Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c342651e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c342651e
编写于
7月 22, 2021
作者:
W
wuhuachaocoding
提交者:
GitHub
7月 22, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix concat bug (#34319)
上级
609f8225
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
33 addition
and
31 deletion
+33
-31
paddle/fluid/operators/math/concat_and_split.cc
paddle/fluid/operators/math/concat_and_split.cc
+9
-9
paddle/fluid/operators/math/concat_and_split.cu
paddle/fluid/operators/math/concat_and_split.cu
+24
-22
未找到文件。
paddle/fluid/operators/math/concat_and_split.cc
浏览文件 @
c342651e
...
@@ -40,18 +40,18 @@ class ConcatFunctor<platform::CPUDeviceContext, T> {
...
@@ -40,18 +40,18 @@ class ConcatFunctor<platform::CPUDeviceContext, T> {
const
std
::
vector
<
framework
::
Tensor
>&
input
,
int
axis
,
const
std
::
vector
<
framework
::
Tensor
>&
input
,
int
axis
,
framework
::
Tensor
*
output
)
{
framework
::
Tensor
*
output
)
{
// TODO(zcd): Add input data validity checking
// TODO(zcd): Add input data validity checking
in
t
num
=
input
.
size
();
size_
t
num
=
input
.
size
();
int
rows
=
1
;
int
64_t
rows
=
1
;
auto
dim_0
=
input
[
0
].
dims
();
auto
dim_0
=
input
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
rows
*=
dim_0
[
i
];
rows
*=
dim_0
[
i
];
}
}
int
out_rows
=
rows
,
out_cols
=
0
;
int
64_t
out_rows
=
rows
,
out_cols
=
0
;
std
::
vector
<
int64_t
>
input_cols
(
input
.
size
());
std
::
vector
<
int64_t
>
input_cols
(
input
.
size
());
for
(
in
t
i
=
0
;
i
<
num
;
++
i
)
{
for
(
size_
t
i
=
0
;
i
<
num
;
++
i
)
{
int
t_cols
=
input
[
i
].
numel
()
/
rows
;
int
64_t
t_cols
=
input
[
i
].
numel
()
/
rows
;
out_cols
+=
t_cols
;
out_cols
+=
t_cols
;
input_cols
[
i
]
=
t_cols
;
input_cols
[
i
]
=
t_cols
;
}
}
...
@@ -59,11 +59,11 @@ class ConcatFunctor<platform::CPUDeviceContext, T> {
...
@@ -59,11 +59,11 @@ class ConcatFunctor<platform::CPUDeviceContext, T> {
// computation
// computation
auto
output_data
=
output
->
data
<
T
>
();
auto
output_data
=
output
->
data
<
T
>
();
int
col_idx
=
0
;
int
64_t
col_idx
=
0
;
for
(
in
t
j
=
0
;
j
<
num
;
++
j
)
{
for
(
size_
t
j
=
0
;
j
<
num
;
++
j
)
{
int
col_len
=
input_cols
[
j
];
int
64_t
col_len
=
input_cols
[
j
];
auto
input_data
=
input
[
j
].
data
<
T
>
();
auto
input_data
=
input
[
j
].
data
<
T
>
();
for
(
int
k
=
0
;
k
<
out_rows
;
++
k
)
{
for
(
int
64_t
k
=
0
;
k
<
out_rows
;
++
k
)
{
memory
::
Copy
(
cpu_place
,
output_data
+
k
*
out_cols
+
col_idx
,
cpu_place
,
memory
::
Copy
(
cpu_place
,
output_data
+
k
*
out_cols
+
col_idx
,
cpu_place
,
input_data
+
k
*
col_len
,
sizeof
(
T
)
*
col_len
);
input_data
+
k
*
col_len
,
sizeof
(
T
)
*
col_len
);
}
}
...
...
paddle/fluid/operators/math/concat_and_split.cu
浏览文件 @
c342651e
...
@@ -26,9 +26,9 @@ namespace operators {
...
@@ -26,9 +26,9 @@ namespace operators {
namespace
math
{
namespace
math
{
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
**
inputs
,
const
int
*
input_cols
,
__global__
void
ConcatKernel
(
const
T
**
inputs
,
const
int
64_t
*
input_cols
,
int
col_size
,
const
int
output_rows
,
int
col_size
,
const
int
64_t
output_rows
,
const
int
output_cols
,
T
*
output
)
{
const
int
64_t
output_cols
,
T
*
output
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
curr_segment
=
0
;
int
curr_segment
=
0
;
int
curr_offset
=
input_cols
[
0
];
int
curr_offset
=
input_cols
[
0
];
...
