Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c2e56e6b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c2e56e6b
编写于
3月 04, 2019
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into op/embgrad
上级
641b3ccc
e2da3a5b
变更
34
展开全部
隐藏空白更改
内联
并排
Showing
34 changed file
with
896 addition
and
931 deletion
+896
-931
paddle/fluid/API.spec
paddle/fluid/API.spec
+500
-500
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
...uid/framework/details/fast_threaded_ssa_graph_executor.cc
+3
-1
paddle/fluid/framework/tensor_util.cc
paddle/fluid/framework/tensor_util.cc
+2
-0
paddle/fluid/operators/interpolate_op.cc
paddle/fluid/operators/interpolate_op.cc
+3
-3
paddle/fluid/operators/ngraph/ngraph_bridge.cc
paddle/fluid/operators/ngraph/ngraph_bridge.cc
+1
-0
paddle/fluid/operators/ngraph/ngraph_bridge.h
paddle/fluid/operators/ngraph/ngraph_bridge.h
+1
-0
paddle/fluid/operators/ngraph/ops/accuracy_op.h
paddle/fluid/operators/ngraph/ops/accuracy_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/activation_op.h
paddle/fluid/operators/ngraph/ops/activation_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/batch_norm_op.h
paddle/fluid/operators/ngraph/ops/batch_norm_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/binary_unary_op.h
paddle/fluid/operators/ngraph/ops/binary_unary_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/conv2d_op.h
paddle/fluid/operators/ngraph/ops/conv2d_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/cross_entropy_op.h
paddle/fluid/operators/ngraph/ops/cross_entropy_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/elementwise_add_op.h
paddle/fluid/operators/ngraph/ops/elementwise_add_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/fill_constant_op.h
paddle/fluid/operators/ngraph/ops/fill_constant_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/mean_op.h
paddle/fluid/operators/ngraph/ops/mean_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/momentum_op.h
paddle/fluid/operators/ngraph/ops/momentum_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/mul_op.h
paddle/fluid/operators/ngraph/ops/mul_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/pool2d_op.h
paddle/fluid/operators/ngraph/ops/pool2d_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/scale_op.h
paddle/fluid/operators/ngraph/ops/scale_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/softmax_op.h
paddle/fluid/operators/ngraph/ops/softmax_op.h
+2
-0
paddle/fluid/operators/ngraph/ops/top_k_op.h
paddle/fluid/operators/ngraph/ops/top_k_op.h
+2
-0
paddle/fluid/operators/reader/buffered_reader.cc
paddle/fluid/operators/reader/buffered_reader.cc
+1
-0
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+14
-17
python/paddle/fluid/compiler.py
python/paddle/fluid/compiler.py
+43
-29
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+34
-34
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+0
-9
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+2
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+90
-88
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+19
-140
python/paddle/fluid/tests/unittests/mkldnn/test_conv2d_mkldnn_op.py
...dle/fluid/tests/unittests/mkldnn/test_conv2d_mkldnn_op.py
+118
-23
python/paddle/fluid/tests/unittests/mkldnn/test_pool2d_mkldnn_op.py
...dle/fluid/tests/unittests/mkldnn/test_pool2d_mkldnn_op.py
+18
-0
tools/check_doc_approval.py
tools/check_doc_approval.py
+0
-85
tools/diff_api.py
tools/diff_api.py
+6
-0
tools/print_signatures.py
tools/print_signatures.py
+11
-1
未找到文件。
paddle/fluid/API.spec
浏览文件 @
c2e56e6b
此差异已折叠。
点击以展开。
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
浏览文件 @
c2e56e6b
...
...
@@ -12,7 +12,9 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
...
...
@@ -55,7 +57,7 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run(
std
::
vector
<
FetchOpHandle
*>
fetch_ops
;
for
(
auto
&
fetch_var_name
:
fetch_tensors
)
{
for
(
auto
&
var_map
:
graph_
->
Get
<
details
::
GraphVars
>
(
"vars"
))
{
for
(
auto
&
var_map
:
graph_
->
Get
<
details
::
GraphVars
>
(
details
::
kGraphVars
))
{
auto
it
=
var_map
.
find
(
fetch_var_name
);
if
(
it
!=
var_map
.
end
())
{
fetched_vars
[
fetch_var_name
].
push_back
(
*
it
->
second
.
rbegin
());
...
...
paddle/fluid/framework/tensor_util.cc
浏览文件 @
c2e56e6b
...
...
@@ -14,6 +14,8 @@
#include "paddle/fluid/framework/tensor_util.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
...
...
paddle/fluid/operators/interpolate_op.cc
浏览文件 @
c2e56e6b
...
...
@@ -84,13 +84,13 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
"bilinear"
);
AddAttr
<
bool
>
(
"align_corners"
,
"an optinal bool. Defaults to True. "
"an opti
o
nal bool. Defaults to True. "
"If True, the centers of 4 corner pixels of the input and output "
"tensors are aligned, preserving the values at the corner pixels, "
"
if Fla
se, are not aligned"
)
"
If Fal
se, are not aligned"
)
.
SetDefault
(
true
);
AddAttr
<
int
>
(
"align_mode"
,
"(int, default
\'
1
\'
), optional for bilinear interpolation"
"(int, default
\'
1
\'
), optional for bilinear interpolation
,
"
"can be
\'
0
\'
for src_idx = scale*(dst_indx+0.5)-0.5 , "
"can be
\'
1
\'
for src_idx = scale*dst_index ."
)
.
SetDefault
(
1
);
...
...
paddle/fluid/operators/ngraph/ngraph_bridge.cc
浏览文件 @
c2e56e6b
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include <algorithm>
#include <functional>
#include <memory>
#include <vector>
#include "ngraph/ngraph.hpp"
...
