Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c2f86f95
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2301
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c2f86f95
编写于
10月 18, 2019
作者:
W
wangguanzhong
提交者:
GitHub
10月 18, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry-pick, move nms2 to contrib, test=release/1.6 (#20710)
上级
8fb760da
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
139 addition
and
138 deletion
+139
-138
python/paddle/fluid/contrib/layers/nn.py
python/paddle/fluid/contrib/layers/nn.py
+136
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+0
-136
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+3
-2
未找到文件。
python/paddle/fluid/contrib/layers/nn.py
浏览文件 @
c2f86f95
...
@@ -30,6 +30,7 @@ __all__ = [
...
@@ -30,6 +30,7 @@ __all__ = [
'var_conv_2d'
,
'var_conv_2d'
,
'match_matrix_tensor'
,
'match_matrix_tensor'
,
'tree_conv'
,
'tree_conv'
,
'multiclass_nms2'
,
]
]
...
@@ -427,3 +428,138 @@ def tree_conv(nodes_vector,
...
@@ -427,3 +428,138 @@ def tree_conv(nodes_vector,
else
:
else
:
pre_activation
=
out
pre_activation
=
out
return
helper
.
append_activation
(
pre_activation
)
return
helper
.
append_activation
(
pre_activation
)
def
multiclass_nms2
(
bboxes
,
scores
,
score_threshold
,
nms_top_k
,
keep_top_k
,
nms_threshold
=
0.3
,
normalized
=
True
,
nms_eta
=
1.
,
background_label
=
0
,
return_index
=
False
,
name
=
None
):
"""
**Multiclass NMS2**
This operator is to do multi-class non maximum suppression (NMS) on
boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
Args:
bboxes (Variable): Two types of bboxes are supported:
1. (Tensor) A 3-D Tensor with shape
[N, M, 4 or 8 16 24 32] represents the
predicted locations of M bounding bboxes,
N is the batch size. Each bounding box has four
coordinate values and the layout is
[xmin, ymin, xmax, ymax], when box size equals to 4.
2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
M is the number of bounding boxes, C is the
class number
scores (Variable): Two types of scores are supported:
1. (Tensor) A 3-D Tensor with shape [N, C, M]
represents the predicted confidence predictions.
N is the batch size, C is the class number, M is
number of bounding boxes. For each category there
are total M scores which corresponding M bounding
boxes. Please note, M is equal to the 2nd dimension
of BBoxes.
2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
M is the number of bbox, C is the class number.
In this case, input BBoxes should be the second
case with shape [M, C, 4].
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all
categories will be considered. Default: 0
score_threshold (float): Threshold to filter out bounding boxes with
low confidence score. If not provided,
consider all boxes.
nms_top_k (int): Maximum number of detections to be kept according to
the confidences aftern the filtering detections based
on score_threshold.
nms_threshold (float): The threshold to be used in NMS. Default: 0.3
nms_eta (float): The threshold to be used in NMS. Default: 1.0
keep_top_k (int): Number of total bboxes to be kept per image after NMS
step. -1 means keeping all bboxes after NMS step.
normalized (bool): Whether detections are normalized. Default: True
return_index(bool): Whether return selected index. Default: False
name(str): Name of the multiclass nms op. Default: None.
Returns:
A tuple with two Variables: (Out, Index) if return_index is True,
otherwise, a tuple with one Variable(Out) is returned.
Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
or A 2-D LoDTensor with shape [No, 10] represents the detections.
Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
x4, y4]. No is the total number of detections.
If all images have not detected results, all elements in LoD will be
0, and output tensor is empty (None).
Index: Only return when return_index is True. A 2-D LoDTensor with
shape [No, 1] represents the selected index which type is Integer.
The index is the absolute value cross batches. No is the same number
as Out. If the index is used to gather other attribute such as age,
one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
N is the batch size and M is the number of boxes.
Examples:
.. code-block:: python
import paddle.fluid as fluid
boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
dtype='float32', lod_level=1)
scores = fluid.layers.data(name='scores', shape=[81],
dtype='float32', lod_level=1)
out, index = fluid.layers.multiclass_nms2(bboxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False,
return_index=True)
"""
helper
=
LayerHelper
(
'multiclass_nms2'
,
**
locals
())
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
bboxes
.
dtype
)
index
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int'
)
helper
.
append_op
(
type
=
"multiclass_nms2"
,
inputs
=
{
'BBoxes'
:
bboxes
,
'Scores'
:
scores
},
attrs
=
{
'background_label'
:
background_label
,
'score_threshold'
:
score_threshold
,
'nms_top_k'
:
nms_top_k
,
'nms_threshold'
:
nms_threshold
,
'nms_eta'
:
nms_eta
,
'keep_top_k'
:
keep_top_k
,
'nms_eta'
:
nms_eta
,
'normalized'
:
normalized
},
outputs
=
{
'Out'
:
output
,
'Index'
:
index
})
output
.
stop_gradient
=
True
index
.
stop_gradient
=
True
if
return_index
:
return
output
,
index
return
output
python/paddle/fluid/layers/detection.py
浏览文件 @
c2f86f95
...
@@ -53,7 +53,6 @@ __all__ = [
...
@@ -53,7 +53,6 @@ __all__ = [
'yolo_box'
,
'yolo_box'
,
'box_clip'
,
'box_clip'
,
'multiclass_nms'
,
'multiclass_nms'
,
'multiclass_nms2'
,
'retinanet_detection_output'
,
'retinanet_detection_output'
,
'distribute_fpn_proposals'
,
'distribute_fpn_proposals'
,
'box_decoder_and_assign'
,
'box_decoder_and_assign'
,
...
@@ -3148,141 +3147,6 @@ def multiclass_nms(bboxes,
...