@@ -70,8 +70,8 @@ __device__ void ConcatKernelDetail(const T** inputs_data,
...
@@ -70,8 +70,8 @@ __device__ void ConcatKernelDetail(const T** inputs_data,
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
int
fixed_in_col
,
const
in
t
out_rows
,
const
int
64_t
fixed_in_col
,
const
int64_
t
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
const
int
64_t
out_cols
,
T
*
output_data
)
{
const
T
*
inputs_data
[
2
];
const
T
*
inputs_data
[
2
];
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
1
]
=
input_addr1
;
inputs_data
[
1
]
=
input_addr1
;
...
@@ -81,8 +81,8 @@ __global__ void ConcatKernel(const T* input_addr0, const T* input_addr1,
...
@@ -81,8 +81,8 @@ __global__ void ConcatKernel(const T* input_addr0, const T* input_addr1,
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
T
*
input_addr2
,
const
int
fixed_in_col
,
const
T
*
input_addr2
,
const
int
64_t
fixed_in_col
,
const
int
out_rows
,
const
in
t
out_cols
,
const
int
64_t
out_rows
,
const
int64_
t
out_cols
,
T
*
output_data
)
{
T
*
output_data
)
{
const
T
*
inputs_data
[
3
];
const
T
*
inputs_data
[
3
];
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
0
]
=
input_addr0
;
...
@@ -95,8 +95,8 @@ __global__ void ConcatKernel(const T* input_addr0, const T* input_addr1,
...
@@ -95,8 +95,8 @@ __global__ void ConcatKernel(const T* input_addr0, const T* input_addr1,
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
T
*
input_addr2
,
const
T
*
input_addr3
,
const
T
*
input_addr2
,
const
T
*
input_addr3
,
const
int
fixed_in_col
,
const
in
t
out_rows
,
const
int
64_t
fixed_in_col
,
const
int64_
t
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
const
int
64_t
out_cols
,
T
*
output_data
)
{
const
T
*
inputs_data
[
4
];
const
T
*
inputs_data
[
4
];
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
1
]
=
input_addr1
;
inputs_data
[
1
]
=
input_addr1
;
...
@@ -108,8 +108,8 @@ __global__ void ConcatKernel(const T* input_addr0, const T* input_addr1,
...
@@ -108,8 +108,8 @@ __global__ void ConcatKernel(const T* input_addr0, const T* input_addr1,
template
<
typename
T
>
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
**
inputs_data
,
const
int
in_num
,
__global__
void
ConcatKernel
(
const
T
**
inputs_data
,
const
int
in_num
,
const
int
fixed_in_col
,
const
in
t
out_rows
,
const
int
64_t
fixed_in_col
,
const
int64_
t
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
const
int
64_t
out_cols
,
T
*
output_data
)
{
ConcatKernelDetail
<
T
>
(
inputs_data
,
fixed_in_col
,
out_rows
,
out_cols
,
ConcatKernelDetail
<
T
>
(
inputs_data
,
fixed_in_col
,
out_rows
,
out_cols
,
output_data
);
output_data
);
}
}
...
@@ -235,19 +235,19 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
...
@@ -235,19 +235,19 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
framework
::
Tensor
*
output
)
{
framework
::
Tensor
*
output
)
{
// TODO(zcd): Add input data validity checking
// TODO(zcd): Add input data validity checking
int
in_num
=
input
.
size
();
int
in_num
=
input
.
size
();
int
in_row
=
1
;
int
64_t
in_row
=
1
;
auto
dim_0
=
input
[
0
].
dims
();
auto
dim_0
=
input
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
in_row
*=
dim_0
[
i
];
in_row
*=
dim_0
[
i
];
}
}
int
in_col
=
input
[
0
].
numel
()
/
in_row
;
int
64_t
in_col
=
input
[
0
].
numel
()
/
in_row
;
int
out_row
=
in_row
,
out_col
=
0
;
int
64_t
out_row
=
in_row
,
out_col
=
0
;
int
inputs_col_num
=
in_num
+
1
;
int
inputs_col_num
=
in_num
+
1
;
std
::
vector
<
const
T
*>
inputs_data_vec
(
in_num
);
std
::
vector
<
const
T
*>
inputs_data_vec
(
in_num
);
std
::
vector
<
int
>
inputs_col_vec
(
inputs_col_num
);
std
::
vector
<
int
64_t
>
inputs_col_vec
(
inputs_col_num
);
const
T
**
inputs_data
=
inputs_data_vec
.
data
();
const
T
**
inputs_data
=
inputs_data_vec
.
data
();
int
*
inputs_col
=
inputs_col_vec
.
data
();
int
64_t
*
inputs_col
=
inputs_col_vec
.
data
();
// There are some differences between hip runtime and NV runtime.
