提交 c2dd75be 编写于 作者: W wanghaoshuang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into nce_op

......@@ -126,7 +126,7 @@ include(external/swig) # download, build, install swig
include(external/warpctc) # download, build, install warpctc
include(external/any) # download libn::any
include(external/eigen) # download eigen3
include(external/pybind11) # download pybind11
include(external/pybind11) # download pybind11
include(external/nccl)
include(cudnn) # set cudnn libraries, must before configure
......
#!/usr/bin/env python
from paddle.trainer_config_helpers import *
height = 224
width = 224
num_class = 1000
batch_size = get_config_arg('batch_size', int, 64)
layer_num = get_config_arg("layer_num", int, 50)
is_test = get_config_arg("is_test", bool, False)
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
define_py_data_sources2(
"train.list", None, module="provider", obj="process", args=args)
settings(
batch_size=batch_size,
learning_rate=0.01 / batch_size,
learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * batch_size))
#######################Network Configuration #############
def conv_bn_layer(name,
input,
filter_size,
num_filters,
stride,
padding,
channels=None,
active_type=ReluActivation()):
"""
A wrapper for conv layer with batch normalization layers.
Note:
conv layer has no activation.
"""
tmp = img_conv_layer(
name=name + "_conv",
input=input,
filter_size=filter_size,
num_channels=channels,
num_filters=num_filters,
stride=stride,
padding=padding,
act=LinearActivation(),
bias_attr=False)
return batch_norm_layer(
name=name + "_bn", input=tmp, act=active_type, use_global_stats=is_test)
def bottleneck_block(name, input, num_filters1, num_filters2):
"""
A wrapper for bottlenect building block in ResNet.
Last conv_bn_layer has no activation.
Addto layer has activation of relu.
"""
last_name = conv_bn_layer(
name=name + '_branch2a',
input=input,
filter_size=1,
num_filters=num_filters1,
stride=1,
padding=0)
last_name = conv_bn_layer(
name=name + '_branch2b',
input=last_name,
filter_size=3,
num_filters=num_filters1,
stride=1,
padding=1)
last_name = conv_bn_layer(
name=name + '_branch2c',
input=last_name,
filter_size=1,
num_filters=num_filters2,
stride=1,
padding=0,
active_type=LinearActivation())
return addto_layer(
name=name + "_addto", input=[input, last_name], act=ReluActivation())
def mid_projection(name, input, num_filters1, num_filters2, stride=2):
"""
A wrapper for middile projection in ResNet.
projection shortcuts are used for increasing dimensions,
and other shortcuts are identity
branch1: projection shortcuts are used for increasing
dimensions, has no activation.
branch2x: bottleneck building block, shortcuts are identity.
"""
# stride = 2
branch1 = conv_bn_layer(
name=name + '_branch1',
input=input,
filter_size=1,
num_filters=num_filters2,
stride=stride,
padding=0,
active_type=LinearActivation())
last_name = conv_bn_layer(
name=name + '_branch2a',
input=input,
filter_size=1,
num_filters=num_filters1,
stride=stride,
padding=0)
last_name = conv_bn_layer(
name=name + '_branch2b',
input=last_name,
filter_size=3,
num_filters=num_filters1,
stride=1,
padding=1)
last_name = conv_bn_layer(
name=name + '_branch2c',
input=last_name,
filter_size=1,
num_filters=num_filters2,
stride=1,
padding=0,
active_type=LinearActivation())
return addto_layer(
name=name + "_addto", input=[branch1, last_name], act=ReluActivation())
img = data_layer(name='image', size=height * width * 3)
def deep_res_net(res2_num=3, res3_num=4, res4_num=6, res5_num=3):
"""
A wrapper for 50,101,152 layers of ResNet.
res2_num: number of blocks stacked in conv2_x
res3_num: number of blocks stacked in conv3_x
res4_num: number of blocks stacked in conv4_x
res5_num: number of blocks stacked in conv5_x
"""
# For ImageNet
# conv1: 112x112
tmp = conv_bn_layer(
"conv1",
input=img,
filter_size=7,
channels=3,
num_filters=64,
stride=2,
padding=3)
tmp = img_pool_layer(name="pool1", input=tmp, pool_size=3, stride=2)
# conv2_x: 56x56
tmp = mid_projection(
name="res2_1", input=tmp, num_filters1=64, num_filters2=256, stride=1)
for i in xrange(2, res2_num + 1, 1):
tmp = bottleneck_block(
name="res2_" + str(i), input=tmp, num_filters1=64, num_filters2=256)
# conv3_x: 28x28
tmp = mid_projection(
name="res3_1", input=tmp, num_filters1=128, num_filters2=512)
for i in xrange(2, res3_num + 1, 1):
tmp = bottleneck_block(
name="res3_" + str(i),
input=tmp,
num_filters1=128,
num_filters2=512)
# conv4_x: 14x14
tmp = mid_projection(
name="res4_1", input=tmp, num_filters1=256, num_filters2=1024)
for i in xrange(2, res4_num + 1, 1):
tmp = bottleneck_block(
name="res4_" + str(i),
input=tmp,
num_filters1=256,
num_filters2=1024)
# conv5_x: 7x7
tmp = mid_projection(
name="res5_1", input=tmp, num_filters1=512, num_filters2=2048)
for i in xrange(2, res5_num + 1, 1):
tmp = bottleneck_block(
name="res5_" + str(i),
input=tmp,
num_filters1=512,
num_filters2=2048)
tmp = img_pool_layer(
name='avgpool',
input=tmp,
pool_size=7,
stride=1,
pool_type=AvgPooling())
return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation())
if layer_num == 50:
resnet = deep_res_net(3, 4, 6, 3)
elif layer_num == 101:
resnet = deep_res_net(3, 4, 23, 3)
elif layer_num == 152:
resnet = deep_res_net(3, 8, 36, 3)
else:
print("Wrong layer number.")
lbl = data_layer(name="label", size=num_class)
loss = cross_entropy(name='loss', input=resnet, label=lbl)
inputs(img, lbl)
outputs(loss)
......@@ -5,22 +5,23 @@ function train() {
export OMP_DYNAMIC="FALSE"
export KMP_AFFINITY="granularity=fine,compact,0,0"
topology=$1
bs=$2
use_mkldnn=$3
if [ $3 == "True" ]; then
layer_num=$2
bs=$3
use_mkldnn=$4
if [ $4 == "True" ]; then
thread=1
log="logs/${topology}-mkldnn-${bs}.log"
elif [ $3 == "False" ]; then
log="logs/${topology}-${layer_num}-mkldnn-${bs}.log"
elif [ $4 == "False" ]; then
thread=`nproc`
# each trainer_count use only 1 core to avoid conflict
export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
log="logs/${topology}-${thread}mklml-${bs}.log"
log="logs/${topology}-${layer_num}-${thread}mklml-${bs}.log"
else
echo "Wrong input $3, use True or False."
exit 0
fi
args="batch_size=${bs}"
args="batch_size=${bs},layer_num=${layer_num}"
config="${topology}.py"
paddle train --job=time \
--config=$config \
......@@ -40,12 +41,9 @@ if [ ! -d "logs" ]; then
mkdir logs
fi
#========== mkldnn ==========#
train vgg 64 True
train vgg 128 True
train vgg 256 True
#========== mklml ===========#
train vgg 64 False
train vgg 128 False
train vgg 256 False
for use_mkldnn in True False; do
for batchsize in 64 128 256; do
train vgg 19 $batchsize $use_mkldnn
train resnet 50 $batchsize $use_mkldnn
done
done
......@@ -79,9 +79,8 @@ if(NOT DEFINED IOS_ARCH)
# FIXME(liuyiqun): support "armv7;armv7s;arm64" future
set(IOS_ARCH "arm64")
elseif(IOS_PLATFORM STREQUAL "SIMULATOR")
set(IOS_ARCH "i386;x86_64")
elseif(IOS_PLATFORM STREQUAL "WATCHOS")
set(IOS_ARCH armv7k)
# FIXME(liuyiqun): support "i386;x86_64" future
set(IOS_ARCH "x86_64")
endif()
endif()
set(CMAKE_OSX_ARCHITECTURES ${IOS_ARCH} CACHE string "Build architecture for iOS")
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
if(NOT WITH_GPU)
return()
endif()
include(ExternalProject)
set(NCCL_SOURCE_DIR ${THIRD_PARTY_PATH}/nccl)
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......
INCLUDE(ExternalProject)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
SET(PYBIND_SOURCE_DIR ${THIRD_PARTY_PATH}/pybind)
if(NOT WITH_PYTHON)
return()
endif()
include(ExternalProject)
INCLUDE_DIRECTORIES(${PYBIND_SOURCE_DIR}/src/extern_pybind/include)
set(PYBIND_SOURCE_DIR ${THIRD_PARTY_PATH}/pybind)
include_directories(${PYBIND_SOURCE_DIR}/src/extern_pybind/include)
ExternalProject_Add(
extern_pybind
......@@ -17,14 +35,12 @@ ExternalProject_Add(
TEST_COMMAND ""
)
if (${CMAKE_VERSION} VERSION_LESS "3.3.0")
if(${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/pybind_dummy.c)
file(WRITE ${dummyfile} "const char * dummy_any = \"${dummyfile}\";")
file(WRITE ${dummyfile} "const char * dummy_pybind = \"${dummyfile}\";")
add_library(pybind STATIC ${dummyfile})
else()
add_library(pybind INTERFACE)
endif()
add_dependencies(pybind extern_pybind)
LIST(APPEND external_project_dependencies pybind)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......
# This file is use to check all support level of AVX on your machine
# so that PaddlePaddle can unleash the vectorization power of muticore.
INCLUDE(CheckCXXSourceRuns)
INCLUDE(CheckCXXSourceCompiles)
include(CheckCXXSourceRuns)
include(CheckCXXSourceCompiles)
IF(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
set(MMX_FLAG "-mmmx")
set(SSE2_FLAG "-msse2")
set(SSE3_FLAG "-msse3")
SET(AVX_FLAG "-mavx")
SET(AVX2_FLAG "-mavx2")
ELSEIF(MSVC)
set(AVX_FLAG "-mavx")
set(AVX2_FLAG "-mavx2")
elseif(MSVC)
set(MMX_FLAG "/arch:MMX")
set(SSE2_FLAG "/arch:SSE2")
set(SSE3_FLAG "/arch:SSE3")
SET(AVX_FLAG "/arch:AVX")
SET(AVX2_FLAG "/arch:AVX2")
ENDIF()
endif()
set(CMAKE_REQUIRED_FLAGS_RETAINED ${CMAKE_REQUIRED_FLAGS})
# Check MMX
set(CMAKE_REQUIRED_FLAGS ${MMX_FLAG})
set(MMX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <mmintrin.h>
int main()
......@@ -32,6 +33,7 @@ int main()
# Check SSE2
set(CMAKE_REQUIRED_FLAGS ${SSE2_FLAG})
set(SSE2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <emmintrin.h>
int main()
......@@ -42,6 +44,7 @@ int main()
# Check SSE3
set(CMAKE_REQUIRED_FLAGS ${SSE3_FLAG})
set(SSE3_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <pmmintrin.h>
int main()
......@@ -55,6 +58,7 @@ int main()
# Check AVX
set(CMAKE_REQUIRED_FLAGS ${AVX_FLAG})
set(AVX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()
......@@ -67,6 +71,7 @@ int main()
# Check AVX 2
set(CMAKE_REQUIRED_FLAGS ${AVX2_FLAG})
set(AVX2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()
......
# Design Doc: float16
## Why float16
Half precision (float16) is a binary floating-point format that occupies 16 bits in memory. float16 is half the size of traditional 32-bit single precision format (float) and has lower precision and smaller range.
When high precision computation is not required, using float16 data type could potentially
- reduce storage space, memory bandwidth, and power usages;
- increase the chance of data fitting into a smaller cache of lower latency;
- provide arithmetic speed up if supported by hardware.
## Survey of current float16 support
A brief survey of float16 support on different compilers, hardwares, and libraries can be found below. Interested readers can refer to [link1](https://github.com/PaddlePaddle/Paddle/issues/4853) and [link2](https://github.com/Xreki/Xreki.github.io/blob/master/multi_data_types_in_dl_framework/ppt/float16_and_quantized_type.md) for more info.
The goal of float16 is to serve as a key for the executor to find and run the correct version of compute method specialized for float16 in operator kernel. It should be compatible with various natively supported float16 implementations including `__half` for cuda, `float16_t` for ARM, and `Eigen::half` for Eigen to make writing customized float16 kernels easier.
### Compiler
- nvcc supports `__half` data type after CUDA 7.5.
- `__fp16` or `float16_t` is supported as storage type for gcc >= 6.1 and clang >= 3.4.
- `__fp16` or `float16_t` is supported as arithmetic type for gcc >= 7.1 and clang >= 3.9.
### Hardware
- `__half` is supported on GPU with compute capability >= 5.3.
- `__fp16` is supported as storage type for ARMv7-A, ARMv8-A, and above.
- `__fp16` is supported as arithmetic type after ARMv8.2-A (currently, the only microarchitecture implementing ARMv8.2-A is ARM Cortex-A75, which is announced in May 2017. There seems to be no application processors currently available on market that adopts this architecture. It is reported that Qualcomm Snapdragon 845 uses Cortex-A75 design and will be available in mobile devices in early 2018).
### Libraries
- [Eigen](https://github.com/RLovelett/eigen) >= 3.3 supports float16 calculation on both GPU and CPU using the `Eigen::half` class. It is mostly useful for Nvidia GPUs because of the overloaded arithmetic operators using cuda intrinsics. It falls back to using software emulation on CPU for calculation and there is no special treatment to ARM processors.
- [ARM compute library](https://github.com/ARM-software/ComputeLibrary) >= 17.02.01 supports NEON FP16 kernels (requires ARMv8.2-A CPU).
## Implementation
The float16 class holds a 16-bit `uint16_t` data internally.
```
struct float16 {
uint16_t x;
};
```
float16 supports the following features:
- constructors / assignment operators that take input from primitive data types including bool, integers of various length, float, and double.
- constructors / assignment operators that take input from `__half` on cuda, `float16_t` on ARM, and `Eigen::half` on Eigen.
- conversion operators to primitive data types and half precision data types on cuda, ARM and Eigen.
- overloaded arithmetic operators for cuda, arm, and non-arm cpu, respectively. These operators will take advantage of the cuda and ARM intrinsics on the corresponding hardware.
