled_weight_decay
(
self
,
block
,
param_and_grad
):
"""
Add
s weight decay ops
.
scaled_parameter = parameter * coeff
Add
decoupled weight decay op
.
parameter = parameter - parameter * coeff * lr
Args:
params_and_grads: A list of (parameters, gradients) pairs,
block: block in which variable is to be created
param_and_grad: (parameters, gradients) pairs,
the parameters need to decay.
Raises:
Exception: The type of coeff and parameter is not consistent.
"""
scaled_params
=
[]
for
param
,
grad
in
params_and_grads
:
# If no gradient then we don't need to do anything
if
grad
is
None
:
continue
if
self
.
_apply_decay_param_fun
is
not
None
\
and
not
self
.
_apply_decay_param_fun
(
param
.
name
):
continue
if
isinstance
(
self
.
_coeff
,
float
):
assert
param
.
dtype
is
not
paddle
.
fluid
.
core
.
VarDesc
.
VarType
.
FP32
,
\
"the type of coeff(float) and parameter(%s) is not consistent."
%
(
self
.
_coeff
.
dtype
)
else
:
assert
self
.
_coeff
.
dtype
==
param
.
dtype
,
\
"the type of coeff(%s) and parameter(%s) is not consistent."
%
(
self
.
_coeff
.
dtype
,
param
.
dtype
)
if
isinstance
(
self
.
_learning_rate
,
float
):
learning_rate
=
self
.
_learning_rate
else
:
learning_rate
=
self
.
_learning_rate
()
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
framework
.
name_scope
(
'weight decay'
):
scaled_params
.
append
(
(
param
,
grad
,
param
*
self
.
_coeff
*
learning_rate
))
if
param
.
name
not
in
self
.
_params_name
:
self
.
_params_name
.
add
(
param
.
name
)
param
=
param
*
self
.
_coeff
return
scaled_params
@
imperative_base
.
no_grad
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameters
=
None
,
no_grad_set
=
None
):
parameters
=
parameters
if
parameters
\
else
self
.
_parameter_list
params_grads
=
self
.
backward
(
loss
=
loss
,
startup_program
=
startup_program
,
parameters
=
parameters
,
no_grad_set
=
no_grad_set
)
scaled_params
=
self
.
_scale_parameters
(
params_grads
)
for
p_grad_sgrad
in
scaled_params
:
param
,
grad
,
scaled_param
=
p_grad_sgrad
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
framework
.
name_scope
(
'weight decay'
):
updated_param
=
paddle
.
fluid
.
layers
.
elementwise_sub
(
x
=
param
,
y
=
scaled_param
)
paddle
.
fluid
.
layers
.
assign
(
input
=
updated_param
,
output
=
param
)
optimize_ops
=
self
.
_apply_optimize
(
loss
=
loss
,
params_grads
=
params_grads
,
startup_program
=
startup_program
)
return
optimize_ops
,
params_grads
@
framework
.
dygraph_only
@
imperative_base
.
no_grad
def
step
(
self
):
self
.
_dtype
=
None
params_grads
=
[]
for
param
in
self
.
_parameter_list
:
if
not
param
.
trainable
:
continue
if
param
.
_grad_ivar
()
is
not
None
:
grad_var
=
param
.
_grad_ivar
()
params_grads
.
append
((
param
,
grad_var
))
scaled_params
=
self
.
_scale_parameters
(
params_grads
)
for
p_grad_sgrad
in
scaled_params
:
param
,
grad
,
scaled_param
=
p_grad_sgrad
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
framework
.
name_scope
(
'weight decay'
):
updated_param
=
paddle
.
fluid
.
layers
.
elementwise_sub
(
x
=
param
,
y
=
scaled_param
)
paddle
.
fluid
.
layers
.
assign
(
input
=
updated_param
,
output
=
param
)
self
.
_apply_optimize
(
loss
=
None
,
startup_program
=
None
,
params_grads
=
params_grads
)
param
,
grad
=
param_and_grad
if
self
.
_apply_decay_param_fun
is
not
None
\
and
not
self
.
_apply_decay_param_fun
(
param
.
name
):
return
if
isinstance
(
self
.
_learning_rate
,
float
):
learning_rate
=
self
.
_learning_rate
else
:
# NOTE. We add this function to the _append_optimize_op(),
# for we must make sure _create_param_lr() be called after
# optimizer._create_global_learning_rate().
learning_rate
=
self
.
_create_param_lr
(
param_and_grad
)
with
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
framework
.
name_scope
(
'weight decay'
):
self
.
_params_name
.
add
(
param
.
name
)
# If it has been calculated, the result will be reused
decay_coeff
=
self
.
_lr_to_coeff
.
get
(
learning_rate
,
None
)
if
decay_coeff
is
None
:
decay_coeff
=
1.0
-
learning_rate
*
self
.
_coeff
self
.
_lr_to_coeff
[
learning_rate
]
=
decay_coeff
scaled_param
=
param
*
decay_coeff
paddle
.
fluid
.
layers
.
assign
(
input
=
scaled_param
,
output
=
param
)
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
self
.
_append_decoupled_weight_decay
(
block
,
param_and_grad
)
return
super
(
AdamW
,
self
).
_append_optimize_op
(
block
,
param_and_grad
)
def
__str__
(
self
):
return
" "
.
join
([
"Weight Decay, params:"
,
","
.
join
(
self
.
_params_name
)])
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录