...
paddle/fluid/operators/ngraph/ngraph_bridge.h
浏览文件 @
c2e56e6b
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include <algorithm>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
...
...
paddle/fluid/operators/ngraph/ops/accuracy_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
...
...
paddle/fluid/operators/ngraph/ops/activation_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
...
...
paddle/fluid/operators/ngraph/ops/batch_norm_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
...
...
paddle/fluid/operators/ngraph/ops/binary_unary_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
#include "paddle/fluid/platform/ngraph_helper.h"
...
...
paddle/fluid/operators/ngraph/ops/conv2d_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
...
...
paddle/fluid/operators/ngraph/ops/cross_entropy_op.h
浏览文件 @
c2e56e6b
...
...
@@ -15,7 +15,9 @@ limitations under the License. */
#pragma once
#include <functional>
#include <memory>
#include <string>
#include <unordered_map>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
...
...
paddle/fluid/operators/ngraph/ops/elementwise_add_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
...
...
paddle/fluid/operators/ngraph/ops/fill_constant_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
...
...
paddle/fluid/operators/ngraph/ops/mean_op.h
浏览文件 @
c2e56e6b
...
...
@@ -15,7 +15,9 @@ limitations under the License. */
#pragma once
#include <functional>
#include <memory>
#include <string>
#include <unordered_map>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/elementwise_scalar_op.h"
...
...
paddle/fluid/operators/ngraph/ops/momentum_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
...
...
paddle/fluid/operators/ngraph/ops/mul_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
#include "paddle/fluid/platform/ngraph_helper.h"
...
...
paddle/fluid/operators/ngraph/ops/pool2d_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
...
...
paddle/fluid/operators/ngraph/ops/scale_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/elementwise_scalar_op.h"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
...
...
paddle/fluid/operators/ngraph/ops/softmax_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/elementwise_scalar_op.h"
...
...
paddle/fluid/operators/ngraph/ops/top_k_op.h
浏览文件 @
c2e56e6b
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
#include "paddle/fluid/platform/ngraph_helper.h"
...
...
paddle/fluid/operators/reader/buffered_reader.cc
浏览文件 @
c2e56e6b
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/operators/reader/buffered_reader.h"
#include <memory>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
c2e56e6b
...
...
@@ -415,10 +415,11 @@ function assert_api_not_changed() {
source
.env/bin/activate
pip
install
${
PADDLE_ROOT
}
/build/python/dist/
*
whl
python
${
PADDLE_ROOT
}
/tools/print_signatures.py paddle.fluid,paddle.reader
>
new.spec
if
[
"
$1
"
==
"cp35-cp35m"
]
||
[
"
$1
"
==
"cp36-cp36m"
]
||
[
"
$1
"
==
"cp37-cp37m"
]
;
then
# Use sed to make python2 and python3 sepc keeps the same
sed
-i
's/arg0: str/arg0: unicode/g'
new.spec
sed
-i
"s/
\(
.*Transpiler.*
\)
.__init__ ArgSpec(args=
\[
'self'].*/
\1
.__init__ /g"
new.spec
sed
-i
"s/
\(
.*Transpiler.*
\)
.__init__
(
ArgSpec(args=
\[
'self'].*/
\1
.__init__ /g"
new.spec
fi
# ComposeNotAligned has significant difference between py2 and py3
sed
-i
'/.*ComposeNotAligned.*/d'
new.spec
...
...
@@ -452,12 +453,21 @@ function assert_api_spec_approvals() {
echo
"checking
${
API_FILE
}
change, PR:
${
GIT_PR_ID
}
, changes:
${
API_CHANGE
}
"
if
[
${
API_CHANGE
}
]
&&
[
"
${
GIT_PR_ID
}
"
!=
""
]
;
then
# NOTE: per_page=10000 should be ok for all cases, a PR review > 10000 is not human readable.
APPROVALS
=
`
curl
-H
"Authorization: token
${
GITHUB_API_TOKEN
}
"
https://api.github.com/repos/PaddlePaddle/Paddle/pulls/
${
GIT_PR_ID
}
/reviews?per_page
=
10000 |
\
python
${
PADDLE_ROOT
}
/tools/check_pr_approval.py 1 2887803
`
if
[
"
$API_FILE
"
==
"paddle/fluid/API.spec"
]
;
then
APPROVALS
=
`
curl
-H
"Authorization: token
${
GITHUB_API_TOKEN
}
"
https://api.github.com/repos/PaddlePaddle/Paddle/pulls/
${
GIT_PR_ID
}
/reviews?per_page
=
10000 |
\
python
${
PADDLE_ROOT
}
/tools/check_pr_approval.py 2 2887803 35982308
`
else
APPROVALS
=
`
curl
-H
"Authorization: token
${
GITHUB_API_TOKEN
}
"
https://api.github.com/repos/PaddlePaddle/Paddle/pulls/
${
GIT_PR_ID
}
/reviews?per_page
=
10000 |
\
python
${
PADDLE_ROOT
}
/tools/check_pr_approval.py 1 2887803
`
fi
echo
"current pr
${
GIT_PR_ID
}
got approvals:
${
APPROVALS
}
"
if
[
"
${
APPROVALS
}
"
==
"FALSE"
]
;
then
if
[
"
$API_FILE
"
==
"paddle/fluid/API.spec"
]
;
then
echo
"You must have panyx0718 and shanyi15 approval for the api change!
${
API_FILE
}
"
else
echo
"You must have panyx0718 approval for the api change!
${
API_FILE
}
"
exit
1
fi
exit
1
fi
fi
done
...
...