To support the above features, two fundamental conversion functions are provided:
```
float16 float_to_half_rn(float f); // convert to half precision in round-to-nearest-even mode
float half_to_float(float16 h);
```
which provides one-to-one conversion between float32 and float16. These twos functions will do different conversion routines based on the current hardware. CUDA/ARM instrinsics will be used when the corresonding hardware is available. If the hardware or compiler level does not support float32 to float16 conversion, software emulation will be performed to do the conversion.
## To do
After float16 class is available, some of the future items are below:
- Update pybind/tensor_py.h to bind c++ float16 with numpy float16.
- Modify `GetKernelType()` method in `framework/operator.h` to make it compatible with float16.
- Create a type-casting operator that can convert the data type in tensor between float16 and other types.
......@@ -145,7 +145,7 @@ PaddlePaddle发布新版本的时候都会发布对应版本的生产镜像以
Jupyter Notebook是一个开源的web程序,大家可以通过它制作和分享带有代码、公式、图表、文字的交互式文档。用户可以通过网页浏览文档。
PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Nodebook。
PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Notebook。
如果您想要更深入了解deep learning,PaddlePaddle Book一定是您最好的选择。
我们提供可以直接运行PaddlePaddle Book的Docker镜像,直接运行:
......
......@@ -63,7 +63,7 @@
</tr>
<tr>
<td class="left" rowspan="15">训练</td><td class="left">dot_period</td>
<td class="left" rowspan="14">训练</td><td class="left">dot_period</td>
<td class="left"></td><td class="left"></td><td class="left"></td><td class="left"></td>
</tr>
......
......@@ -8,3 +8,4 @@ PaddlePaddle 文档
howto/index_cn.rst
api/index_cn.rst
faq/index_cn.rst
mobile/index_cn.rst
......@@ -7,3 +7,4 @@ PaddlePaddle Documentation
getstarted/index_en.rst
howto/index_en.rst
api/index_en.rst
mobile/index_en.rst
......@@ -20,10 +20,32 @@ $ docker build -t username/paddle-android:dev . -f Dockerfile.android
构建好开发镜像后,即可使用开发镜像来编译Android版PaddlePaddle C-API库。
Android的Docker开发镜像向用户提供两个可配置的参数:
| Argument | Optional Values | Default |
|-----------------|-------------------------|---------|
|`ANDROID_ABI` |`armeabi-v7a, arm64-v8a` | `armeabi-v7a` |
|`ANDROID_API` |`>= 21` | `21` |
<table class="docutils">
<colgroup>
<col width="25%" />
<col width="50%" />
<col width="25%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd">
<th class="head">Argument</th>
<th class="head">Optional Values</th>
<th class="head">Default</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even">
<td>ANDROID_ABI</td>
<td>armeabi-v7a, arm64-v8a</td>
<td>armeabi-v7a</td>
</tr>
<tr class="row-odd">
<td>ANDROID_API</td>
<td>>= 21</td>
<td>21</td>
</tr>
</tbody>
</table>
- 编译`armeabi-v7a``Android API 21`的PaddlePaddle库
```bash
......
......@@ -26,10 +26,32 @@ $ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_A
The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`:
| Argument | Optional Values | Default |
|-----------------|-------------------------|---------|
|`ANDROID_ABI` |`armeabi-v7a, arm64-v8a` | `armeabi-v7a` |
|`ANDROID_API` |`>= 21` | `21` |
<table class="docutils">
<colgroup>
<col width="25%" />
<col width="50%" />
<col width="25%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd">
<th class="head">Argument</th>
<th class="head">Optional Values</th>
<th class="head">Default</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even">
<td>ANDROID_ABI</td>
<td>armeabi-v7a, arm64-v8a</td>
<td>armeabi-v7a</td>
</tr>
<tr class="row-odd">
<td>ANDROID_API</td>
<td>>= 21</td>
<td>21</td>
</tr>
</tbody>
</table>
The ARM-64 architecture (`arm64-v8a`) requires at least level 21 of Android API.
......
......@@ -27,10 +27,28 @@ iOS平台可选配置参数:
- `SIMULATOR`,构建目标为`x86`架构的模拟器平台。
- `IOS_ARCH`,目标架构。针对不同的`IOS_PLATFORM`,可设置的目标架构如下表所示:
| IOS_PLATFORM | IOS_ARCH |
|--------------|----------------------|
| OS | armv7, armv7s, arm64 (默认) |
| SIMULATOR | i386, x86_64 (默认) |
<table class="docutils">
<colgroup>
<col width="35%" />
<col width="65%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd">
<th class="head">IOS_PLATFORM</th>
<th class="head">IOS_ARCH</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even">
<td>OS</td>
<td>armv7, armv7s, arm64 (默认)</td>
</tr>
<tr class="row-odd">
<td>SIMULATOR</td>
<td>i386, x86_64 (默认)</td>
</tr>
</tbody>
</table>
- `IOS_DEPLOYMENT_TARGET`,最小的iOS部署版本,默认值为`7.0`
- `IOS_ENABLE_BITCODE`,是否使能[Bitcode](https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html#//apple_ref/doc/uid/TP40012582-CH35-SW3),可设置`ON/OFF`,默认值为`ON`
......
MOBILE
======
.. toctree::
:maxdepth: 1
cross_compiling_for_android_cn.md
cross_compiling_for_ios_cn.md
cross_compiling_for_raspberry_cn.md
MOBILE
======
.. toctree::
:maxdepth: 1
cross_compiling_for_android_en.md
cross_compiling_for_raspberry_en.md
......@@ -29,32 +29,32 @@ add_style_check_target(paddle_capi ${CAPI_SOURCES} ${CAPI_HEADER}
add_dependencies(paddle_capi paddle_proto)
# TODO: paddle_capi_whole will be removed.
set(PADDLE_CAPI_LAYERS_LIBS
paddle_function
paddle_gserver)
if(MOBILE_INFERENCE)
set(PADDLE_CAPI_INFER_LIBS
paddle_utils
paddle_parameter
paddle_math
paddle_cuda
paddle_function
paddle_gserver
paddle_proto)
set(PADDLE_CAPI_ENGINE_LIBS
paddle_utils
paddle_parameter
paddle_math
paddle_cuda
paddle_proto)
else()
set(PADDLE_CAPI_INFER_LIBS
paddle_utils
paddle_parameter
paddle_math
paddle_cuda
paddle_function
paddle_gserver
paddle_proto
paddle_pserver
paddle_network)
set(PADDLE_CAPI_ENGINE_LIBS
paddle_utils
paddle_parameter
paddle_math
paddle_cuda
paddle_proto
paddle_pserver
paddle_network)
endif()
set(PADDLE_CAPI_INFER_LIBS ${PADDLE_CAPI_LAYERS_LIBS} ${PADDLE_CAPI_ENGINE_LIBS})
cc_library(paddle_capi_whole DEPS paddle_capi ${PADDLE_CAPI_INFER_LIBS})
# Link the static library for inference
cc_library(paddle_capi_engine DEPS paddle_capi paddle_utils paddle_parameter paddle_math paddle_cuda paddle_proto)
cc_library(paddle_capi_layers DEPS paddle_function paddle_gserver)
cc_library(paddle_capi_engine DEPS paddle_capi ${PADDLE_CAPI_ENGINE_LIBS})
cc_library(paddle_capi_layers DEPS ${PADDLE_CAPI_LAYERS_LIBS})
# Link the shared library for inference
if(NOT IOS)
......
......@@ -45,8 +45,9 @@ add_custom_command(TARGET framework_py_proto POST_BUILD
cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context fill_constant_op)
cc_library(lod_rank_table SRCS lod_rank_table.cc DEPS lod_tensor)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward glog)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward glog lod_rank_table)
cc_library(prune SRCS prune.cc DEPS framework_proto)
cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context)
......
......@@ -117,7 +117,7 @@ int64_t DDim::operator[](int idx) const {
return boost::apply_visitor(DynamicConstIndexer(idx), var);
}
int64_t DDim::size() const { return arity(*this); }
int DDim::size() const { return arity(*this); }
bool DDim::operator==(DDim d) const {
if (var.which() != d.getVar().which()) {
......
......@@ -71,7 +71,7 @@ struct DDim {
DDim operator*(DDim d) const;
int64_t size() const;
int size() const;
};
/**
......
......@@ -21,7 +21,9 @@ limitations under the License. */
#include <vector>
#include "paddle/framework/feed_fetch_type.h"
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/scope.h"
......@@ -70,10 +72,14 @@ static void CreateTensor(Variable* var, VarDesc::VarType var_type) {
var->GetMutable<FeedFetchList>();
} else if (var_type == VarDesc::STEP_SCOPES) {
var->GetMutable<std::vector<framework::Scope>>();
} else if (var_type == VarDesc::LOD_RANK_TABLE) {
var->GetMutable<LoDRankTable>();
} else if (var_type == VarDesc::LOD_TENSOR_ARRAY) {
var->GetMutable<LoDTensorArray>();
} else {
PADDLE_THROW(
"Variable type %d is not in "
"[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST]",
"[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST, LOD_RANK_TABLE]",
var_type);
}
}
......
......@@ -109,6 +109,11 @@ message LoDTensorDesc {
optional int32 lod_level = 2 [ default = 0 ];
}
message LoDTensorArrayDesc {
required TensorDesc tensor = 1;
optional int32 lod_level = 2 [ default = 0 ];
}
message VarDesc {
enum VarType {
LOD_TENSOR = 1;
......@@ -116,11 +121,14 @@ message VarDesc {
FEED_MINIBATCH = 3;
FETCH_LIST = 4;
STEP_SCOPES = 5;
LOD_RANK_TABLE = 6;
LOD_TENSOR_ARRAY = 7;
}
required string name = 1;
required VarType type = 2;
optional LoDTensorDesc lod_tensor = 3;
optional TensorDesc selected_rows = 4;
optional LoDTensorArrayDesc tensor_array = 6;
optional bool persistable = 5 [ default = false ];
}
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_rank_table.h"
namespace paddle {
namespace framework {
void LoDRankTable::Reset(const LoD& lod, size_t level) {
this->coarse_lod_.clear();
this->items_.clear();
PADDLE_ENFORCE(level < lod.size(),
"Cannot rank lod since the level %d is less than lod size %d",
level, lod.size());
coarse_lod_.reserve(level);
for (size_t i = 0; i < level; ++i) {
coarse_lod_.push_back(lod[i]);
}
auto& vec = lod[level];
for (size_t i = 0; i < vec.size() - 1; ++i) {
TableItem item;
item.index = i;
item.length = vec[i + 1] - vec[i];
VLOG(10) << "Add item to rank table " << item.index << " " << item.length;
items_.emplace_back(item);
}
// NOTE(yuyang18):
//
// The time complexity of stable_sort is O(N*log(N)) if additional memory is
// available. It is easy to debug and unit test when using `stable_sort`
// instead of `sort`. Also, the items of a rank table will not be too large.
std::stable_sort(items_.begin(), items_.end(),
[](const TableItem& a, const TableItem& b) {
return a.length > b.length;
});
}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/lod_tensor.h"
namespace paddle {
namespace framework {
// LoD Rank Table stores the `level` of `lod` which is ordered by sequence
// length in descending order. It is useful when implement dynamic RNN and is
// shared by dynamic RNN memory, dynamic RNN slice input and dynamic RNN slice
// output operators.
//
// The table item contains two element. The length of sequence and the index of
// sequence in that level.
//
// LoDRankTable also stores the coarse_lod, which is the lod information whose
// level is less than input level, in order to restore the output LoD
// information.
class LoDRankTable {
public:
struct TableItem {
size_t index;
size_t length;
};
LoDRankTable() {}
void Reset(const LoD& lod, size_t level);
const std::vector<TableItem>& items() const { return this->items_; }
const LoD& coarse_lod() const { return this->coarse_lod_; }
size_t level() const { return coarse_lod_.size(); }
private:
LoD coarse_lod_;
std::vector<TableItem> items_;
};
} // namespace framework
} // namespace paddle
......@@ -27,6 +27,20 @@
namespace paddle {
namespace framework {
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
os << "{";
for (auto& v : lod) {
os << "{";
for (auto& i : v) {
os << i << ",";
}
os << "}";
}
os << "}";
return os;
}
LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end) {
LoD new_lod;
new_lod.reserve(level_end - level_begin);
......@@ -135,5 +149,41 @@ void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
PADDLE_ENFORCE_LT(begin, end, "Cannot shrink, the result tensor is empty.");
ShareDataWith(Slice(begin, end));
}
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD& lod, size_t start_idx,
size_t end_idx, size_t start_level) {
LoD sub_lod;
for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
PADDLE_ENFORCE_LE(start_idx, end_idx);
PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
std::vector<size_t> level_lens;
for (size_t i = start_idx; i < end_idx; ++i) {
level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
}
sub_lod.emplace_back(level_lens);
start_idx = lod[level_idx][start_idx];
end_idx = lod[level_idx][end_idx];
}
return LoDAndOffset{sub_lod, {start_idx, end_idx}};
}
void AppendLoD(LoD* lod, const LoD& lod_length) {
PADDLE_ENFORCE(
lod->empty() || lod->size() == lod_length.size(),
"The lod_length should has the same size with the appended lod.");
if (lod->empty()) {
*lod = LoD(lod_length.size(), std::vector<size_t>({0}));
}
for (size_t i = 0; i < lod->size(); ++i) {
auto& level = (*lod)[i];
for (size_t len : lod_length[i]) {
level.push_back(level.back() + len);
}
}
}
} // namespace framework
} // namespace paddle
......@@ -56,6 +56,8 @@ using Vector = thrust::host_vector<
*/
using LoD = std::vector<Vector<size_t>>;
std::ostream& operator<<(std::ostream& os, const LoD& lod);
/*
* Slice levels from a LoD.
* NOTE the lowest level should always be the absolute offsets of the underlying
......@@ -181,5 +183,10 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level,
return tensor;
}
std::pair<LoD, std::pair<size_t, size_t>> GetSubLoDAndAbsoluteOffset(
const LoD& lod, size_t start_idx, size_t end_idx, size_t start_level);
void AppendLoD(LoD* lod, const LoD& lod_length);
} // namespace framework
} // namespace paddle
......@@ -140,19 +140,9 @@ Similarly, the lengths in the top level LoD
are transformed into offsets of elements/words as follows:
```
0 9 10 15
= = =
3+2+4 1+9 2+3+10
```
so we can tell that the first article is from word 0 to word 9, and the second article is from word 9 to word 10.
