未验证 提交 c35b4b8e 编写于 作者: F fwenguang 提交者: GitHub

[MLU] add gaussian_random mlu kernel (#39338)

上级 f8ba12e5
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <random>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class MLUGaussianRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
float mean = context.Attr<float>("mean");
float std = context.Attr<float>("std");
auto* tensor = context.Output<framework::Tensor>("Out");
tensor->mutable_data<T>(context.GetPlace());
Tensor cpu_tensor(tensor->type());
cpu_tensor.Resize(tensor->dims());
T* cpu_data = cpu_tensor.mutable_data<T>(platform::CPUPlace());
std::normal_distribution<T> dist(mean, std);
int64_t size = tensor->numel();
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
auto engine = framework::GetCPURandomEngine(seed);
for (int64_t i = 0; i < size; ++i) {
cpu_data[i] = dist(*engine);
}
auto& dev_ctx =
context.template device_context<paddle::platform::MLUDeviceContext>();
framework::TensorCopy(cpu_tensor, context.GetPlace(), dev_ctx, tensor);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(gaussian_random, ops::MLUGaussianRandomKernel<float>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
import sys
sys.path.append('..')
from op_test import OpTest
import paddle
class TestGaussianRandomOp(OpTest):
def setUp(self):
self.op_type = "gaussian_random"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.set_attrs()
self.inputs = {}
self.attrs = {
"shape": [123, 92],
"mean": self.mean,
"std": self.std,
"seed": 10,
}
paddle.seed(10)
self.outputs = {'Out': np.zeros((123, 92), dtype='float32')}
def set_attrs(self):
self.mean = 1.0
self.std = 2.
def test_check_output(self):
self.check_output_with_place_customized(self.verify_output, self.place)
# self.check_output_customized(self.verify_output, self.place)
def verify_output(self, outs):
self.assertEqual(outs[0].shape, (123, 92))
hist, _ = np.histogram(outs[0], range=(-3, 5))
hist = hist.astype("float32")
hist /= float(outs[0].size)
data = np.random.normal(size=(123, 92), loc=1, scale=2)
hist2, _ = np.histogram(data, range=(-3, 5))
hist2 = hist2.astype("float32")
hist2 /= float(outs[0].size)
self.assertTrue(
np.allclose(
hist, hist2, rtol=0, atol=0.01),
"hist: " + str(hist) + " hist2: " + str(hist2))
class TestMeanStdAreInt(TestGaussianRandomOp):
def set_attrs(self):
self.mean = 1
self.std = 2
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册