@@ -472,19 +482,6 @@ function assert_api_spec_approvals() {
exit
1
fi
fi
pip
install
${
PADDLE_ROOT
}
/build/opt/paddle/share/wheels/
*
.whl
CHECK_DOCK_MD5
=
`
python
${
PADDLE_ROOT
}
/tools/check_doc_approval.py
`
if
[
"True"
!=
${
CHECK_DOCK_MD5
}
]
;
then
APPROVALS
=
`
curl
-H
"Authorization: token
${
GITHUB_API_TOKEN
}
"
https://api.github.com/repos/PaddlePaddle/Paddle/pulls/
${
GIT_PR_ID
}
/reviews?per_page
=
10000 |
\
python
${
PADDLE_ROOT
}
/tools/check_pr_approval.py 1 35982308
`
echo
"current pr
${
GIT_PR_ID
}
got approvals:
${
APPROVALS
}
"
if
[
"
${
APPROVALS
}
"
==
"FALSE"
]
;
then
echo
"You must have shanyi15 approval for the api doc change! "
exit
1
fi
echo
${
CHECK_DOCK_MD5
}
>
/root/.cache/doc_md5.txt
fi
}
...
...
python/paddle/fluid/compiler.py
浏览文件 @
c2e56e6b
...
...
@@ -17,7 +17,6 @@ import os
import
six
import
sys
from
..
import
compat
as
cpt
from
.
import
framework
from
.
import
core
from
.
import
framework
...
...
@@ -36,6 +35,30 @@ def _place_obj(place):
return
p
def
_is_pserver_mode
(
main_program
):
main
=
main_program
if
main_program
\
else
default_main_program
()
for
op
in
main
.
global_block
().
ops
:
if
op
.
type
in
[
"send"
,
"recv"
]:
return
True
return
False
def
get_available_places
(
use_cuda
):
if
use_cuda
:
gpus_env
=
os
.
getenv
(
"FLAGS_selected_gpus"
)
if
gpus_env
:
gpus
=
[
int
(
s
)
for
s
in
gpus_env
.
split
(
","
)]
else
:
gpus
=
[
i
for
i
in
six
.
moves
.
range
(
core
.
get_cuda_device_count
())]
places
=
[
core
.
CUDAPlace
(
i
)
for
i
in
gpus
]
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
places
=
[
core
.
CPUPlace
()
for
_
in
six
.
moves
.
range
(
cpu_num
)]
assert
places
,
"no place for execution"
return
places
class
CompiledProgram
(
object
):
"""
Compiles to Graph for execution.
...
...
@@ -127,8 +150,7 @@ class CompiledProgram(object):
self
.
_exec_strategy
=
ExecutionStrategy
()
if
self
.
_build_strategy
is
None
:
self
.
_build_strategy
=
BuildStrategy
()
self
.
_build_strategy
.
is_distribution
=
framework
.
is_pserver_mode
(
self
.
_program
)
self
.
_build_strategy
.
is_distribution
=
_is_pserver_mode
(
self
.
_program
)
return
self
def
with_inference_optimize
(
self
,
config
):
...
...
@@ -153,9 +175,9 @@ class CompiledProgram(object):
def
_with_distributed
(
self
):
raise
NotImplementedError
()
def
_compile_data_parallel
(
self
):
def
_compile_data_parallel
(
self
,
use_cuda
=
False
,
scope
=
None
):
if
self
.
_share_vars_from
:
if
s
elf
.
_s
cope
:
if
scope
:
sys
.
stderr
.
write
(
"share_vars_from is set, scope is ignored.
\n
"
)
if
not
self
.
_share_vars_from
.
_is_data_parallel
:
raise
ValueError
(
"share_vars_from is not data parallel. Cannot "
...
...
@@ -166,23 +188,11 @@ class CompiledProgram(object):
"var to share."
)
self
.
_local_scopes
=
self
.
_share_vars_from
.
_executor
.
local_scopes
()
else
:
assert
scope
is
not
None
,
""
self
.
_local_scopes
=
[]
self
.
_exec_strategy
.
use_cuda
=
isinstance
(
self
.
_place
,
core
.
CUDAPlace
)
if
self
.
_exec_strategy
.
use_cuda
:
gpus_env
=
os
.
getenv
(
"FLAGS_selected_gpus"
)
if
gpus_env
:
gpus
=
[
int
(
s
)
for
s
in
gpus_env
.
split
(
","
)]
else
:
gpus
=
[
i
for
i
in
six
.
moves
.
range
(
core
.
get_cuda_device_count
())
]
self
.
_places
=
[
core
.
CUDAPlace
(
i
)
for
i
in
gpus
]
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
self
.
_places
=
[
core
.
CPUPlace
()
for
_
in
six
.
moves
.
range
(
cpu_num
)]
assert
self
.
_places
,
"no place for execution"
self
.
_exec_strategy
.
use_cuda
=
use_cuda
self
.
_places
=
get_available_places
(
self
.
_exec_strategy
.
use_cuda
)
if
self
.
_exec_strategy
.
num_threads
==
0
:
if
self
.
_exec_strategy
.
use_cuda
:
...
...
@@ -197,9 +207,11 @@ class CompiledProgram(object):
# FIXME(dzhwinter): enable_inplace should be after memory_optimize
# if turn on python memory optimize, turn off the inplace_pass.
if
self
.
_build_strategy
.
memory_optimize
is
None
:
self
.
_build_strategy
.
memory_optimize
=
False
if
self
.
_program
and
self
.
_program
.
_is_mem_optimized
else
True
self
.
_build_strategy
.
memory_optimize
=
False
\
if
self
.
_program
and
self
.
_program
.
_is_mem_optimized
else
True
if
self
.
_build_strategy
.
enable_inplace
is
None
:
self
.
_build_strategy
.
enable_inplace
=
False
if
self
.
_program
and
self
.