The complete offset representation is as follows:
```
0 9 10 15
0 3 5 9 10 12 15
||| || |||| | || |||
0 3 4 6
= = =
3 3+1 4+2
```
## Slicing of LoD Tensors
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/framework/lod_tensor.h"
namespace paddle {
namespace framework {
using LoDTensorArray = std::vector<LoDTensor>;
}
} // namespace paddle
......@@ -144,5 +144,48 @@ TEST(LodExpand, test) {
}
}
TEST(LoD, GetFineGrainedLoDLength) {
LoD lod;
lod.push_back(std::vector<size_t>({0, 2, 4, 5}));
lod.push_back(std::vector<size_t>({0, 1, 6, 8, 10, 11}));
lod.push_back(
std::vector<size_t>({0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26, 29}));
auto lod_and_offset =
paddle::framework::GetSubLoDAndAbsoluteOffset(lod, 1, 2, 0);
LoD lod_length = lod_and_offset.first;
size_t start_offset = lod_and_offset.second.first;
size_t end_offset = lod_and_offset.second.second;
LoD expected;
expected.push_back(std::vector<size_t>{2});
expected.push_back(std::vector<size_t>{2, 2});
expected.push_back(std::vector<size_t>{2, 3, 4, 2});
EXPECT_EQ(lod_length, expected);
EXPECT_EQ(start_offset, 15UL);
EXPECT_EQ(end_offset, 26UL);
}
TEST(LoD, AppendLoD) {
LoD lod_lens;
lod_lens.push_back(std::vector<size_t>({2}));
lod_lens.push_back(std::vector<size_t>({2, 2}));
lod_lens.push_back(std::vector<size_t>({2, 3, 4, 2}));
LoD origin;
origin.push_back(std::vector<size_t>({0, 2}));
origin.push_back(std::vector<size_t>({0, 1, 6}));
origin.push_back(std::vector<size_t>({0, 2, 5, 7, 10, 12, 15}));
paddle::framework::AppendLoD(&origin, lod_lens);
LoD expected;
expected.push_back(std::vector<size_t>({0, 2, 4}));
expected.push_back(std::vector<size_t>({0, 1, 6, 8, 10}));
expected.push_back(
std::vector<size_t>({0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26}));
EXPECT_EQ(origin, expected);
}
} // namespace framework
} // namespace paddle
......@@ -67,8 +67,11 @@ class CompileTimeInferShapeContext : public InferShapeContext {
out);
in_var->SetLoDLevel(out_var->GetLodLevel());
}
bool IsRuntime() const override;
protected:
VarDesc::VarType GetVarType(const std::string &name) const override;
private:
DDim GetDim(const std::string &name) const override;
void SetDim(const std::string &name, const DDim &dim) override;
......@@ -349,6 +352,9 @@ void OpDescBind::InferVarType(BlockDescBind *block) const {
info.infer_var_type_(*this, block);
} else {
// all output type is LoDTensor by default
VLOG(10) << this->Type()
<< " has not registered InferVarType. Set output variables to "
"LOD_TENSOR";
for (auto &out_pair : this->outputs_) {
for (auto &out_var_name : out_pair.second) {
block->Var(out_var_name)->SetType(VarDesc::LOD_TENSOR);
......@@ -448,6 +454,12 @@ void CompileTimeInferShapeContext::SetDim(const std::string &name,
const DDim &dim) {
block_.FindVarRecursive(name)->SetShape(framework::vectorize(dim));
}
bool CompileTimeInferShapeContext::IsRuntime() const { return false; }
VarDesc::VarType CompileTimeInferShapeContext::GetVarType(
const std::string &name) const {
return block_.FindVarRecursive(name)->GetType();
}
} // namespace framework
} // namespace paddle
......@@ -92,8 +92,7 @@ struct OpKernelRegistrarFunctor<PlaceType, false, I, KernelTypes...> {
void operator()(const char* op_type) const {
using T = typename KERNEL_TYPE::ELEMENT_TYPE;
OperatorWithKernel::OpKernelKey key(ToDataType(std::type_index(typeid(T))),
PlaceType());
OpKernelType key(ToDataType(std::type_index(typeid(T))), PlaceType());
OperatorWithKernel::AllOpKernels()[op_type][key].reset(new KERNEL_TYPE);
constexpr auto size = std::tuple_size<std::tuple<KernelTypes...>>::value;
......
......@@ -15,7 +15,9 @@ limitations under the License. */
#include "paddle/framework/operator.h"
#include <algorithm>
#include <atomic>
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/shape_inference.h"
#include "paddle/framework/var_type.h"
namespace paddle {
namespace framework {
......@@ -252,8 +254,7 @@ std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
return res;
}
std::ostream& operator<<(std::ostream& os,
const OperatorWithKernel::OpKernelKey& kernel_key) {
std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key) {
os << "place[" << kernel_key.place_ << "]:data_type[" << kernel_key.data_type_
<< "]";
return os;
......@@ -365,7 +366,9 @@ class RuntimeInferShapeContext : public InferShapeContext {
out_tensor->set_lod(in_tensor.lod());
}
private:
bool IsRuntime() const override { return true; }
protected:
DDim GetDim(const std::string& name) const override {
Variable* var = scope_.FindVar(name);
if (var->IsType<LoDTensor>()) {
......@@ -388,6 +391,12 @@ class RuntimeInferShapeContext : public InferShapeContext {
}
}
VarDesc::VarType GetVarType(const std::string& name) const override {
auto* var = scope_.FindVar(name);
return ToVarType(var->Type());
}
private:
const OperatorBase& op_;
const Scope& scope_;
};
......@@ -422,7 +431,7 @@ void OperatorWithKernel::Run(const Scope& scope,
// check if op[type] have kernel for kernel_key
OpKernelMap& kernels = kernels_iter->second;
auto kernel_key = OpKernelKey(IndicateDataType(ctx), dev_ctx);
auto kernel_key = GetKernelType(ctx);
auto kernel_iter = kernels.find(kernel_key);
if (kernel_iter == kernels.end()) {
......@@ -430,6 +439,41 @@ void OperatorWithKernel::Run(const Scope& scope,
}
kernel_iter->second->Compute(ctx);
// throws errors if have.
dev_ctx.Finish();
}
OpKernelType OperatorWithKernel::GetKernelType(
const ExecutionContext& ctx) const {
return OpKernelType(IndicateDataType(ctx), ctx.device_context());
}
DataType OperatorWithKernel::IndicateDataType(
const ExecutionContext& ctx) const {
auto& scope = ctx.scope();
int data_type = -1;
for (auto& input : this->inputs_) {
for (auto& ipt_name : input.second) {
auto* var = scope.FindVar(ipt_name);
if (var != nullptr) {
const Tensor* t = nullptr;
if (var->IsType<Tensor>()) {
t = &var->Get<Tensor>();
} else if (var->IsType<LoDTensor>()) {
t = &var->Get<LoDTensor>();
} else if (var->IsType<SelectedRows>()) {
t = &(var->Get<SelectedRows>().value());
}
if (t != nullptr) {
int tmp = static_cast<int>(ToDataType(t->type()));
PADDLE_ENFORCE(tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be the same.", Type());
data_type = tmp;
}
}
}
}
PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
return static_cast<DataType>(data_type);
}
} // namespace framework
......
......@@ -298,11 +298,10 @@ class ExecutionContext {
}
#ifdef PADDLE_WITH_CUDA
const platform::CUDADeviceContext& cuda_device_context() const {
const inline platform::CUDADeviceContext& cuda_device_context() const {
PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
auto cuda_ctx =
reinterpret_cast<const platform::CUDADeviceContext*>(&device_context_);
return *cuda_ctx;
return *reinterpret_cast<const platform::CUDADeviceContext*>(
&device_context_);
}
#endif
......@@ -346,27 +345,10 @@ class OpKernel : public OpKernelBase {
using ELEMENT_TYPE = T;
};
class OperatorWithKernel : public OperatorBase {
public:
struct OpKernelKey {
platform::Place place_;
DataType data_type_;
OpKernelKey(DataType data_type, platform::Place place)
: place_(place), data_type_(data_type) {}
OpKernelKey(DataType data_type, const platform::DeviceContext& dev_ctx)
: place_(dev_ctx.GetPlace()), data_type_(data_type) {}
bool operator==(const OpKernelKey& o) const {
return platform::places_are_same_class(place_, o.place_) &&
data_type_ == o.data_type_;
}
};
struct OpKernelHash {
struct OpKernelType {
struct Hash {
std::hash<int> hash_;
size_t operator()(const OpKernelKey& key) const {
size_t operator()(const OpKernelType& key) const {
int place = key.place_.which();
int data_type = static_cast<int>(key.data_type_);
int pre_hash = data_type << NUM_PLACE_TYPE_LIMIT_IN_BIT |
......@@ -375,9 +357,26 @@ class OperatorWithKernel : public OperatorBase {
}
};
platform::Place place_;
DataType data_type_;
OpKernelType(DataType data_type, platform::Place place)
: place_(place), data_type_(data_type) {}
OpKernelType(DataType data_type, const platform::DeviceContext& dev_ctx)
: place_(dev_ctx.GetPlace()), data_type_(data_type) {}
bool operator==(const OpKernelType& o) const {
return platform::places_are_same_class(place_, o.place_) &&
data_type_ == o.data_type_;
}
};
class OperatorWithKernel : public OperatorBase {
public:
using OpKernelMap =
std::unordered_map<OpKernelKey, std::unique_ptr<OpKernelBase>,
OpKernelHash>;
std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
OpKernelType::Hash>;
OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs)
......@@ -405,42 +404,15 @@ class OperatorWithKernel : public OperatorBase {
}
protected:
virtual OpKernelType GetKernelType(const ExecutionContext& ctx) const;
private:
// indicate kernel DataType by input data. Defaultly all input data must be
// same.
virtual DataType IndicateDataType(const ExecutionContext& ctx) const {
VLOG(3) << "Default IndicateDataType " << this->Type();
auto& scope = ctx.scope();
int data_type = -1;
for (auto& input : this->inputs_) {
for (auto& ipt_name : input.second) {
auto* var = scope.FindVar(ipt_name);
if (var != nullptr) {
const Tensor* t = nullptr;
if (var->IsType<Tensor>()) {
t = &var->Get<Tensor>();
} else if (var->IsType<LoDTensor>()) {
t = &var->Get<LoDTensor>();
} else if (var->IsType<SelectedRows>()) {
t = &(var->Get<SelectedRows>().value());
}
if (t != nullptr) {
int tmp = static_cast<int>(ToDataType(t->type()));
VLOG(3) << "Input " << ipt_name << " with data_type " << tmp;
PADDLE_ENFORCE(tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be the same.",
Type());
data_type = tmp;
}
}
}
}
PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
return static_cast<DataType>(data_type);
}
DataType IndicateDataType(const ExecutionContext& ctx) const;
};
std::ostream& operator<<(std::ostream& os,
const OperatorWithKernel::OpKernelKey& kernel_key);
std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key);
extern bool OpSupportGPU(const std::string& op_type);
......
......@@ -114,8 +114,8 @@ class OpWithKernelTest : public OperatorWithKernel {
protected:
void InferShape(framework::InferShapeContext* ctx) const override {}
DataType IndicateDataType(const ExecutionContext& ctx) const override {
return DataType::FP32;
OpKernelType GetKernelType(const ExecutionContext& ctx) const override {
return OpKernelType(DataType::FP32, ctx.device_context());
}
};
......
......@@ -46,6 +46,23 @@ void InferShapeContext::SetDims(const std::vector<std::string> &names,
SetDim(names[i], dims[i]);
}
}
std::vector<VarDesc::VarType> InferShapeContext::GetInputsVarType(
const std::string &name) const {
return GetVarTypes(Inputs(name));
}
std::vector<VarDesc::VarType> InferShapeContext::GetOutputsVarType(
const std::string &name) const {
return GetVarTypes(Outputs(name));
}
std::vector<VarDesc::VarType> InferShapeContext::GetVarTypes(
const std::vector<std::string> &names) const {
std::vector<VarDesc::VarType> retv;
retv.resize(names.size());
std::transform(names.begin(), names.end(), retv.begin(),
std::bind(std::mem_fn(&InferShapeContext::GetVarType), this,
std::placeholders::_1));
return retv;
}
} // namespace framework
} // namespace paddle
......@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/framework/attribute.h"
#include "paddle/framework/ddim.h"
#include "paddle/framework/framework.pb.h"
namespace paddle {
namespace framework {
......@@ -26,6 +27,10 @@ class InferShapeContext {
virtual bool HasInput(const std::string &name) const = 0;
virtual bool HasOutput(const std::string &name) const = 0;
std::vector<VarDesc::VarType> GetInputsVarType(const std::string &name) const;
std::vector<VarDesc::VarType> GetOutputsVarType(
const std::string &name) const;
virtual bool HasInputs(const std::string &name) const = 0;
virtual bool HasOutputs(const std::string &name) const = 0;
......@@ -46,6 +51,8 @@ class InferShapeContext {
virtual void ShareLoD(const std::string &in, const std::string &out,
size_t i = 0, size_t j = 0) const = 0;
virtual bool IsRuntime() const = 0;
protected:
virtual framework::DDim GetDim(const std::string &name) const = 0;
virtual void SetDim(const std::string &name, const framework::DDim &dim) = 0;
......@@ -55,6 +62,11 @@ class InferShapeContext {
void SetDims(const std::vector<std::string> &names,
const std::vector<framework::DDim> &dims);
std::vector<VarDesc::VarType> GetVarTypes(
const std::vector<std::string> &names) const;
virtual VarDesc::VarType GetVarType(const std::string &name) const = 0;
};
} // namespace framework
......
......@@ -52,7 +52,7 @@ struct SizeOfTypeFunctor<HEAD, TAIL...> {
};
static inline size_t SizeOfType(std::type_index type) {
SizeOfTypeFunctor<int, float, double, int16_t, int64_t> functor;
SizeOfTypeFunctor<int, float, double, int16_t, int64_t, bool> functor;
size_t size = functor(type);
PADDLE_ENFORCE(size != 0UL, "Cannot get size of type %s", type.name());
return size;
......