@@ -3148,141 +3147,6 @@ def multiclass_nms(bboxes,
return
output
return
output
def
multiclass_nms2
(
bboxes
,
scores
,
score_threshold
,
nms_top_k
,
keep_top_k
,
nms_threshold
=
0.3
,
normalized
=
True
,
nms_eta
=
1.
,
background_label
=
0
,
return_index
=
False
,
name
=
None
):
"""
**Multiclass NMS2**
This operator is to do multi-class non maximum suppression (NMS) on
boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
Args:
bboxes (Variable): Two types of bboxes are supported:
1. (Tensor) A 3-D Tensor with shape
[N, M, 4 or 8 16 24 32] represents the
predicted locations of M bounding bboxes,
N is the batch size. Each bounding box has four
coordinate values and the layout is
[xmin, ymin, xmax, ymax], when box size equals to 4.
2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
M is the number of bounding boxes, C is the
class number
scores (Variable): Two types of scores are supported:
1. (Tensor) A 3-D Tensor with shape [N, C, M]
represents the predicted confidence predictions.
N is the batch size, C is the class number, M is
number of bounding boxes. For each category there
are total M scores which corresponding M bounding
boxes. Please note, M is equal to the 2nd dimension
of BBoxes.
2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
M is the number of bbox, C is the class number.
In this case, input BBoxes should be the second
case with shape [M, C, 4].
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all
categories will be considered. Default: 0
score_threshold (float): Threshold to filter out bounding boxes with
low confidence score. If not provided,
consider all boxes.
nms_top_k (int): Maximum number of detections to be kept according to
the confidences aftern the filtering detections based
on score_threshold.
nms_threshold (float): The threshold to be used in NMS. Default: 0.3
nms_eta (float): The threshold to be used in NMS. Default: 1.0
keep_top_k (int): Number of total bboxes to be kept per image after NMS
step. -1 means keeping all bboxes after NMS step.
normalized (bool): Whether detections are normalized. Default: True
return_index(bool): Whether return selected index. Default: False
name(str): Name of the multiclass nms op. Default: None.
Returns:
A tuple with two Variables: (Out, Index) if return_index is True,
otherwise, a tuple with one Variable(Out) is returned.
Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
or A 2-D LoDTensor with shape [No, 10] represents the detections.
Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
x4, y4]. No is the total number of detections.
If all images have not detected results, all elements in LoD will be
0, and output tensor is empty (None).
Index: Only return when return_index is True. A 2-D LoDTensor with
shape [No, 1] represents the selected index which type is Integer.
The index is the absolute value cross batches. No is the same number
as Out. If the index is used to gather other attribute such as age,
one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
N is the batch size and M is the number of boxes.
Examples:
.. code-block:: python
import paddle.fluid as fluid
boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
dtype='float32', lod_level=1)
scores = fluid.layers.data(name='scores', shape=[81],
dtype='float32', lod_level=1)
out, index = fluid.layers.multiclass_nms2(bboxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False,
return_index=True)
"""
helper
=
LayerHelper
(
'multiclass_nms2'
,
**
locals
())
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
bboxes
.
dtype
)
index
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int'
)
helper
.
append_op
(
type
=
"multiclass_nms2"
,
inputs
=
{
'BBoxes'
:
bboxes
,
'Scores'
:
scores
},
attrs
=
{
'background_label'
:
background_label
,
'score_threshold'
:
score_threshold
,
'nms_top_k'
:
nms_top_k
,
'nms_threshold'
:
nms_threshold
,
'nms_eta'
:
nms_eta
,
'keep_top_k'
:
keep_top_k
,
'nms_eta'
:
nms_eta
,
'normalized'
:
normalized
},
outputs
=
{
'Out'
:
output
,
'Index'
:
index
})
output
.
stop_gradient
=
True
index
.
stop_gradient
=
True
if
return_index
:
return
output
,
index
return
output
def
distribute_fpn_proposals
(
fpn_rois
,
def
distribute_fpn_proposals
(
fpn_rois
,
min_level
,
min_level
,
max_level
,
max_level
,
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
c2f86f95
...
@@ -557,8 +557,9 @@ class TestMulticlassNMS2(unittest.TestCase):
...
@@ -557,8 +557,9 @@ class TestMulticlassNMS2(unittest.TestCase):
bboxes
=
layers
.
data
(
bboxes
=
layers
.
data
(
name
=
'bboxes'
,
shape
=
[
-
1
,
10
,
4
],
dtype
=
'float32'
)
name
=
'bboxes'
,
shape
=
[
-
1
,
10
,
4
],
dtype
=
'float32'
)
scores
=
layers
.
data
(
name
=
'scores'
,
shape
=
[
-
1
,
10
],
dtype
=
'float32'
)
scores
=
layers
.
data
(
name
=
'scores'
,
shape
=
[
-
1
,
10
],
dtype
=
'float32'
)
output
=
layers
.
multiclass_nms2
(
bboxes
,
scores
,
0.3
,
400
,
200
,
0.7
)
output
=
fluid
.
contrib
.
multiclass_nms2
(
bboxes
,
scores
,
0.3
,
400
,
output2
,
index
=
layers
.
multiclass_nms2
(
200
,
0.7
)
output2
,
index
=
fluid
.
contrib
.
multiclass_nms2
(
bboxes
,
scores
,
0.3
,
400
,
200
,
0.7
,
return_index
=
True
)
bboxes
,
scores
,
0.3
,
400
,
200
,
0.7
,
return_index
=
True
)
self
.
assertIsNotNone
(
output
)
self
.
assertIsNotNone
(
output
)
self
.
assertIsNotNone
(
output2
)
self
.
assertIsNotNone
(
output2
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录