_program
.
_is_mem_optimized
else
True
self
.
_build_strategy
.
enable_inplace
=
False
\
if
self
.
_program
and
self
.
_program
.
_is_mem_optimized
else
True
# TODO(wuyi): trainer endpoings should be passed in through
# build_strategy, not program.xxx.
...
...
@@ -221,12 +233,12 @@ class CompiledProgram(object):
places
=
list
(
map
(
_place_obj
,
self
.
_places
))
return
core
.
ParallelExecutor
(
places
,
set
(
self
.
_persistable_vars
),
cpt
.
to_text
(
self
.
_loss_name
)
if
self
.
_loss_name
else
six
.
u
(
''
),
self
.
_scope
,
self
.
_local_scopes
,
self
.
_exec_strategy
,
self
.
_build_strategy
,
self
.
_graph
)
return
core
.
ParallelExecutor
(
places
,
set
(
self
.
_persistable_vars
)
,
cpt
.
to_text
(
self
.
_loss_name
)
if
self
.
_loss_name
else
six
.
u
(
''
),
scope
,
self
.
_local_scopes
,
self
.
_exec_strategy
,
self
.
_build_strategy
,
self
.
_graph
)
def
_compile_inference
(
self
):
return
core
.
create_paddle_predictor
(
self
.
_infer_config
)
...
...
@@ -253,7 +265,9 @@ class CompiledProgram(object):
self
.
_scope
=
scope
self
.
_place
=
place
if
self
.
_is_data_parallel
:
self
.
_executor
=
self
.
_compile_data_parallel
()
self
.
_executor
=
self
.
_compile_data_parallel
(
use_cuda
=
isinstance
(
self
.
_place
,
core
.
CUDAPlace
),
scope
=
self
.
_scope
)
elif
self
.
_is_inference
:
self
.
_executor
=
self
.
_compile_inference
()
else
:
...
...
python/paddle/fluid/executor.py
浏览文件 @
c2e56e6b
...
...
@@ -261,45 +261,42 @@ def _as_lodtensor(data, place):
class
Executor
(
object
):
"""
An Executor in Python, only support the single-GPU running. For multi-cards, please refer to
ParallelExecutor.
Python executor takes a program, add feed operators and fetch operators to this program according
An Executor in Python, supports single/multiple-GPU running, and single/multiple-CPU running.
Python executor takes a program, adds feed operators and fetch operators to this program according
to feed map and fetch_list. Feed map provides input data for the program. fetch_list provides
the variables(or names) that user want
to get after program run
. Note: the executor will run all
the variables(or names) that user want
s to get after program runs
. Note: the executor will run all
operators in the program but not only the operators dependent by the fetch_list.
It store the global variables into the global scope, and create a local scope for the temporary
variables. The local scope contents will be discarded after every minibatch forward/backward finished.
But the global scope variables will be persistent through different runs.
All of ops in program will be running in sequence.
It stores the global variables into the global scope, and creates a local scope for the temporary
variables. The contents in local scope may be discarded after every minibatch forward/backward
finished. But the global scope variables will be persistent through different runs.
Example:
.. code-block:: python
# First create the Executor.
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
# Run the startup program once and only once.
# Not need to optimize/compile the startup program.
exe.run(fluid.default_startup_program())
# Run the main program directly without compile.
loss, = exe.run(fluid.default_main_program(),
feed=feed_dict,
fetch_list=[loss.name])
# Or, compiled the program and run. See `CompiledProgram` for more detail.
compiled_prog = compiler.CompiledProgram(
fluid.default_main_program()).with_data_parallel(
loss_name=loss.name)
loss, = exe.run(compiled_prog,
feed=feed_dict,
fetch_list=[loss.name])
.. code-block:: python
# First create the Executor.
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
# Run the startup program once and only once.
# Not need to optimize/compile the startup program.
exe.run(fluid.default_startup_program())
# Run the main program directly without compile.
loss, = exe.run(fluid.default_main_program(),
feed=feed_dict,
fetch_list=[loss.name])
# Or, compiled the program and run. See `CompiledProgram` for more detail.
compiled_prog = compiler.CompiledProgram(
fluid.default_main_program()).with_data_parallel(
loss_name=loss.name)
loss, = exe.run(compiled_prog,
feed=feed_dict,
fetch_list=[loss.name])
Args:
place(core.CPUPlace|core.CUDAPlace(n)): indicate the executor run on which device
Note: For debugging complicated network in parallel-GPUs, you can test it on the executor.
They has the exactly same arguments, and expected the same results.
"""
def
__init__
(
self
,
place
):
...
...
@@ -382,6 +379,12 @@ class Executor(object):
]
return
outs
'''
TODO(typhoonzero): Define "no longer use" meaning? Can user create
a new Executor for the same program and run?
TODO(panyx0718): Why ParallelExecutor doesn't have close?
'''
def
close
(
self
):
"""
Close this executor.
...
...
@@ -389,9 +392,6 @@ class Executor(object):
You can no longer use this executor after calling this method.
For the distributed training, this method would free the resource on PServers related to
the current Trainer.
TODO(typhoonzero): Define "no longer use" meaning? Can user create
a new Executor for the same program and run?
TODO(panyx0718): Why ParallelExecutor doesn't have close?
Example:
>>> cpu = core.CPUPlace()
...
...
python/paddle/fluid/framework.py
浏览文件 @
c2e56e6b
...
...
@@ -87,15 +87,6 @@ def _current_expected_place():
return
_imperative_current_expected_place_
def
is_pserver_mode
(
main_program
):
main
=
main_program
if
main_program
\
else
default_main_program
()
for
op
in
main
.
global_block
().
ops
:
if
op
.
type
in
[
"send"
,
"recv"
]:
return
True
return
False
class
NameScope
(
object
):
def
__init__
(
self
,
name
=
""
,
parent
=
None
):
self
.