......@@ -37,13 +37,29 @@ std::vector<int64_t> VarDescBind::Shape() const {
DataType VarDescBind::GetDataType() const { return tensor_desc().data_type(); }
void VarDescBind::SetLoDLevel(int32_t lod_level) {
PADDLE_ENFORCE(desc_.type() == VarDesc::LOD_TENSOR);
desc_.mutable_lod_tensor()->set_lod_level(lod_level);
switch (desc_.type()) {
case VarDesc::LOD_TENSOR:
desc_.mutable_lod_tensor()->set_lod_level(lod_level);
break;
case VarDesc::LOD_TENSOR_ARRAY:
desc_.mutable_tensor_array()->set_lod_level(lod_level);
break;
default:
PADDLE_THROW("Tensor type=%d does not support LoDLevel",
desc_.tensor_array().lod_level());
}
}
int32_t VarDescBind::GetLodLevel() const {
PADDLE_ENFORCE(desc_.type() == VarDesc::LOD_TENSOR);
return desc_.lod_tensor().lod_level();
switch (desc_.type()) {
case VarDesc::LOD_TENSOR:
return desc_.lod_tensor().lod_level();
case VarDesc::LOD_TENSOR_ARRAY:
return desc_.tensor_array().lod_level();
default:
PADDLE_THROW("Tensor type=%d does not support LoDLevel",
desc_.tensor_array().lod_level());
}
}
const TensorDesc &VarDescBind::tensor_desc() const {
......@@ -53,6 +69,8 @@ const TensorDesc &VarDescBind::tensor_desc() const {
return desc_.selected_rows();
case VarDesc::LOD_TENSOR:
return desc_.lod_tensor().tensor();
case VarDesc::LOD_TENSOR_ARRAY:
return desc_.tensor_array().tensor();
default:
PADDLE_THROW("Unexpected branch.");
}
......@@ -66,6 +84,8 @@ TensorDesc *VarDescBind::mutable_tensor_desc() {
return desc_.mutable_selected_rows();
case VarDesc::LOD_TENSOR:
return desc_.mutable_lod_tensor()->mutable_tensor();
case VarDesc::LOD_TENSOR_ARRAY:
return desc_.mutable_tensor_array()->mutable_tensor();
default:
PADDLE_THROW("Unexpected branch.");
}
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <vector>
#include "glog/logging.h"
#include "paddle/framework/framework.pb.h"
namespace paddle {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor_array.h"
namespace paddle {
namespace framework {
inline VarDesc::VarType ToVarType(std::type_index type) {
if (type.hash_code() == typeid(LoDTensor).hash_code()) {
return VarDesc_VarType_LOD_TENSOR;
} else if (type.hash_code() == typeid(LoDRankTable).hash_code()) {
return VarDesc_VarType_LOD_RANK_TABLE;
} else if (type.hash_code() == typeid(LoDTensorArray).hash_code()) {
return VarDesc_VarType_LOD_TENSOR_ARRAY;
} else {
PADDLE_THROW("ToVarType:Unsupported type %s", type.name());
}
}
} // namespace framework
} // namespace paddle
......@@ -48,6 +48,11 @@ class Variable {
void Clear() { holder_.reset(); }
std::type_index Type() const {
PADDLE_ENFORCE(holder_ != nullptr, "Must hold memory");
return holder_->Type();
}
private:
struct Placeholder {
virtual ~Placeholder() {}
......
......@@ -17,7 +17,7 @@ limitations under the License. */
namespace paddle {
ThreadLocalD<std::vector<MemoryHandle *>> ConvBaseProjection::convMem_;
ThreadLocalD<std::vector<MemoryHandlePtr>> ConvBaseProjection::convMem_;
ConvBaseProjection::ConvBaseProjection(const ProjectionConfig &config,
ParameterPtr parameter,
......@@ -175,18 +175,18 @@ void ConvBaseProjection::reshape(int batchSize) {
}
void *ConvBaseProjection::getSpaceBytes(size_t size) {
std::vector<MemoryHandle *> &convMem = *convMem_;
std::vector<MemoryHandlePtr> &convMem = *convMem_;
if (convMem.empty()) {
int numDevices = hl_get_device_count();
convMem.resize(numDevices);
}
int devId = hl_get_device();
MemoryHandle **localMem = &(convMem[devId]);
if (NULL == *localMem || size > (*localMem)->getAllocSize()) {
*localMem = new GpuMemoryHandle(size);
MemoryHandlePtr localMem = convMem[devId];
if (NULL == localMem || size > localMem->getAllocSize()) {
localMem = std::make_shared<GpuMemoryHandle>(size);
}
return (*localMem)->getBuf();
return localMem->getBuf();
}
ConvBaseProjection::~ConvBaseProjection() {
......
......@@ -105,7 +105,7 @@ protected:
bool bias_;
std::unique_ptr<Weight> weight_;
static ThreadLocalD<std::vector<MemoryHandle*>> convMem_;
static ThreadLocalD<std::vector<MemoryHandlePtr>> convMem_;
};
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNAddtoLayer.h"
using namespace mkldnn; // NOLINT
namespace paddle {
REGISTER_LAYER(mkldnn_addto, MKLDNNAddtoLayer);
bool MKLDNNAddtoLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
return false;
}
layerSize_ = getSize();
for (size_t i = 0; i < inputLayers_.size(); i++) {
CHECK_EQ(layerSize_, inputLayers_[i]->getSize()) << "input size must equal";
}
if (biasParameter_.get() != NULL) {
biases_ =
std::unique_ptr<Weight>(new Weight(1, layerSize_, biasParameter_, 0));
}
return true;
}
void MKLDNNAddtoLayer::reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
CHECK_EQ(layerSize_, getSize()) << "this layer size can not be changed";
reshapeInput(bs, ih, iw);
ic = inputLayers_[0]->getSize() / ih / iw;
CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize());
CHECK_EQ(inputElemenCnt_, (size_t)bs * ic * ih * iw);
for (size_t i = 0; i < inputLayers_.size(); i++) {
CHECK_EQ(int64_t(bs), inputLayers_[i]->getOutput().getBatchSize());
CHECK_EQ(layerSize_, inputLayers_[i]->getSize());
}
oc = ic;
oh = ih;
ow = iw;
reshapeOutput(oh, ow);
resizeOutput(bs, oc * oh * ow);
printSizeInfo();
}
void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
if (biases_) {
LOG(FATAL) << "not implemented yet";
}
resetFwdBuffers(inVals_, out);
in = inVals_[0];
std::shared_ptr<sum::primitive_desc> fwdPD;
resetFwdPD(fwdPD, inVals_, out);
resetFwdPipeline(pipeline, fwdPD, inVals_, out);
}
void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
resetBwdBuffers(inGrads_, out);
in = inGrads_[0];
// backward only need share output grad to input grad
for (size_t i = 0; i < inGrads_.size(); i++) {
if (inGrads_[i] != nullptr) {
inGrads_[i] = out;
inputLayers_[i]->getOutputGrad()->setData(inGrads_[i]->getData());
}
}
}
void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) {
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
}
void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& out) {
inputs.resize(inputLayers_.size());
for (size_t i = 0; i < inputs.size(); i++) {
resetInValue(inputs[i], nullptr, i);
CHECK(inputs[i]);
inputs[i]->downSpatial();
}
for (size_t i = 1; i < inputs.size(); i++) {
CHECK_PRIMITIVE_DESC_EQ(inputs[i], inputs[0]->getPrimitiveDesc());
}
resetOutValue(out, inputs[0]->getPrimitiveDesc());
}
void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd,
std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr out) {
std::vector<double> scales(inputs.size(), 1.0);
std::vector<memory::primitive_desc> srcPDs;
for (size_t i = 0; i < inputs.size(); i++) {
srcPDs.push_back(inputs[i]->getPrimitiveDesc());
}
CHECK(out);
pd.reset(new sum::primitive_desc(out->getMemoryDesc(), scales, srcPDs));
CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc());
}
void MKLDNNAddtoLayer::resetFwdPipeline(
std::vector<primitive>& pipeline,
std::shared_ptr<sum::primitive_desc>& pd,
std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& out) {
std::vector<primitive::at> srcs;
for (size_t i = 0; i < inputs.size(); i++) {
srcs.push_back(*(inputs[i]));
}
fwd_.reset(new sum(*pd, srcs, *out));
pipeline.push_back(*fwd_);
}
void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& out) {
CHECK(outVal_);
resetOutGrad(out, outVal_->getPrimitiveDesc());
CHECK(out);
inputs.resize(inputLayers_.size());
for (size_t i = 0; i < inputs.size(); i++) {
resetInGrad(inputs[i], inVal_->getPrimitiveDesc(), i);
CHECK_PRIMITIVE_DESC_EQ(inputs[i], out->getPrimitiveDesc());
}
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace paddle {
/**
* @brief A subclass of MKLDNNLayer Addto layer.
*
* The config file api is mkldnn_addto
*/
class MKLDNNAddtoLayer : public MKLDNNLayer {
protected:
std::vector<MKLDNNMatrixPtr> inVals_;
std::vector<MKLDNNMatrixPtr> inGrads_;
// layer size == ic * ih * iw == oc * oh *ow, and can not be changed
size_t layerSize_;
// TODO(TJ): this part has not been optimized by MKL-DNN
std::unique_ptr<Weight> biases_;
public:
explicit MKLDNNAddtoLayer(const LayerConfig& config) : MKLDNNLayer(config) {}
~MKLDNNAddtoLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
void resetFwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void updateWeights(const UpdateCallback& callback) override;
void printValueFormat() override {
for (size_t i = 0; i < inVals_.size(); ++i) {
VLOG(MKLDNN_FMTS) << i << " input: " << inVals_[i]->getFormat() << " >>>";
}
if (outVal_) {
VLOG(MKLDNN_FMTS) << outVal_->getFormat() << " >>> ";
}
if (extOutVal_) {
VLOG(MKLDNN_FMTS) << extOutVal_->getFormat();
}
}
void printGradFormat() override {
if (extOutGrad_) {
VLOG(MKLDNN_FMTS) << extOutGrad_->getFormat();
}
if (outGrad_) {
VLOG(MKLDNN_FMTS) << outGrad_->getFormat() << " <<< ";
}
for (size_t i = 0; i < inGrads_.size(); ++i) {
VLOG(MKLDNN_FMTS) << i << " input: " << inGrads_[i]->getFormat() << "<<<";
}
}
protected:
/**
* Forward functions: reset buffers(inputs, output, bias),
* reset primitive descriptor,
* reset pipeline.
*/
void resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& out);
void resetFwdPD(std::shared_ptr<mkldnn::sum::primitive_desc>& pd,
std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr out);
void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<mkldnn::sum::primitive_desc>& pd,
std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& out);
/**
* Backward functions: reset buffers(inputs, output, bias)
*/
void resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& out);
};
} // namespace paddle
......@@ -60,18 +60,16 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() {
}
CHECK(wgtVal_) << "should have been initialized";
bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
auto targetDim = wgtVal_->getDims();
auto srcFmt = hasNoSpatial_ ? format::io : format::ihwo;
auto srcFmt = targetDim.size() == 2 ? format::io : format::ihwo;
wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
hasInitedWgt_ = true;
}
void MKLDNNFcLayer::convertWeightsToPaddle() {
CHECK(wgtVal_) << "should have been initialized";
bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
auto targetDim = wgtVal_->getDims();
auto dstFmt = hasNoSpatial_ ? format::io : format::ihwo;
auto dstFmt = targetDim.size() == 2 ? format::io : format::ihwo;
wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
}
......
......@@ -77,7 +77,7 @@ void MKLDNNLayer::forward(PassType passType) {
needResetBwd_ = true;
}
if (inputLayers_[0]->getType() == "data") {
if (inputLayers_[0]->getType() == "data" && inputLayers_.size() == 1) {
// Update input value data when input layer is "data" type,
// since the input value data address might be changed.
CHECK(extInVal_);
......@@ -171,29 +171,27 @@ void MKLDNNLayer::resetWithMatrix(MKLDNNMatrixPtr& dnn,
}
void MKLDNNLayer::resetInValue(
MKLDNNMatrixPtr& in, const std::shared_ptr<memory::primitive_desc>& intPD) {
MKLDNNMatrixPtr& in,
const std::shared_ptr<memory::primitive_desc>& intPD,
size_t inputIdx) {
cvtInVal_ = nullptr;
extInVal_ = nullptr;
in = nullptr;
CHECK_GT(bs_ * ic_ * ih_ * iw_, 0);
auto extPD = MKLDNNMatrix::createPrimitiveDesc(
{bs_, ic_, ih_, iw_}, format::nchw, engine_);
const MatrixPtr& inMat = inputLayers_[0]->getOutputValue();
in = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
CHECK_EQ(inputIsOnlyMKLDNN(), in != nullptr);
if (in == nullptr || in->getFormat() == format::nc) {
in = MKLDNNMatrix::create(extPD, inMat);
}
extInVal_ = isPaddleFormat(in->getFormat()) ? in : nullptr;
if (in->getFormat() == format::nc) {
CHECK(ih_ == 1 && iw_ == 1);
const MatrixPtr& inMat = inputLayers_[inputIdx]->getOutputValue();
extInVal_ = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
CHECK_EQ(inputIsOnlyMKLDNN(), extInVal_ != nullptr);
if (extInVal_ == nullptr || extInVal_->getFormat() == format::nc) {
extInVal_ = MKLDNNMatrix::create(extPD, inMat);
}
in = extInVal_;
if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) {
return;
}
// need create reorder
in = MKLDNNMatrix::create(*intPD);
extInVal_ = extInVal_ ? extInVal_ : MKLDNNMatrix::create(extPD, inMat);
cvtInVal_ = MKLDNNMatrix::createReorder(extInVal_, in);
CHECK(cvtInVal_) << "should not be emptry";
}
......@@ -216,11 +214,12 @@ void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out,
}
void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in,
memory::primitive_desc intPD) {
memory::primitive_desc intPD,
size_t inputIdx) {
cvtInGrad_ = nullptr;
extInGrad_ = nullptr;
in = nullptr;
LayerPtr& input = inputLayers_[0];
LayerPtr& input = inputLayers_[inputIdx];
if (input->getOutputGrad() == nullptr) {
// no need input grad
return;
......@@ -245,7 +244,6 @@ void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in,
return;
}
// need create reorder
// TODO(TJ): add macro definition to simplify it
CHECK(extInVal_ != nullptr && isPaddleFormat(extInVal_->getFormat()))
<< "should have external input value and the format must be nchw(nc)";
extInGrad_ = MKLDNNMatrix::create(extInVal_->getPrimitiveDesc(), inMat);
......