// There are some differences between hip runtime and NV runtime.
// In NV, when the pageable memory data less than 64K is transferred from
// In NV, when the pageable memory data less than 64K is transferred from
...
@@ -263,13 +263,13 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
...
@@ -263,13 +263,13 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
inputs_data
=
reinterpret_cast
<
const
T
**>
(
data_alloc
->
ptr
());
inputs_data
=
reinterpret_cast
<
const
T
**>
(
data_alloc
->
ptr
());
col_alloc
=
memory
::
Alloc
(
platform
::
CUDAPinnedPlace
(),
col_alloc
=
memory
::
Alloc
(
platform
::
CUDAPinnedPlace
(),
inputs_col_num
*
sizeof
(
int
));
inputs_col_num
*
sizeof
(
int
));
inputs_col
=
reinterpret_cast
<
int
*>
(
col_alloc
->
ptr
());
inputs_col
=
reinterpret_cast
<
int
64_t
*>
(
col_alloc
->
ptr
());
#endif
#endif
inputs_col
[
0
]
=
0
;
inputs_col
[
0
]
=
0
;
bool
has_same_shape
=
true
;
bool
has_same_shape
=
true
;
for
(
int
i
=
0
;
i
<
in_num
;
++
i
)
{
for
(
int
i
=
0
;
i
<
in_num
;
++
i
)
{
int
t_cols
=
input
[
i
].
numel
()
/
in_row
;
int
64_t
t_cols
=
input
[
i
].
numel
()
/
in_row
;
if
(
has_same_shape
)
{
if
(
has_same_shape
)
{
if
(
t_cols
!=
in_col
)
has_same_shape
=
false
;
if
(
t_cols
!=
in_col
)
has_same_shape
=
false
;
}
}
...
@@ -312,17 +312,19 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
...
@@ -312,17 +312,19 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
}
}
}
else
{
}
else
{
auto
tmp_dev_ins_col_data
=
auto
tmp_dev_ins_col_data
=
memory
::
Alloc
(
context
,
inputs_col_num
*
sizeof
(
int
));
memory
::
Alloc
(
context
,
inputs_col_num
*
sizeof
(
int
64_t
));
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()),
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()),
tmp_dev_ins_col_data
->
ptr
(),
platform
::
CPUPlace
(),
tmp_dev_ins_col_data
->
ptr
(),
platform
::
CPUPlace
(),
static_cast
<
void
*>
(
inputs_col
),
inputs_col_num
*
sizeof
(
int
),
static_cast
<
void
*>
(
inputs_col
),
context
.
stream
());
inputs_col_num
*
sizeof
(
int64_t
),
context
.
stream
());
int
*
dev_ins_col_data
=
static_cast
<
int
*>
(
tmp_dev_ins_col_data
->
ptr
());
int64_t
*
dev_ins_col_data
=
static_cast
<
int64_t
*>
(
tmp_dev_ins_col_data
->
ptr
());
ConcatKernel
<<<
grid_dims
,
block_dims
,
0
,
context
.
stream
()
>>>
(
ConcatKernel
<<<
grid_dims
,
block_dims
,
0
,
context
.
stream
()
>>>
(
dev_ins_data
,
dev_ins_col_data
,
static_cast
<
int
>
(
inputs_col_num
),
dev_ins_data
,
dev_ins_col_data
,
static_cast
<
int
>
(
inputs_col_num
),
out_row
,
out_col
,
output
->
data
<
T
>
());
out_row
,
out_col
,
output
->
data
<
T
>
());
}
}
#ifdef PADDLE_WITH_HIP
#ifdef PADDLE_WITH_HIP
// Prevent the pinned memory value from being covered and release the memory
// Prevent the pinned memory value from being covered and release the memory
// after the launch kernel of the stream is executed (reapply pinned memory
// after the launch kernel of the stream is executed (reapply pinned memory
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录