_children
=
dict
()
...
...
python/paddle/fluid/io.py
浏览文件 @
c2e56e6b
...
...
@@ -468,9 +468,10 @@ def save_persistables(executor, dirname, main_program=None, filename=None):
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
# `prog` can be a program defined by the user
prog = fluid.default_main_program()
fluid.io.save_persistables(executor=exe, dirname=param_path,
main_program=
None
)
main_program=
prog
)
"""
if
main_program
and
main_program
.
_is_distributed
:
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
c2e56e6b
...
...
@@ -6844,56 +6844,58 @@ def image_resize(input,
Example:
For scale:
if align_corners = True && out_size > 1 :
.. code-block:: text
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
For scale:
scale_factor = float(in_size/out_size)
Nearest neighbor interpolation:
if:
align_corners = False
if align_corners = True && out_size > 1 :
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
scale_factor = float(in_size/out_size)
Nearest neighbor interpolation:
if:
align_corners = False
H_out = \left \lfloor {H_{in} * scale_{}factor}}
\r
ight
\r
floor
W_out = \left \lfloor {W_{in} * scale_{}factor}}
\r
ight
\r
floor
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
else:
align_corners = True
H_out = floor (H_{in} * scale_{factor})
W_out = floor (W_{in} * scale_{factor})
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
else:
align_corners = True
H_out = round(H_{in} * scale_{factor}
)
W_out = round(W_{in} * scale_{factor})
input : (N,C,H_in,W_in
)
output: (N,C,H_out,W_out) where:
Bilinear interpolation:
H_out = round(H_{in} * scale_{factor})
W_out = round(W_{in} * scale_{factor})
if:
align_corners = False , align_mode = 0
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
Bilinear interpolation:
if:
align_corners = False , align_mode = 0
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
else:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
For details of nearest neighbor interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
...
...
@@ -7048,41 +7050,39 @@ def resize_bilinear(input,
Align_corners and align_mode are optinal parameters,the calculation
method of interpolation can be selected by them.
Align_corners and align_mode are optinal parameters,the calculation method
of interpolation can be selected by them.
Example:
For scale:
if align_corners = True && out_size > 1 :
.. code-block:: text
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
For scale:
scale_factor = float(in_size/out_size)
if align_corners = True && out_size > 1 :
Bilinear interpolation:
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
scale_factor = float(in_size/out_size)
if:
align_corners = False , align_mode = 0
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
Bilinear interpolation:
if:
align_corners = False , align_mode = 0
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
else:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
...
...
@@ -7134,42 +7134,44 @@ def resize_nearest(input,
align_corners
=
True
):
"""
Resize input by performing nearest neighbor interpolation in both the
3rd dimen
tion(in height direction) and the 4th diment
ion(in width
direction) based on given output shape which specified by actual_shape,
3rd dimen
sion(in height direction) and the 4th dimens
ion(in width
direction) based on given output shape which
is
specified by actual_shape,
out_shape and scale in priority order.
Example:
For scale:
if align_corners = True && out_size > 1 :
.. code-block:: text
For scale:
if align_corners = True && out_size > 1 :
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
scale_factor = float(in_size/out_size)
Nearest neighbor interpolation:
scale_factor = float(in_size/out_size)
Nearest neighbor interpolation:
if:
align_corners = False
if:
align_corners = False
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = \left \lfloor {H_{in} * scale_{}factor}}
\r
ight
\r
floor
W_out = \left \lfloor {W_{in} * scale_{}factor}}
\r
ight
\r
floor
H_out = floor(H_{in} * scale_{factor})
W_out = floor(W_{in} * scale_{factor})
else:
align_corners = True
else:
align_corners = True
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = round(H_{in} * scale_{factor})
W_out = round(W_{in} * scale_{factor})
H_out = round(H_{in} * scale_{factor})
W_out = round(W_{in} * scale_{factor})
For details of nearest neighbor interpolation, please refer to Wikipedia:
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
c2e56e6b
...
...
@@ -13,15 +13,11 @@
# limitations under the License.
from
__future__
import
print_function
import
multiprocessing
from
.
import
core
from
.
import
framework
from
.
import
executor
from
..
import
compat
as
cpt
import
warnings
from
.
import
compiler
import
sys
import
six
import
os
__all__
=
[
'ParallelExecutor'
]
...
...
@@ -97,99 +93,27 @@ class ParallelExecutor(object):
'Please use CompiledProgram and Executor. CompiledProgram '
'is a central place for optimization and Executor is the '
'unified executor. Example can be found in compiler.py.
\n
'
)
# step1: get places, the places are used in run too.
self
.
_places
=
[]
if
use_cuda
:
gpus_env
=
os
.
getenv
(
"FLAGS_selected_gpus"
)
if
gpus_env
:
gpus
=
[
int
(
s
)
for
s
in
gpus_env
.
split
(
","
)]
else
:
gpus
=
[
i
for
i
in
six
.
moves
.
range
(
core
.
get_cuda_device_count
())
]
self
.
_places
=
[
core
.
CUDAPlace
(
i
)
for
i
in
gpus
]
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
self
.
_places
=
[
core
.
CPUPlace
()
for
_
in
six
.
moves
.
range
(
cpu_num
)]
assert
self
.