......@@ -199,7 +199,8 @@ protected:
*/
void resetInValue(
MKLDNNMatrixPtr& in,
const std::shared_ptr<mkldnn::memory::primitive_desc>& intPD = nullptr);
const std::shared_ptr<mkldnn::memory::primitive_desc>& intPD = nullptr,
size_t inputIdx = 0);
/**
* reset output value from internal primitive desc.
......@@ -212,7 +213,9 @@ protected:
* reset input grad from internal primitive desc.
* reset both internal and external buffer and create reorder if necessary.
*/
void resetInGrad(MKLDNNMatrixPtr& in, mkldnn::memory::primitive_desc intPD);
void resetInGrad(MKLDNNMatrixPtr& in,
mkldnn::memory::primitive_desc intPD,
size_t inputIdx = 0);
/**
* reset output grad from internal primitive desc.
......
......@@ -98,8 +98,19 @@ void SubSequenceLayer::forward(PassType passType) {
CHECK_EQ(numSequences2, numSequences3);
MatrixPtr inputValue = input.value;
IVectorPtr offsetValue = offsetSeq.ids;
IVectorPtr sizeValue = sizeSeq.ids;
IVectorPtr offsetValue;
IVectorPtr sizeValue;
if (useGpu_) {
// copy to cpu
IVector::resizeOrCreate(offsetValue, offsetSeq.ids->getSize(), false);
IVector::resizeOrCreate(sizeValue, sizeSeq.ids->getSize(), false);
offsetValue->copyFrom(*offsetSeq.ids);
sizeValue->copyFrom(*sizeSeq.ids);
} else {
offsetValue = offsetSeq.ids;
sizeValue = sizeSeq.ids;
}
CHECK_EQ(offsetValue->getSize(), numSequences1);
CHECK_EQ(sizeValue->getSize(), numSequences1);
......@@ -176,8 +187,21 @@ void SubSequenceLayer::backward(const UpdateCallback& callback) {
size_t numSequences1 = startPositions1->getSize() - 1;
const int* starts1 = startPositions1->getData();
IVectorPtr offsetValue = getInput(1).ids;
IVectorPtr sizeValue = getInput(2).ids;
const Argument& offsetSeq = getInput(1);
const Argument& sizeSeq = getInput(2);
IVectorPtr offsetValue;
IVectorPtr sizeValue;
if (useGpu_) {
// copy to cpu
IVector::resizeOrCreate(offsetValue, offsetSeq.ids->getSize(), false);
IVector::resizeOrCreate(sizeValue, sizeSeq.ids->getSize(), false);
offsetValue->copyFrom(*offsetSeq.ids);
sizeValue->copyFrom(*sizeSeq.ids);
} else {
offsetValue = offsetSeq.ids;
sizeValue = sizeSeq.ids;
}
int* offsets = offsetValue->getData();
int* sizes = sizeValue->getData();
......
......@@ -132,7 +132,7 @@ void MKLDNNTester::checkForward() {
VLOG(MKLDNN_TESTS) << "Check Forward";
printTopDatas();
double delta =
compareMatrix(dnnLayer_->getOutputValue(), refLayer_->getOutputValue());
compareMatrix(refLayer_->getOutputValue(), dnnLayer_->getOutputValue());
EXPECT_LE(fabs(delta), eps_);
}
......@@ -147,7 +147,7 @@ void MKLDNNTester::checkBackwardData() {
VLOG(MKLDNN_ALL) << "Reference Backward Result: InputGrad " << i;
printMatrix(refDiff);
double delta = compareMatrix(dnnDiff, refDiff);
double delta = compareMatrix(refDiff, dnnDiff);
EXPECT_LE(fabs(delta), eps_);
if (isBN) {
// the other two inputs in batch norm are for moving mean and var
......@@ -177,7 +177,7 @@ void MKLDNNTester::checkBackwardWgts() {
<< parameters_[REF][i]->getName();
printVector(ref);
double delta = compareVector(dnn, ref);
double delta = compareVector(ref, dnn);
EXPECT_LE(fabs(delta), eps_);
}
......
......@@ -271,20 +271,53 @@ TEST(MKLDNNLayer, BatchNormLayer) {
testBatchNormLayer({16, 32, 16, 16});
}
struct testActDesc {
struct testImageDesc {
int bs, ic, ih, iw;
};
static void getAddtoConfig(TestConfig& cfg, const testActDesc& pm) {
static void getAddtoConfig(TestConfig& cfg,
const testImageDesc& pm,
const size_t nInputs = 1) {
cfg.biasSize = 0;
cfg.layerConfig.set_type("addto");
size_t layerSize = pm.ic * pm.ih * pm.iw;
cfg.layerConfig.set_size(layerSize);
cfg.inputDefs.push_back({INPUT_DATA, "layer_0", layerSize, 0});
cfg.layerConfig.add_inputs();
cfg.layerConfig.set_active_type("relu");
for (size_t i = 0; i < nInputs; ++i) {
std::stringstream ss;
ss << "layer_" << i;
cfg.inputDefs.push_back({INPUT_DATA, ss.str(), layerSize, 0});
LayerInputConfig* input = cfg.layerConfig.add_inputs();
ImageConfig* img_conf = input->mutable_image_conf();
img_conf->set_channels(pm.ic);
img_conf->set_img_size_y(pm.ih);
img_conf->set_img_size(pm.iw);
}
}
void testAddtoLayer(const testImageDesc& pm, const size_t nInputs) {
CHECK_GE(nInputs, 1);
TestConfig dnnConfig;
getAddtoConfig(dnnConfig, pm, nInputs);
dnnConfig.layerConfig.set_type("mkldnn_addto");
// TODO(TJ): test with bias
for (auto withBias : {false}) {
if (withBias) {
dnnConfig.biasSize = pm.ic * pm.ih * pm.iw;
} else {
dnnConfig.biasSize = 0;
}
RUN_MKLDNN_TEST_LAYER(dnnConfig, "addto", pm)
}
}
TEST(MKLDNNLayer, AddtoLayer) {
testAddtoLayer({16, 5, 14, 14}, 1);
testAddtoLayer({8, 10, 8, 8}, 2);
testAddtoLayer({4, 12, 1, 1}, 3);
}
void testActivation(std::string actType, const testActDesc& pm) {
void testActivation(std::string actType, const testImageDesc& pm) {
// TODO(TJ): remove me when paddle support elu activation
if (actType == "mkldnn_elu") {
return;
......
......@@ -62,6 +62,11 @@ function(op_library TARGET)
file(APPEND ${pybind_file} "USE_OP(pool2d);\n")
endif()
if ("${TARGET}" STREQUAL "compare_op")
set(pybind_flag 1)
file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(equal);\n")
endif()
# pool_with_index_op contains several operators
if ("${TARGET}" STREQUAL "pool_with_index_op")
set(pybind_flag 1)
......@@ -69,6 +74,20 @@ function(op_library TARGET)
file(APPEND ${pybind_file} "USE_OP(max_pool2d_with_index);\n")
endif()
# conv_op contains several operators
if ("${TARGET}" STREQUAL "conv_op")
set(pybind_flag 1)
# It's enough to just adding one operator to pybind
file(APPEND ${pybind_file} "USE_OP(conv2d);\n")
endif()
# conv_transpose_op contains several operators
if ("${TARGET}" STREQUAL "conv_transpose_op")
set(pybind_flag 1)
# It's enough to just adding one operator to pybind
file(APPEND ${pybind_file} "USE_OP(conv2d_transpose);\n")
endif()
# pool_cudnn_op contains several operators
if ("${TARGET}" STREQUAL "pool_cudnn_op")
set(pybind_flag 1)
......@@ -96,7 +115,7 @@ function(op_library TARGET)
# It's enough to just adding one operator to pybind
file(APPEND ${pybind_file} "USE_GPU_ONLY_OP(ncclAllReduce);\n")
endif()
# reduce_op contains several operators
if ("${TARGET}" STREQUAL "reduce_op")
set(pybind_flag 1)
......@@ -104,6 +123,11 @@ function(op_library TARGET)
file(APPEND ${pybind_file} "USE_OP(reduce_sum);\n")
endif()
if ("${TARGET}" STREQUAL "tensor_array_read_write_op")
set(pybind_flag 1)
file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(read_from_array);\nUSE_NO_KERNEL_OP(write_to_array);\n")
endif()
# pybind USE_NO_KERNEL_OP
# HACK: if REGISTER_OP_CPU_KERNEL presents the operator must have kernel
file(READ ${TARGET}.cc TARGET_CONTENT)
......@@ -139,24 +163,47 @@ set(DEPS_OPS
sum_op
pool_op
pool_with_index_op
conv_op
lstm_op
conv_transpose_op
nccl_op
sequence_conv_op
lstm_op)
sequence_pool_op
lod_rank_table_op
lod_tensor_to_array_op
array_to_lod_tensor_op
lstm_op
tensor_array_read_write_op
gru_op)
op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op)
op_library(cross_entropy_op DEPS cross_entropy)
op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax)
op_library(conv_op DEPS vol2col)
op_library(sum_op DEPS net_op selected_rows_functor)
op_library(pool_op DEPS pooling)
op_library(pool_with_index_op DEPS pooling)
op_library(lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table)
op_library(lod_tensor_to_array_op SRCS lod_tensor_to_array_op.cc DEPS lod_rank_table_op)
op_library(array_to_lod_tensor_op SRCS array_to_lod_tensor_op.cc DEPS lod_rank_table_op)
op_library(tensor_array_read_write_op SRCS tensor_array_read_write_op.cc)
if(WITH_GPU)
op_library(nccl_op DEPS nccl_common)
endif()
op_library(sequence_conv_op DEPS context_project)
op_library(sequence_pool_op DEPS sequence_pooling)
op_library(lstm_op DEPS sequence2batch lstm_compute)
op_library(dynamic_recurrent_op SRCS dynamic_recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS net_op tensor_array)
op_library(conv_transpose_op DEPS vol2col)
op_library(gru_op DEPS sequence2batch gru_compute)
if(WITH_TESTING)
op_library(dynamic_recurrent_op SRCS dynamic_recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS net_op tensor_array gtest)
else()
op_library(dynamic_recurrent_op SRCS dynamic_recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS net_op tensor_array)
endif()
op_library(recurrent_op SRCS recurrent_op.cc DEPS executor)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS})
op_library(${src})
......
......@@ -33,7 +33,7 @@ class AccuracyOp : public framework::OperatorWithKernel {
auto inference_dim = ctx->GetInputDim("Out");
auto label_dim = ctx->GetInputDim("Label");
// Assume indices has same shape with infernece, because
// Assume indices has same shape as inference, because
// it's the output of topk.
PADDLE_ENFORCE_EQ(label_dim.size(), 2, "label's rank must be 2.");
......@@ -47,10 +47,11 @@ class AccuracyOp : public framework::OperatorWithKernel {
}
protected:
// IndicateDataType
framework::DataType IndicateDataType(
framework::OpKernelType GetKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("Out")->type());
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Out")->type()),
ctx.device_context());
}
};
......@@ -60,20 +61,24 @@ class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
// TODO(typhoonzero): support both inference value and indices.
AddInput("Out", "topk (inferences) the network output");
AddInput("Indices", "topk (indices) the network output");
AddInput("Out", "The network output of topk (inferences)");
AddInput("Indices", "The the network output of topk (indices)");
AddInput("Label", "Label of the training data");
// TODO(typhoonzero): AddInput("Weight", ...
AddOutput("Accuracy", "The accuracy of current batch");
AddComment(R"DOC(
Accuracy. It will print accuracy rate for classification.
The accuracy is:
.. math::
accuracy = \\frac{NumOfCorrectPredicts}{NumOfAllSamples})
Accuracy Operator.
It will print accuracy rate for classification.
The accuracy is calculated as follows:
$$accuracy = \frac{NumOfCorrectPredicts}{NumOfAllSamples}$$
Both the input Out and Label can carry the LoD (Level of Details)
information, or not. But the output only shares the LoD information
with the input Out(Inference).
Both the input `Out` and `Label` can carry the LoD (Level of Details)
information, or not. But the output only shares the LoD with input `Inference`.
)DOC");
}
};
......
......@@ -72,11 +72,8 @@ class AccuracyOpCUDAKernel : public framework::OpKernel<T> {
}
AccuracyCudaKernel<PADDLE_CUDA_NUM_THREADS><<<
1, PADDLE_CUDA_NUM_THREADS, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream()>>>(num_samples, infer_width, indices_data, label_data,
accuracy_data);
1, PADDLE_CUDA_NUM_THREADS, 0, ctx.cuda_device_context().stream()>>>(
num_samples, infer_width, indices_data, label_data, accuracy_data);
}
};
......
......@@ -44,7 +44,7 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of Sigmoid operator");
AddOutput("Y", "Output of Sigmoid operator");
AddComment(R"DOC(
Sigmoid activation operator.
Sigmoid Activation Operator.
$y = 1 / (1 + e^{-x})$
......@@ -60,7 +60,7 @@ class LogSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of LogSigmoid operator");
AddOutput("Y", "Output of LogSigmoid operator");
AddComment(R"DOC(
Logsigmoid activation operator.
Logsigmoid Activation Operator.
$y = \log(1 / (1 + e^{-x}))$
......@@ -75,7 +75,7 @@ class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of Exp operator");
AddOutput("Y", "Output of Exp operator");
AddComment(R"DOC(
Exp activation operator.
Exp Activation Operator.
$y = e^x$
......@@ -90,7 +90,7 @@ class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of Relu operator");
AddOutput("Y", "Output of Relu operator");
AddComment(R"DOC(
Relu activation operator.
Relu Activation Operator.
$y = \max(x, 0)$
......@@ -109,7 +109,7 @@ class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>("alpha", "The small negative slope")
.SetDefault(static_cast<AttrType>(0.02f));
AddComment(R"DOC(
LeakyRelu activation operator.
LeakyRelu Activation Operator.
$y = \max(x, \alpha * x)$
......@@ -128,7 +128,7 @@ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>("lambda", "non-negative offset")
.SetDefault(static_cast<AttrType>(0.5f));
AddComment(R"DOC(
Softshrink activation operator.
Softshrink Activation Operator.
$$
y = \begin{cases}
......@@ -149,7 +149,7 @@ class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of Tanh operator");
AddOutput("Y", "Output of Tanh operator");
AddComment(R"DOC(
Tanh activation operator.
Tanh Activation Operator.
$$y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
......@@ -165,7 +165,7 @@ class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of TanhShrink operator");
AddOutput("Y", "Output of TanhShrink operator");
AddComment(R"DOC(
TanhShrink activation operator.
TanhShrink Activation Operator.
$$y = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
......@@ -184,7 +184,7 @@ class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>("threshold", "The value of threshold for HardShrink")
.SetDefault(static_cast<AttrType>(0.5));
AddComment(R"DOC(
HardShrink activation operator.
HardShrink Activation Operator.
$$
y = \begin{cases}
......@@ -205,7 +205,7 @@ class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of Sqrt operator");
AddOutput("Y", "Output of Sqrt operator");
AddComment(R"DOC(
Sqrt activation operator.
Sqrt Activation Operator.
$y = \sqrt{x}$
......@@ -220,7 +220,7 @@ class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of Abs operator");
AddOutput("Y", "Output of Abs operator");
AddComment(R"DOC(
Abs activation operator.
Abs Activation Operator.
$y = |x|$
......@@ -236,7 +236,7 @@ class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of Reciprocal operator");
AddOutput("Y", "Output of Reciprocal operator");
AddComment(R"DOC(
Reciprocal activation operator.
Reciprocal Activation Operator.
$$y = \frac{1}{x}$$
......@@ -251,7 +251,7 @@ class LogOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of Log operator");
AddOutput("Y", "Output of Log operator");
AddComment(R"DOC(
Log activation operator.
Log Activation Operator.
$y = \ln(x)$
......@@ -268,7 +268,7 @@ class SquareOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of Square operator");
AddOutput("Y", "Output of Square operator");
AddComment(R"DOC(
Square activation operator.
Square Activation Operator.
$y = x^2$
......@@ -284,7 +284,7 @@ class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of Softplus operator");
AddOutput("Y", "Output of Softplus operator");
AddComment(R"DOC(
Softplus activation operator.
Softplus Activation Operator.
$y = \ln(1 + e^{x})$
......@@ -300,7 +300,7 @@ class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "Input of Softsign operator");
AddOutput("Y", "Output of Softsign operator");
AddComment(R"DOC(
Softsign activation operator.
Softsign Activation Operator.
$$y = \frac{x}{1 + |x|}$$
......@@ -320,7 +320,7 @@ class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>("t_max", "The max marginal value of BRelu")
.SetDefault(static_cast<AttrType>(24));
AddComment(R"DOC(
BRelu activation operator.
BRelu Activation Operator.
$y = \max(\min(x, t_{min}), t_{max})$
......@@ -339,7 +339,7 @@ class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>("threshold", "The threshold value of SoftRelu")
.SetDefault(static_cast<AttrType>(40));
AddComment(R"DOC(
SoftRelu activation operator.
SoftRelu Activation Operator.
$y = \ln(1 + \exp(\max(\min(x, threshold), threshold))$
......@@ -357,7 +357,7 @@ class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>("alpha", "The alpha value of ELU")
.SetDefault(static_cast<AttrType>(1.0f));
AddComment(R"DOC(
ELU activation operator.
ELU Activation Operator.
Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.
......@@ -378,7 +378,7 @@ class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>("threshold", "The threshold value of Relu6")
.SetDefault(static_cast<AttrType>(6));
AddComment(R"DOC(
Relu6 activation operator.
Relu6 Activation Operator.
$y = \min(\max(0, x), 6)$
......@@ -396,7 +396,7 @@ class PowOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>("factor", "The exponential factor of Pow")
.SetDefault(static_cast<AttrType>(1));
AddComment(R"DOC(
Pow activation operator.
Pow Activation Operator.
$y = x^{factor}$
......@@ -416,7 +416,7 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>("scale_b", "The scale parameter of b for the input")
.SetDefault(static_cast<AttrType>(1.7159));
AddComment(R"DOC(
STanh activation operator.
STanh Activation Operator.
$$y = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
......@@ -435,7 +435,7 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>("threshold", "The threshold location of activation")
.SetDefault(static_cast<AttrType>(1.0));
AddComment(R"DOC(
ThresholdedRelu activation operator.
ThresholdedRelu Activation Operator.
$$
y = \begin{cases}
......@@ -461,7 +461,7 @@ class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>("offset", "Offset for linear approximation of sigmoid")
.SetDefault(static_cast<AttrType>(0.5));
AddComment(R"DOC(
HardSigmoid activation operator.
HardSigmoid Activation Operator.
Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
which is much faster than sigmoid.
......
......@@ -64,16 +64,15 @@ class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("AvgSquaredGrad",
"(Tensor) Input expectation of squared gradient");
AddInput("AvgSquaredGrad", "(Tensor) Input average of squared gradient");
AddInput("AvgSquaredUpdate",
"(Tensor) Input expectation of squared parameter updates");
"(Tensor) Input average of squared parameter updates");
AddOutput("ParamOut", "(Tensor) Output parameter");
AddOutput("AvgSquaredGradOut",
"(Tensor) Output expectation of squared gradient");
"(Tensor) Output average of squared gradient");
AddOutput("AvgSquaredUpdateOut",
"(Tensor) Output expectation of squared parameter updates");
"(Tensor) Output average of squared parameter updates");
AddAttr<float>("rho",
"(float, default 0.95) Exponential decay rate "
......@@ -84,22 +83,21 @@ class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
"numerical stability")
.SetDefault(1.0e-6f);
AddComment(R"DOC(
Adadelta Updates Operator.
Adadelta Optimizer.
This implements the Adadelta optimizer[1]. Adadelta is a per-dimension
adaptive learning rate method for gradient descent.
Adadelta optimizer is implemented as explained in:
https://arxiv.org/abs/1212.5701
Adadelta is a per-dimension adaptive learning rate method used
for gradient descent.
Adadelta updates:
Adadelta updates are as follows:
avg_squared_grad_out = rho * avg_squared_grad + (1 - rho) * grad * grad
param_update = - sqrt((avg_squared_update + epsilon) /
(avg_squared_grad_out + epsilon)) * grad
avg_squared_update_out = rho * avg_squared_update + (1 - rho) * param_update**2
param_out = param + param_update
References:
[1] ADADELTA: An Adaptive Learning Rate Method
https://arxiv.org/abs/1212.5701
$$avgSquaredGradOut = \rho * avgSquaredGrad + (1 - \rho) * grad * grad \break
paramUpdate = - $\sqrt{((avgSquaredUpdate + \epsilon) /
(avgSquaredGrad_out + \epsilon))}$ * grad \break
avgSquaredUpdateOut = \rho * avgSquaredUpdate + (1 - \rho) *
{(paramUpdate)}^2 \break
paramOut = param + paramUpdate$$
)DOC");
}
......
......@@ -73,12 +73,16 @@ class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
Adaptive Gradient Algorithm (Adagrad).
moment_out = moment + grad * grad
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)
The update is done as follows:
$$momentOut = moment + grad * grad \break
paramOut = param - learningRate * grad / ($\sqrt{momentOut}$ + \epsilon) \break
$$
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
does not have the epsilon attribute. It is added here for numerical stability
by avoiding division by zero.
does not have the epsilon attribute. It is added here in our implementation
as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
for numerical stability to avoid the division by zero error.
)DOC");
}
......
......@@ -51,8 +51,8 @@ class AdamOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
"Beta1 power accumulator should have 1 dimension");
auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
"Beta1 power accumulator should have 1 dimension");
PADDLE_ENFORCE_EQ(framework::product(beta2_pow_dims), 1,
"Beta2 power accumulator should have 1 dimension");
auto param_dims = ctx->GetInputDim("Param");
PADDLE_ENFORCE_EQ(
......@@ -60,10 +60,10 @@ class AdamOp : public framework::OperatorWithKernel {
"Param and Grad input of AdamOp should have same dimension");
PADDLE_ENFORCE_EQ(
param_dims, ctx->GetInputDim("Moment1"),
"Param and Moment input of AdamOp should have same dimension");
"Param and Moment1 input of AdamOp should have same dimension");
PADDLE_ENFORCE_EQ(
param_dims, ctx->GetInputDim("Moment2"),
"Param and InfNorm input of AdamOp should have same dimension");
"Param and Moment2 input of AdamOp should have same dimension");
ctx->SetOutputDim("ParamOut", param_dims);
ctx->SetOutputDim("Moment1Out", param_dims);
......@@ -103,23 +103,20 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
.SetDefault(1.0e-8f);
AddComment(R"DOC(
Adam Updates Operator.
Adam Optimizer.
This implements the Adam optimizer from Section 2 of the Adam
paper[1]. Adam is a first-order gradient-based optimization
method based on adaptive estimates of lower-order moments.
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
Adam updates:
moment1_out = beta1 * moment1 + (1 − beta1) * grad
moment2_out = beta2 * moment2 + (1 − beta2) * grad * grad
learning_rate_t = learning_rate_t *
sqrt(1 - beta2_pow) / (1 - beta1_pow)
param_out = param - learning_rate_t * moment1/ (sqrt(moment2) + epsilon)
References:
[1] Adam: A Method for Stochastic Optimization
(https://arxiv.org/abs/1412.6980)
$$moment_1_{out} = \beta_1 * moment_1 + (1 - \beta_1) * grad \break
moment_2_{out} = \beta_2 * moment_2 + (1 - \beta_2) * grad * grad \break
learningRate = learningRate *
$\sqrt{(1 - \beta_2_{pow})}$ / (1 - \beta_1_{pow}) \break
paramOut = param - learningRate * moment_1/ ($\sqrt{(moment_2)} + \epsilon)$$
)DOC");
}
......
......@@ -99,26 +99,22 @@ class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker {
"Constant for numerical stability")
.SetDefault(1.0e-8f);
AddComment(R"DOC(
Adamax Updates Operator.
Adamax Optimizer.
This implements the Adamax optimizer from Section 7 of the Adam
paper[1]. Adamax is a variant of the
We implement the Adamax optimizer from Section 7 of the Adam
paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
Adam algorithm based on the infinity norm.
Adamax updates:
moment_out = beta1 * moment + (1 - beta1) * grad
inf_norm_out = max(beta2 * inf_norm + epsilon, abs(grad))
learning_rate_t = learning_rate/(1 - beta1_pow)
param_out = param - learning_rate_t * moment_out/inf_norm_out
$$momentOut = \beta_1 * moment + (1 - \beta_1) * grad \break
infNormOut = max(\beta_2 * infNorm + \epsilon, |grad|) \break
learningRate = learningRate /(1 - \beta_1_{pow}) \break
paramOut = param - learningRate * momentPut / infNormOut$$
The original paper does not have an epsilon attribute.
However, it is added here for numerical stability
by preventing divide by 0.
References:
[1] Adam: A Method for Stochastic Optimization
(https://arxiv.org/abs/1412.6980)
However, it is added here for numerical stability to prevent the
division by 0 error.
)DOC");
}
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <numeric>
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memcpy.h"
namespace paddle {
namespace operators {
using LoD = framework::LoD;
class ArrayToLoDTensorOp : public framework::OperatorBase {
public:
ArrayToLoDTensorOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensorArray>();
auto &rank_table =
scope.FindVar(Input("RankTable"))->Get<framework::LoDRankTable>();
auto *out =
scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
// Check dims, place and data type of input's elements and infer output's
// dim
PADDLE_ENFORCE(!x.empty(), "There's no element in the input array.");
int rank = x[0].dims().size();
platform::Place place = x[0].place();
std::type_index data_type = x[0].type();
framework::DDim ins_dims = framework::slice_ddim(x[0].dims(), 1, rank);
int64_t batch_size = x[0].dims()[0];
for (size_t i = 1; i < x.size(); ++i) {
PADDLE_ENFORCE_EQ(framework::slice_ddim(x[i].dims(), 1, rank), ins_dims,
"The dimension of the %zu'th element in LoDTensorArray "
"differs from previous ones.",
i);
PADDLE_ENFORCE(platform::places_are_same_class(x[i].place(), place),
"The place class of the %zu'th element in LoDTensorArray "
"differs from previous ones.",
i);
PADDLE_ENFORCE(x[i].type() == data_type,
"The date type of the %zu'th element in LoDTensorArray "
"differs from previous ones.",
i);
batch_size += x[i].dims()[0];
}
auto ins_dim_vec = framework::vectorize(ins_dims);
ins_dim_vec.insert(ins_dim_vec.begin(), batch_size);
framework::DDim out_dims = framework::make_ddim(ins_dim_vec);
out->Resize(out_dims);
out->mutable_data(place, data_type);
auto &table_items = rank_table.items();
std::vector<size_t> table_item_idx(table_items.size());
// table_item_idx = range(table_items_idx.size())
std::iota(table_item_idx.begin(), table_item_idx.end(), 0);
std::sort(table_item_idx.begin(), table_item_idx.end(),
[&](size_t a, size_t b) {
return table_items[a].index < table_items[b].index;
});
// Build LoDTensor `out`
framework::LoD *out_lod = out->mutable_lod();
out_lod->clear();
size_t out_offset = 0;
auto prefix_lod = rank_table.coarse_lod();
prefix_lod.emplace_back();
auto &cur_level_lod = prefix_lod.back();
cur_level_lod.push_back(0);
for (size_t idx : table_item_idx) {
cur_level_lod.push_back(cur_level_lod.back() + table_items[idx].length);
for (size_t x_idx = 0; x_idx < table_items[idx].length; ++x_idx) {
auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
x[x_idx].lod(), idx, idx + 1, 0);
auto &lod_length = lod_and_offset.first;
framework::AppendLoD(out_lod, lod_length);
size_t start_offset = lod_and_offset.second.first;
size_t end_offset = lod_and_offset.second.second;
VLOG(10) << "idx=" << idx << " x_idx=" << x_idx << " ["
<< ", " << end_offset << "]";
// Copy data
PADDLE_ENFORCE_GE(end_offset, start_offset);
size_t len = end_offset - start_offset;
if (len == 0) {
continue;
}
out->Slice(out_offset, out_offset + len)
.CopyFrom(x[x_idx].Slice(start_offset, end_offset), place, dev_ctx);
out_offset += len;
}
}
out_lod->insert(out_lod->begin(), prefix_lod.begin(), prefix_lod.end());
}
};
class ArrayToLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
ArrayToLoDTensorOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(std::vector<LodTensor>) A vector of tensors that is going to "
"be casted to a big LoDTensor.");
AddInput("RankTable",
"(LoDRankTable) RankTable provides the coarse lod infomation to "
"build the output LoDTensor. See "
"'paddle/framework/lod_rank_table.h' for more details.");
AddOutput("Out", "(LoDTensor) The LoDTensor formed by input tensor array.");
AddComment(
R"DOC(This Op build a big LoDTensor from a std::vector<LoDTensor>
and a LoDRankTable. It is supposed to be used in getting dynamic RNN's
outputs back to a normal LoDTensor. The std::vector<LoDTensor>
would be the output of RNN Op and the LoDRankTable would be build
with RNN's input.)DOC");
}
};
class ArrayToLoDTensorInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"),
"ArrayToLoDTensorOp must has input X.");
PADDLE_ENFORCE(context->HasInput("RankTable"),
"ArrayToLoDTensorOp must has input RankTable.");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(array_to_lod_tensor, ops::ArrayToLoDTensorOp,
ops::ArrayToLoDTensorOpProtoMaker,
ops::ArrayToLoDTensorInferShape);
......@@ -23,11 +23,11 @@ class AucOp : public framework::OperatorWithKernel {
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Out"), "Input of Out must be initialized.");
PADDLE_ENFORCE(ctx->HasInput("Out"), "Input of Out should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Indices"),
"Input of Indices must be initialized.");
"Input of Indices should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Label"),
"Input of Label must be initialized.");
"Input of Label should not be null.");
auto inference_height = ctx->GetInputDim("Out")[0];
auto label_height = ctx->GetInputDim("Label")[0];
......@@ -39,10 +39,11 @@ class AucOp : public framework::OperatorWithKernel {
}
protected:
// IndicateDataType
framework::DataType IndicateDataType(
framework::OpKernelType GetKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("Out")->type());
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Out")->type()),
ctx.device_context());
}
};
......@@ -52,20 +53,20 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Out",
"A floating point 2D tensor, values are in the range [0, 1]."