_places
,
"no place for execution"
# step2: init exec_strategy
if
exec_strategy
is
None
:
exec_strategy
=
ExecutionStrategy
()
exec_strategy
.
use_cuda
=
use_cuda
if
exec_strategy
.
num_threads
==
0
:
if
use_cuda
:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
4
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
exec_strategy
.
num_threads
=
cpu_num
*
2
# step3: init build_strategy
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
build_strategy
.
num_trainers
=
num_trainers
build_strategy
.
trainer_id
=
trainer_id
# FIXME(zcd): is_distribution_ is a temporary field, because in pserver mode,
# num_trainers is 1, so the current fields of build_strategy doesn't tell if
# it's distributed model.
build_strategy
.
is_distribution
=
framework
.
is_pserver_mode
(
main_program
)
or
num_trainers
>
1
# step4: get main_program, scope, local_scopes
main
=
main_program
if
main_program
\
else
framework
.
default_main_program
()
# FIXME(dzhwinter): enable_inplace should be after memory_optimize
# if turn on python memory optimize, turn off the inplace_pass.
if
build_strategy
.
memory_optimize
is
None
:
build_strategy
.
memory_optimize
=
False
if
main
.
_is_mem_optimized
else
True
if
build_strategy
.
enable_inplace
is
None
:
build_strategy
.
enable_inplace
=
False
if
main
.
_is_mem_optimized
else
True
scope
=
scope
if
scope
is
not
None
else
executor
.
global_scope
()
if
share_vars_from
and
not
isinstance
(
share_vars_from
,
ParallelExecutor
):
raise
TypeError
(
"share_vars_from must be ParallelExecutor."
)
local_scopes
=
share_vars_from
.
executor
.
local_scopes
()
\
if
share_vars_from
else
[]
# step5: check trainers_endpoints, it is used for distribution.
trainers_endpoints
=
main
.
_trainers_endpoints
if
num_trainers
>
1
and
trainers_endpoints
:
assert
num_trainers
==
len
(
trainers_endpoints
),
"num_trainers == len(endpoints)"
build_strategy
.
trainers_endpoints
=
trainers_endpoints
# step6: get persistable_vars, places. persistable_vars
# need be broadcast to other local_scope.
persistable_vars
=
set
([
cpt
.
to_text
(
v
.
name
)
for
v
in
[
var
for
var
in
main
.
list_vars
()
if
var
.
persistable
and
var
.
type
!=
core
.
VarDesc
.
VarType
.
RAW
]
])
def
place_obj
(
place
):
p
=
core
.
Place
()
p
.
set_place
(
place
)
return
p
places
=
list
(
map
(
place_obj
,
self
.
_places
))
# step7: init ParallelExecutor
# ParallelExecutor API will be deprecated, don't support parallel graph.
self
.
_graph
=
core
.
Graph
(
main
.
desc
)
self
.
_places
=
compiler
.
get_available_places
(
use_cuda
)
self
.
_scope
=
scope
if
scope
is
not
None
else
executor
.
global_scope
()
self
.
executor
=
core
.
ParallelExecutor
(
places
,
persistable_vars
,
cpt
.
to_text
(
loss_name
)
if
loss_name
else
six
.
u
(
''
),
scope
,
local_scopes
,
exec_strategy
,
build_strategy
,
self
.
_graph
)
main_program
=
main_program
if
main_program
is
not
None
\
else
framework
.
default_main_program
()
self
.
scope
=
scope
self
.
_compiled_program
=
compiler
.
CompiledProgram
(
main_program
)
self
.
_compiled_program
.
with_data_parallel
(
loss_name
=
loss_name
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
,
share_vars_from
=
share_vars_from
)
self
.
_place
=
core
.
CUDAPlace
(
0
)
if
use_cuda
else
core
.
CPUPlace
()
self
.
_executor
=
executor
.
Executor
(
self
.
_place
)
self
.
_compiled_program
.
_compile
(
place
=
self
.
_place
,
scope
=
self
.
_scope
)
def
run
(
self
,
fetch_list
,
feed
=
None
,
feed_dict
=
None
,
return_numpy
=
True
):
"""
...
...
@@ -256,56 +180,11 @@ class ParallelExecutor(object):
loss = pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name]))
"""
if
feed
is
None
and
feed_dict
is
not
None
:
feed
=
feed_dict
print
(
"`feed_dict` is deprecated. Please use `feed=`"
,
file
=
sys
.
stderr
)
if
isinstance
(
feed
,
dict
):
feed_tensor_dict
=
dict
()
for
feed_name
in
feed
:
feed_tensor
=
feed
[
feed_name
]
if
not
isinstance
(
feed_tensor
,
core
.
LoDTensor
):
feed_tensor
=
core
.
LoDTensor
()
# always set to CPU place, since the tensor need to be splitted
# it is fast in CPU
feed_tensor
.
set
(
feed
[
feed_name
],
core
.
CPUPlace
())
feed_tensor_dict
[
feed_name
]
=
feed_tensor
self
.
executor
.
feed_and_split_tensor_into_local_scopes
(
feed_tensor_dict
)
elif
isinstance
(
feed
,
list
)
or
isinstance
(
feed
,
tuple
):
if
len
(
feed
)
!=
len
(
self
.
_places
):
raise
ValueError
(
"Feed a list of tensor, the list should be the same size as places"
)
res
=
list
()
for
i
,
each
in
enumerate
(
feed
):
if
not
isinstance
(
each
,
dict
):
raise
TypeError
(
"Each element of feed list should be a dict"
)
res_dict
=
dict
()
for
feed_name
in
each
:
tensor
=
each
[
feed_name
]
if
not
isinstance
(
tensor
,
core
.
LoDTensor
):
tmp
=
core
.
LoDTensor
()
tmp
.
set
(
tensor
,
self
.
_places
[
i
])
tensor
=
tmp
res_dict
[
feed_name
]
=
tensor
res
.
append
(
res_dict
)
self
.
executor
.
feed_tensors_into_local_scopes
(
res
)
fetch_var_name
=
'fetch'
self
.
executor
.
run
(
fetch_list
,
fetch_var_name
)
arr
=
self
.
scope
.
find_var
(
fetch_var_name
).
get_lod_tensor_array
()
if
return_numpy
:
return
executor
.
as_numpy
(
arr
)
return
[
arr
[
i
]
for
i
in
range
(
len
(
arr
))]
return
self
.
_executor
.
run
(
program
=
self
.
_compiled_program
,
scope
=
self
.
_scope
,
feed
=
feed
,
fetch_list
=
fetch_list
,
return_numpy
=
return_numpy
)
@
property
def
device_count
(
self
):
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_conv2d_mkldnn_op.py
浏览文件 @
c2e56e6b
...
...
@@ -15,44 +15,139 @@
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
paddle.fluid.tests.unittests.test_conv2d_op
import
TestConv2dOp
,
TestWithPad
,
TestWithStride
,
TestWithGroup
,
TestWith1x1
,
TestWithInput1x1Filter1x1
import
paddle.fluid.core
as
core
from
paddle.fluid.tests.unittests.op_test
import
OpTest
from
paddle.fluid.tests.unittests.test_conv2d_op
import
TestConv2dOp
class
TestMKLDNN
(
TestConv2dOp
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
def
conv2d_bias_naive
(
out
,
bias
):
_
,
out_c
,
_
,
_
=
out
.
shape
for
l
in
range
(
out_c
):
out
[:,
l
,
:,
:]
=
out
[:,
l
,
:,
:]
+
bias
[
l
]
return
out
class
TestMKLDNNWithPad
(
TestWithPad
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
def
conv2d_residual_naive
(
out
,
residual
):
assert
out
.
shape
==
residual
.
shape
out
=
np
.
add
(
out
,
residual
)
return
out
class
TestMKLDNNWithStride
(
TestWithStride
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
class
TestConv2dMKLDNNOp
(
TestConv2dOp
):
def
init_group
(
self
):
self
.
groups
=
1
class
TestMKLDNNWithGroup
(
TestWithGroup
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
self
.
use_mkldnn
=
True
self
.
_cpu_only
=
True
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
class
TestMKLDNNWith1x1
(
TestWith1x1
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
def
setUp
(
self
):
self
.
fuse_bias
=
False
self
.
bias_size
=
None
self
.
fuse_relu
=
False
self
.
fuse_residual_connection
=
False
self
.
input_residual_size
=
None
TestConv2dOp
.
setUp
(
self
)
output
=
self
.
outputs
[
'Output'
]
class
TestMKLDNNWithInput1x1Filter1x1
(
TestWithInput1x1Filter1x1
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
#mkldnn only support either conv-sum-relu, or conv-relu.
if
self
.
fuse_bias
and
self
.
bias_size
is
not
None
:
bias
=
np
.
random
.
random
(
self
.
bias_size
).
astype
(
self
.
dtype
)
output
=
conv2d_bias_naive
(
output
,
bias
)
output
=
output
.
astype
(
self
.
dtype
)
self
.
attrs
[
'fuse_bias'
]
=
self
.
fuse_bias
self
.
inputs
[
'Bias'
]
=
OpTest
.
np_dtype_to_fluid_dtype
(
bias
)
if
self
.
fuse_residual_connection
and
self
.
input_residual_size
is
not
None
:
input_residual
=
np
.
random
.
random
(
self
.
input_residual_size
).
astype
(
self
.
dtype
)
output
=
conv2d_residual_naive
(
output
,
input_residual
)
self
.
attrs
[
'fuse_residual_connection'
]
=
self
.
fuse_residual_connection
self
.
inputs
[
'ResidualData'
]
=
OpTest
.
np_dtype_to_fluid_dtype
(
input_residual
)
if
self
.
fuse_relu
:
output
=
np
.
maximum
(
output
,
0
).
astype
(
self
.
dsttype
)
output
=
output
.
astype
(
self
.
dtype
)
self
.
attrs
[
'fuse_bias'
]
=
self
.
fuse_bias
self
.
attrs
[
'fuse_relu'
]
=
self
.
fuse_relu
self
.
attrs
[
'fuse_residual_connection'
]
=
self
.
fuse_residual_connection
self
.
outputs
[
'Output'
]
=
output
class
TestWithFuse
(
TestConv2dMKLDNNOp
):
def
init_test_case
(
self
):
TestConv2dMKLDNNOp
.
init_test_case
(
self
)
self
.
pad
=
[
1
,
1
]
self
.
fuse_bias
=
True
self
.
bias_size
=
[
6
]
self
.
fuse_residual_connection
=
True
self
.
input_residual_size
=
[
2
,
6
,
5
,
5
]
def
test_check_grad
(
self
):
pass
def
test_check_grad_no_filter
(
self
):
pass
def
test_check_grad_no_input
(
self
):
pass
class
TestWithPadWithBias
(
TestConv2dMKLDNNOp
):
def
init_test_case
(
self
):
TestConv2dMKLDNNOp
.
init_test_case
(
self
)
self
.
pad
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
6
,
6
]
class
TestWithStride
(
TestConv2dMKLDNNOp
):
def
init_test_case
(
self
):
TestConv2dMKLDNNOp
.
init_test_case
(
self
)
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
6
,
6
]
class
TestWithGroup
(
TestConv2dMKLDNNOp
):
def
init_group
(
self
):
self
.
groups
=
3
class
TestWith1x1
(
TestConv2dMKLDNNOp
):
def
init_test_case
(
self
):
TestConv2dMKLDNNOp
.
init_test_case
(
self
)
self
.
filter_size
=
[
6
,
3
,
1
,
1
]
class
TestWithInput1x1Filter1x1
(
TestConv2dMKLDNNOp
):
def
init_test_case
(
self
):
TestConv2dMKLDNNOp
.
init_test_case
(
self
)
self
.
input_size
=
[
2
,
3
,
1
,
1
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
3
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_pool2d_mkldnn_op.py
浏览文件 @
c2e56e6b
...