"Each row is descend sorted. This input should be the"
"Each row is sorted in descending order. This input should be the"
"output of topk."
"Typically, this tensor indicates the probability of each label");
AddInput("Indices",
"An int 2D tensor, indicating the indices of original"
"tensor before sort. Typically, this tensor indicates which label"
"the probability stands for.");
"tensor before sorting. Typically, this tensor indicates which "
"label the probability stands for.");
AddInput("Label",
"A 2D int tensor indicating the label of the training data."
"The height is batch size and width is always 1.");
// TODO(typhoonzero): support weight input
AddOutput("AUC",
"A scalar representing the "
"current area-under-curve.");
"current area-under-the-curve.");
AddAttr<std::string>("curve", "Curve type, can be 'ROC' or 'PR'.")
.SetDefault("ROC");
......@@ -74,19 +75,18 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
" roc curve.")
.SetDefault(200);
AddComment(
R"DOC(Computes the AUC according forward output and label.
Best to use for binary classification evaluations.
AddComment(R"DOC(
Area Under The Curve (AUC) Operator.
This implementation computes the AUC according to forward output and label.
It is used very widely in binary classification evaluation. As a note:
If input label contains values other than 0 and 1, it will be cast
to bool.
You can find the definations here:
to bool. You can find the relevant definitions here:
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
Possible curves are:
- ROC: Receiver operating characteristic
- PR: Precision Recall
There are two types of possible curves:
1. ROC: Receiver operating characteristic
2. PR: Precision Recall
)DOC");
}
};
......
......@@ -51,6 +51,10 @@ class BatchNormOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), "");
PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), "");
const float epsilon = ctx->Attrs().Get<float>("epsilon");
PADDLE_ENFORCE_GE(epsilon, 0.0, "epsilon should be larger than 0");
PADDLE_ENFORCE_LE(epsilon, 0.001, "epsilon should not be too large");
// make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
"Mean and MeanOut should share the same memory");
......@@ -66,7 +70,7 @@ class BatchNormOp : public framework::OperatorWithKernel {
: x_dims[x_dims.size() - 1]);
PADDLE_ENFORCE(x_dims.size() >= 3 && x_dims.size() <= 5,
"Input x must have 3 to 5 dimensions.");
"Input X must have 3 to 5 dimensions.");
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C);
......@@ -93,16 +97,16 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "The input tensor");
AddInput("Scale",
"Scale is a 1-dimensional tensor of size C "
"to be applied to the output");
"that is applied to the output");
AddInput("Bias",
"Bias is a 1-dimensional tensor of size C "
"to be applied to the output");
"that is applied to the output");
AddInput("Mean",
"The global mean (for training) or the "
"The global mean (for training) or "
"estimated mean (for testing)");
AddInput("Variance",
"The global variance (for training) "
"or the estimated Variance (for testing)");
"or estimated Variance (for testing)");
AddOutput("Y", "result after normalization");
AddOutput("MeanOut",
"Share memory with Mean. "
......@@ -119,10 +123,14 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
"will apply to output when training")
.AsIntermediate();
AddComment(R"DOC(
https://arxiv.org/pdf/1502.03167.pdf
Batch Normalization.
NHWC `[batch, in_height, in_width, in_channels]`
NCHW `[batch, in_channels, in_height, in_width]`
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
)DOC");
}
......@@ -295,9 +303,9 @@ class BatchNormGradOp : public framework::OperatorWithKernel {
ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
}
framework::DataType IndicateDataType(
protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext &ctx) const override {
VLOG(3) << "IndicateDataType " << this->Type();
const auto *var = ctx.InputVar(framework::GradVarName("Y"));
if (var == nullptr) {
PADDLE_THROW("can't find Y@GRAD");
......@@ -311,7 +319,8 @@ class BatchNormGradOp : public framework::OperatorWithKernel {
if (t == nullptr) {
PADDLE_THROW("can't find Y@GRAD");
}
return framework::ToDataType(t->type());
return framework::OpKernelType(framework::ToDataType(t->type()),
ctx.device_context());
}
};
......
......@@ -23,13 +23,17 @@ class CastOpProtoMaker : public framework::OpProtoAndCheckerMaker {
CastOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input tensor of cast op");
AddOutput("Out", "the output tensor of cast op");
AddComment(R"DOC(Cast operator.
cast the input tensor to other data type.
)DOC");
AddInput("X", "The input tensor of cast op");
AddOutput("Out", "The output tensor of cast op");
AddAttr<int>("out_data_type", "output data type");
AddAttr<int>("in_data_type", "input data type");
AddComment(R"DOC(
Cast Operator.
This Operator casts the input tensor to another data type and
returns tha Output Tensor.
)DOC");
}
};
......
......@@ -49,8 +49,11 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<AttrType>(
"max", "(float)Maximum value, above which element is replaced by max");
AddComment(R"DOC(
Clip operator limits the given input within an interval. The interval is
Clip Operator.
The clip operator limits the value of given input within an interval. The interval is
specified with arguments 'min' and 'max'.
)DOC");
}
};
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/compare_op.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename OpComment>
class CompareOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
CompareOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
OpComment comment;
AddInput("X",
string::Sprintf("(LoDTensor) the left hand operand of %s operator",
comment.type));
AddInput("Y", string::Sprintf(
"(LoDTensor) the right hand operand of %s operator",
comment.type));
AddOutput("Out", string::Sprintf(
"(LoDTensor) n-dim bool tensor. Each element is %s",
comment.equation));
AddComment(string::Sprintf(R"DOC(%s Operator
It operates element-wise on X and Y, and returns the Out. Each of them is a
N-dim tensor. X and Y could be any type. The each element of the Out tensor is
calculated by %s
)DOC",
comment.type, comment.equation));
}
};
template <typename OpComment>
class CompareOpInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
OpComment comment;
PADDLE_ENFORCE(context->HasInput("X"), "%s operator must has input X",
comment.type);
PADDLE_ENFORCE(context->HasInput("Y"), "%s operator must has input Y",
comment.type);
auto dim_x = context->GetInputDim("X");
auto dim_y = context->GetInputDim("Y");
PADDLE_ENFORCE_EQ(framework::product(dim_x), framework::product(dim_y),
"The number of elements in X and Y should be same");
context->SetOutputDim("Out", context->GetInputDim("X"));
context->ShareLoD("X", "Out");
}
};
} // namespace operators
} // namespace paddle
#define REGISTER_LOGICAL_OP(op_type, _equation) \
struct _##op_type##Comment { \
static char type[]; \
static char equation[]; \
}; \
char _##op_type##Comment::type[]{#op_type}; \
char _##op_type##Comment::equation[]{_equation}; \
REGISTER_OP_WITH_KERNEL( \
op_type, ::paddle::operators::CompareOpProtoMaker<_##op_type##Comment>, \
::paddle::operators::CompareOpInferShape<_##op_type##Comment>, \
::paddle::framework::EmptyGradOpMaker);
REGISTER_LOGICAL_OP(less_than, "Out = X < Y");
REGISTER_LOGICAL_KERNEL(less_than, CPU, paddle::operators::LessThanFunctor);
REGISTER_LOGICAL_OP(equal, "Out = X == Y");
REGISTER_LOGICAL_KERNEL(equal, CPU, paddle::operators::EqualFunctor);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/compare_op.h"
REGISTER_LOGICAL_KERNEL(less_than, GPU, paddle::operators::LessThanFunctor);
REGISTER_LOGICAL_KERNEL(equal, GPU, paddle::operators::EqualFunctor);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <math.h>
#include <type_traits>
#include "paddle/framework/op_registry.h"
#include "paddle/platform/transform.h"
namespace paddle {
namespace operators {
template <typename T>
struct LessThanFunctor {
using ELEM_TYPE = T;
HOSTDEVICE bool operator()(const T& a, const T& b) const { return a < b; }
};
template <typename T>
struct EqualFunctor {
using ELEM_TYPE = T;
HOSTDEVICE bool operator()(const T& a, const T& b) const {
if (std::is_floating_point<T>::value) {
// This branch will be optimized while compiling if T is integer. It is
// safe to cast a and b to double.
return fabs(static_cast<double>(a - b)) < 1e-8;
} else {
return (a == b);
}
}
};
template <typename Place, typename Functor>
class CompareOpKernel
: public framework::OpKernel<typename Functor::ELEM_TYPE> {
public:
void Compute(const framework::ExecutionContext& context) const override {
using T = typename Functor::ELEM_TYPE;
auto* x = context.Input<framework::Tensor>("X");
auto* y = context.Input<framework::Tensor>("Y");
auto* out = context.Output<framework::Tensor>("Out");
Functor binary_func;
platform::Transform<Place> trans;
trans(context.device_context(), x->data<T>(), x->data<T>() + x->numel(),
y->data<T>(), out->mutable_data<bool>(context.GetPlace()),
binary_func);
}
};
} // namespace operators
} // namespace paddle
#define REGISTER_LOGICAL_KERNEL(op_type, dev, functor) \
REGISTER_OP_##dev##_KERNEL( \
op_type, \
::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \
functor<int>>, \
::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \
functor<int64_t>>, \
::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \
functor<float>>, \
::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \
functor<double>>);
......@@ -56,20 +56,24 @@ class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ConcatOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input tensors of concat operator.").AsDuplicable();
AddOutput("Out", "the output tensor of concat operator.");
AddComment(R"DOC(
Join the input tensors along with the axis.
Examples:
Input[0] = [[1,2],[3,4]]
Input[1] = [[5,6]]
axis = 0
Output = [[1,2],
[3,4],
[5,6]]
)DOC");
AddAttr<int>("axis", "The axis which the inputs will be joined with.")
AddInput("X", "Input tensors of concat operator.").AsDuplicable();
AddOutput("Out", "Output tensor of concat operator.");
AddAttr<int>("axis",
"The axis along which the input tensors will be concatenated.")
.SetDefault(0);
AddComment(R"DOC(
Concat Operator.
Concatenate the input tensors along dimension axis.
Examples:
Input[0] = [[1,2],[3,4]]
Input[1] = [[5,6]]
axis = 0
Output = [[1,2],
[3,4],
[5,6]]
)DOC");
}
};
......
......@@ -216,11 +216,12 @@ class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker {
AddOutput("IndexTensors", "Index Tensors contains indices for true/false");
AddComment(R"DOC(
Sample dependent Cond Operator:
Given Cond[i] as a 1/0 vector to indicate true/false
The equation is:
Out[i] = subnet_t[i], if Cond[i] == true
Out[i] = subnet_t[i], if Cond[i] == false
Sample Dependent Conditional Operator.
Given Cond[i] as a 1/0 vector to indicate true/false:
Out[i] = subnet_true[i], if Cond[i] == true
Out[i] = subnet_false[i], if Cond[i] == false
)DOC");
}
};
......
......@@ -12,7 +12,7 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv2d_transpose_op.h"
#include "paddle/operators/conv_transpose_op.h"
namespace paddle {
namespace operators {
......@@ -38,13 +38,13 @@ class CudnnConv2DTransposeOpMaker : public Conv2DTransposeOpMaker {
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(conv2d_transpose_cudnn, ops::Conv2DTransposeOp,
REGISTER_OP(conv2d_transpose_cudnn, ops::ConvTransposeOp,
ops::CudnnConv2DTransposeOpMaker, conv2d_transpose_cudnn_grad,
ops::Conv2DTransposeOpGrad);
ops::ConvTransposeOpGrad);
REGISTER_OP_CPU_KERNEL(
conv2d_transpose_cudnn,
ops::GemmConv2DTransposeKernel<paddle::platform::CPUPlace, float>);
ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv2d_transpose_cudnn_grad,
ops::GemmConv2DTransposeGradKernel<paddle::platform::CPUPlace, float>);
ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, float>);
......@@ -15,7 +15,7 @@
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memory.h"
#include "paddle/operators/conv2d_transpose_op.h"
#include "paddle/operators/conv_transpose_op.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/cudnn_helper.h"
......@@ -27,7 +27,6 @@ using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
using CUDADeviceContext = platform::CUDADeviceContext;
static constexpr size_t kConvCudnnWorkspaceLimitBytes = 1024 * 1024 * 1024;
......
......@@ -12,7 +12,7 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv2d_op.h"
#include "paddle/operators/conv_op.h"
namespace paddle {
namespace operators {
......@@ -29,7 +29,7 @@ class CudnnConvOpMaker : public Conv2DOpMaker {
"workspace is a section of GPU memory which will be "
"allocated/freed each time the operator runs, larger "
"workspace size can increase performance but also requires "
"better hardward. This size should be carefully setted.")
"better hardware. This size should be chosen carefully.")