...
@@ -18,6 +18,24 @@ import unittest
from
paddle.fluid.tests.unittests.test_pool2d_op
import
TestPool2D_Op
,
TestCase1
,
TestCase2
,
TestCase3
,
TestCase4
,
TestCase5
def
create_test_mkldnn_use_ceil_class
(
parent
):
class
TestMKLDNNPool2DUseCeilCase
(
parent
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"MKLDNNCeilModeCast"
)
TestMKLDNNPool2DUseCeilCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestMKLDNNPool2DUseCeilCase
create_test_mkldnn_use_ceil_class
(
TestPool2D_Op
)
create_test_mkldnn_use_ceil_class
(
TestCase1
)
create_test_mkldnn_use_ceil_class
(
TestCase2
)
def
create_test_mkldnn_class
(
parent
):
class
TestMKLDNNCase
(
parent
):
def
init_kernel_type
(
self
):
...
...
tools/check_doc_approval.py
已删除
100644 → 0
浏览文件 @
641b3ccc
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
ast
import
hashlib
import
importlib
import
paddle.fluid
files
=
[
"paddle.fluid"
,
"paddle.fluid.average"
,
"paddle.fluid.backward"
,
"paddle.fluid.clip"
,
"paddle.fluid.data_feeder"
,
"paddle.fluid.executor"
,
"paddle.fluid.initializer"
,
"paddle.fluid.io"
,
"paddle.fluid.layers"
,
"paddle.fluid.metrics"
,
"paddle.fluid.nets"
,
"paddle.fluid.optimizer"
,
"paddle.fluid.profiler"
,
"paddle.fluid.recordio_writer"
,
"paddle.fluid.regularizer"
,
"paddle.fluid.transpiler"
]
def
md5
(
doc
):
hash
=
hashlib
.
md5
()
hash
.
update
(
str
(
doc
))
return
hash
.
hexdigest
()
def
get_module
():
for
fi
in
files
:
fi_lib
=
importlib
.
import_module
(
fi
)
doc_function
=
getattr
(
fi_lib
,
"__all__"
)
for
api
in
doc_function
:
api_name
=
fi
+
"."
+
api
try
:
doc_module
=
getattr
(
eval
(
api_name
),
"__doc__"
)
except
:
pass
doc_md5_code
=
md5
(
doc_module
)
doc_dict
[
api_name
]
=
doc_md5_code
def
doc_md5_dict
(
doc_md5_path
):
with
open
(
doc_md5_path
,
"rb"
)
as
f
:
doc_md5
=
f
.
read
()
doc_md5_dict
=
ast
.
literal_eval
(
doc_md5
)
return
doc_md5_dict
def
check_doc_md5
():
for
k
,
v
in
doc_dict
.
items
():
try
:
if
doc_ci_dict
[
k
]
!=
v
:
return
doc_dict
except
:
return
doc_dict
return
True
if
__name__
==
"__main__"
:
doc_dict
=
{}
doc_ci_dict
=
{}
doc_md5_file
=
"/root/.cache/doc_md5.txt"
if
not
os
.
path
.
exists
(
doc_md5_file
):
os
.
mknod
(
doc_md5_file
)
else
:
doc_ci_dict
=
doc_md5_dict
(
doc_md5_file
)
get_module
()
if
not
os
.
path
.
getsize
(
doc_md5_file
):
with
open
(
doc_md5_file
,
'w'
)
as
f
:
f
.
write
(
str
(
doc_dict
))
check_dic
=
True
print
(
check_dic
)
else
:
check_dic
=
check_doc_md5
()
print
(
check_dic
)
tools/diff_api.py
浏览文件 @
c2e56e6b
...
...
@@ -26,4 +26,10 @@ for each_diff in result:
print
(
each_diff
)
if
error
:
print
(
'''If you modify/add/delete the API files, including code and comment, please follow these steps in order to pass the CI:
1. cd ${paddle_path}, compile paddle;
2. pip install build/python/dist/(build whl package);
3. run "python tools/print_signatures.py paddle.fluid, paddle.reader > paddle/fluid/API.spec"'''
)
sys
.
exit
(
1
)
tools/print_signatures.py
浏览文件 @
c2e56e6b
...
...
@@ -24,12 +24,19 @@ import inspect
import
collections
import
sys
import
pydoc
import
hashlib
member_dict
=
collections
.
OrderedDict
()
experimental_namespace
=
{
"paddle.fluid.imperative"
}
def
md5
(
doc
):
hash
=
hashlib
.
md5
()
hash
.
update
(
str
(
doc
).
encode
(
'utf-8'
))
return
hash
.
hexdigest
()
def
visit_member
(
parent_name
,
member
):
cur_name
=
"."
.
join
([
parent_name
,
member
.
__name__
])
if
inspect
.
isclass
(
member
):
...
...
@@ -39,7 +46,10 @@ def visit_member(parent_name, member):
visit_member
(
cur_name
,
value
)
elif
callable
(
member
):
try
:
member_dict
[
cur_name
]
=
inspect
.
getargspec
(
member
)
doc
=
(
'document'
,
md5
(
member
.
__doc__
))
args
=
inspect
.
getargspec
(
member
)
all
=
(
args
,
doc
)
member_dict
[
cur_name
]
=
all
except
TypeError
:
# special for PyBind method
member_dict
[
cur_name
]
=
" "
.
join
([
line
.
strip
()
for
line
in
pydoc
.
render_doc
(
member
).
split
(
'
\n
'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录