.SetDefault(4096);
}
};
......@@ -38,10 +38,11 @@ class CudnnConvOpMaker : public Conv2DOpMaker {
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(conv_cudnn, ops::Conv2DOp, ops::CudnnConvOpMaker, conv_cudnn_grad,
ops::Conv2DOpGrad);
REGISTER_OP_CPU_KERNEL(
conv_cudnn, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP(conv_cudnn, ops::ConvOp, ops::CudnnConvOpMaker, conv_cudnn_grad,
ops::ConvOpGrad);
REGISTER_OP_CPU_KERNEL(conv_cudnn,
ops::GemmConvKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv_cudnn_grad,
ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>);
......@@ -15,7 +15,7 @@
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memory.h"
#include "paddle/operators/conv2d_op.h"
#include "paddle/operators/conv_op.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/cudnn_helper.h"
......@@ -27,7 +27,6 @@ using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
using CUDADeviceContext = platform::CUDADeviceContext;
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES = 1024 * 1024 * 1024;
......
......@@ -12,18 +12,18 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv2d_op.h"
#include "paddle/operators/conv_op.h"
namespace paddle {
namespace operators {
void Conv2DOp::InferShape(framework::InferShapeContext* ctx) const {
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of Conv2DOp should not be null.");
"Input(Input) of ConvOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"),
"Input(Filter) of Conv2DOp should not be null.");
"Input(Filter) of ConvOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output(Output) of Conv2DOp should not be null.");
"Output(Output) of ConvOp should not be null.");
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
......@@ -33,8 +33,17 @@ void Conv2DOp::InferShape(framework::InferShapeContext* ctx) const {
int input_channels = in_dims[1];
int output_channels = filter_dims[0];
PADDLE_ENFORCE_EQ(in_dims.size(), 4, "Conv2DOp input should be 4-D.");
PADDLE_ENFORCE_EQ(filter_dims.size(), 4, "Conv2DOp filter should be 4-D.");
PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
"Conv intput should be 4-D or 5-D tensor.");
PADDLE_ENFORCE_EQ(
in_dims.size(), filter_dims.size(),
"Conv input dimension and filter dimension should be the same.");
PADDLE_ENFORCE(
in_dims.size() - strides.size() == 2U,
"Conv input dimension and strides dimension should be consistent.");
PADDLE_ENFORCE_EQ(
paddings.size(), strides.size(),
"Conv paddings dimension and Conv strides dimension should be the same.");
PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
"The number of input channels should be equal to filter "
"channels * groups.");
......@@ -42,12 +51,12 @@ void Conv2DOp::InferShape(framework::InferShapeContext* ctx) const {
output_channels % groups, 0,
"The number of output channels should be divided by groups.");
auto output_height =
OutputSize(in_dims[2], filter_dims[2], paddings[0], strides[0]);
auto output_width =
OutputSize(in_dims[3], filter_dims[3], paddings[1], strides[1]);
ctx->SetOutputDim("Output",
{in_dims[0], filter_dims[0], output_height, output_width});
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < paddings.size(); ++i) {
output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2],
paddings[i], strides[i]));
}
ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
}
Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
......@@ -55,18 +64,19 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"The input tensor of convolution operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image.");
"(Tensor) The input tensor of convolution operator. "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H is the height of the feature, "
"and W is the width of the feature.");
AddInput("Filter",
"The filter tensor of convolution operator."
"(Tensor) The filter tensor of convolution operator. "
"The format of the filter tensor is MCHW, where M is the number of "
"output image channels, C is the number of input image channels, "
"H and W is height and width of filter. "
"If the groups attribute is greater than 1, C equal the number of "
"H is the height of the filter, and W is the width of the filter. "
"If the groups attribute is greater than 1, C equals the number of "
"input image channels divided by the groups.");
AddOutput("Output",
"The output tensor of convolution operator."
"(Tensor) The output tensor of convolution operator. "
"The format of output tensor is also NCHW.");
AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
.SetDefault({1, 1});
......@@ -74,20 +84,100 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
.SetDefault({0, 0});
AddAttr<int>(
"groups",
"group size of convolution operator. "
"Refer to grouped convolution in Alex Krizhevsky's paper: "
"when group=2, the first half of the filters are only connected to the "
"first half of the input channels, and the second half only connected "
"to the second half.")
"(int default:1), the group size of convolution operator. "
"According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
"when group=2, the first half of the filters is only connected to the "
"first half of the input channels, while the second half of the filters "
"is only connected to the second half of the input channels.")
.SetDefault(1);
AddComment(R"DOC(
Convolution Operator.
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
size, C is the number of channels, H is the height of the feature, and W is
the width of the feature. Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
Input shape: (N, C_in, H_in, W_in)
Filter shape: (C_out, C_in, H_f, W_f)
Output:
Output shape: (N, C_out, H_out, W_out)
where
H_out = (H_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
W_out = (W_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
)DOC");
}
Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"(Tensor) The input tensor of convolution operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is the "
"number of channels, D is the depth of the feature, H is the height of "
"the feature, "
"and W is the width of the feature.");
AddInput("Filter",
"(Tensor) The filter tensor of convolution operator. "
"The format of the filter tensor is MCDHW, where M is the number of "
"output image channels, C is the number of input image channels, "
"D is the depth of the filter, H is the height of the filter, and W "
"is the width of the filter."
"If the groups attribute is greater than 1, C equals the number of "
"input image channels divided by the groups.");
AddOutput("Output",
"(Tensor) The output tensor of convolution operator."
"The format of output tensor is also NCDHW.");
AddAttr<std::vector<int>>(
"strides",
"(vector, default:{0, 0, 0}), the strides of convolution operator.")
.SetDefault({1, 1, 1});
AddAttr<std::vector<int>>(
"paddings",
"(vector, default:{0, 0, 0}), the paddings of convolution operator.")
.SetDefault({0, 0, 0});
AddAttr<int>(
"groups",
"(int default:1), the group size of convolution operator. "
"According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
"when group=2, the first half of the filters is only connected to the "
"first half of the input channels, while the second half of the filters "
"is only connected to the second half of the input channels.")
.SetDefault(1);
AddComment(R"DOC(
Convolution3D Operator.
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
size, C is the number of channels,D is the depth of the feature, H is the height of
the feature, and W is the width of the feature. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
Input shape: (N, C_in, D_in, H_in, W_in)
Filter shape: (C_out, C_in, D_f, H_f, W_f)
Output:
Output shape: (N, C_out, D_out, H_out, W_out)
where
D_out = (D_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
H_out = (H_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
W_out = (W_in - filter_size[2] + 2 * paddings[2]) / strides[2] + 1;
)DOC");
}
void Conv2DOpGrad::InferShape(framework::InferShapeContext* ctx) const {
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
......@@ -102,10 +192,18 @@ void Conv2DOpGrad::InferShape(framework::InferShapeContext* ctx) const {
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(conv2d, ops::Conv2DOp, ops::Conv2DOpMaker, conv2d_grad,
ops::Conv2DOpGrad);
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
ops::ConvOpGrad);
namespace ops = paddle::operators;
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
ops::ConvOpGrad);
REGISTER_OP_CPU_KERNEL(conv2d,
ops::GemmConvKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv2d, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
conv2d_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(conv3d,
ops::GemmConvKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv2d_grad, ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
conv3d_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>);
......@@ -12,11 +12,16 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv2d_op.h"
#include "paddle/operators/conv_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(conv2d,
ops::GemmConvKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
conv2d, ops::GemmConv2DKernel<paddle::platform::GPUPlace, float>);
conv2d_grad, ops::GemmConvGradKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(conv3d,
ops::GemmConvKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
conv2d_grad, ops::GemmConvGrad2DKernel<paddle::platform::GPUPlace, float>);
conv3d_grad, ops::GemmConvGradKernel<paddle::platform::GPUPlace, float>);
......@@ -18,6 +18,7 @@ limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h"
namespace paddle {
namespace operators {
......@@ -40,14 +41,20 @@ class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
framework::OpAttrChecker* op_checker);
};
class Conv2DOp : public framework::OperatorWithKernel {
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv3DOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
class ConvOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
};
class Conv2DOpGrad : public framework::OperatorWithKernel {
class ConvOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......@@ -55,7 +62,7 @@ class Conv2DOpGrad : public framework::OperatorWithKernel {
};
template <typename Place, typename T>
class GemmConv2DKernel : public framework::OpKernel<T> {
class GemmConvKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
......@@ -70,51 +77,78 @@ class GemmConv2DKernel : public framework::OpKernel<T> {
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
int groups = context.Attr<int>("groups");
int batch_size = input->dims()[0];
int input_channels = input->dims()[1];
int filter_height = filter.dims()[filter.dims().size() - 2];
int filter_width = filter.dims()[filter.dims().size() - 1];
int output_channels = output->dims()[1];
int output_height = output->dims()[2];
int output_width = output->dims()[3];
paddle::operators::math::Im2ColFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
im2col;
const int batch_size = static_cast<int>(input->dims()[0]);
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
filter_shape_vec.erase(filter_shape_vec.begin(),
filter_shape_vec.begin() + 2);
// output_shape_vec: {o_h, o_w} or {o_d, o_h, o_w}
std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
output_shape_vec.erase(output_shape_vec.begin(),
output_shape_vec.begin() + 2);
// use col_shape in the im2col calculation
framework::DDim col_shape = {input_channels / groups, filter_height,
filter_width, output_height, output_width};
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
// o_h, o_w}
std::vector<int64_t> col_shape_vec;
col_shape_vec.push_back(input->dims()[1] / groups);
col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
filter_shape_vec.end());
col_shape_vec.insert(col_shape_vec.end(), output_shape_vec.begin(),
output_shape_vec.end());
framework::DDim col_shape(framework::make_ddim(col_shape_vec));
// use col_matrix_shape in the gemm calculation
framework::DDim col_matrix_shape = {
input_channels / groups * filter_height * filter_width,
output_height * output_width};
// size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
// o_h * o_w)
framework::DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor col_matrix = col;
Tensor col_matrix;
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
framework::DDim input_shape = {input->dims()[1], input->dims()[2],
input->dims()[3]};
framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size()));
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
framework::DDim output_matrix_shape = {output_channels,
output_height * output_width};
// convolution operator: im2col + gemm
int in_step = input_channels / groups;
int out_step = output_channels / groups;
framework::DDim output_matrix_shape = {
output->dims()[1],
output->numel() / (output->dims()[0] * output->dims()[1])};
// convolution operator: im2col(or vol2col) + gemm
int in_step = static_cast<int>(input->dims()[1]) / groups;
int out_step = static_cast<int>(output->dims()[1]) / groups;
for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
for (int g = 0; g < groups; g++) {
// im2col
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
im2col(context.device_context(), in_slice, col, strides[0], strides[1],
paddings[0], paddings[0], paddings[1], paddings[1]);
if (filter_shape_vec.size() == 2) {
// im2col
math::Im2ColFunctor<math::ColFormat::kCFO, Place, T> im2col;
im2col(context.device_context(), in_slice, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1],
paddings[1]);
} else if (filter_shape_vec.size() == 3) {
// vol2col
math::Vol2ColFunctor<Place, T> vol2col;
vol2col(context.device_context(), in_slice, col, strides[0],
strides[1], strides[2], paddings[0], paddings[1],
paddings[2]);
}
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
......@@ -127,7 +161,7 @@ class GemmConv2DKernel : public framework::OpKernel<T> {
};
template <typename Place, typename T>
class GemmConvGrad2DKernel : public framework::OpKernel<T> {
class GemmConvGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
......@@ -137,64 +171,79 @@ class GemmConvGrad2DKernel : public framework::OpKernel<T> {
context.Output<Tensor>(framework::GradVarName("Input"));
Tensor* filter_grad =
context.Output<Tensor>(framework::GradVarName("Filter"));
// The filter and filter_grad will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor filter = *context.Input<Tensor>("Filter");
if (!input_grad && !filter_grad) return;
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
int groups = context.Attr<int>("groups");
int batch_size = input->dims()[0];
int input_channels = input->dims()[1];
int filter_height = filter.dims()[filter.dims().size() - 2];
int filter_width = filter.dims()[filter.dims().size() - 1];
int output_channels = output_grad->dims()[1];
int output_height = output_grad->dims()[2];
int output_width = output_grad->dims()[3];
paddle::operators::math::Col2ImFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
col2im;
paddle::operators::math::Im2ColFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
im2col;
// use col_shape in the im2col and col2im calculation
framework::DDim col_shape = {input_channels / groups, filter_height,
filter_width, output_height, output_width};
const int batch_size = static_cast<int>(input->dims()[0]);
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
filter_shape_vec.erase(filter_shape_vec.begin(),
filter_shape_vec.begin() + 2);
// output_shape_vec: {o_h, o_w} or {o_d, o_h, o_w}
std::vector<int64_t> output_shape_vec(
framework::vectorize(output_grad->dims()));
output_shape_vec.erase(output_shape_vec.begin(),
output_shape_vec.begin() + 2);
// use col_shape in the im2col calculation
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
// o_h, o_w}
std::vector<int64_t> col_shape_vec;
col_shape_vec.push_back(input->dims()[1] / groups);
col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
filter_shape_vec.end());
col_shape_vec.insert(col_shape_vec.end(), output_shape_vec.begin(),
output_shape_vec.end());
framework::DDim col_shape(framework::make_ddim(col_shape_vec));
// use col_matrix_shape in the gemm calculation
framework::DDim col_matrix_shape = {
input_channels / groups * filter_height * filter_width,
output_height * output_width};
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor col_matrix = col;
col_matrix.Resize(col_matrix_shape);
// size: (i_c/g * k_h * k_w, o_h * o_w)
// or
// (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
framework::DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
framework::DDim input_shape = {input->dims()[1], input->dims()[2],
input->dims()[3]};
framework::DDim output_matrix_shape = {
output_grad->dims()[1],
output_grad->dims()[2] * output_grad->dims()[3]};
framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size()));
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
// convolution backward input operator: gemm + col2im
// convolution backward weight operator: im2col + gemm
int in_step = input_channels / groups;
int out_step = output_channels / groups;
framework::DDim output_matrix_shape = {
output_grad->dims()[1],
output_grad->numel() /
(output_grad->dims()[0] * output_grad->dims()[1])};
// convolution backward input operator: gemm + col2im(or col2vol)
// convolution backward weight operator: im2col(or vol2col) + gemm
int in_step = static_cast<int>(input->dims()[1]) / groups;
int out_step = static_cast<int>(output_grad->dims()[1]) / groups;
Tensor col;
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor col_matrix;
col.mutable_data<T>(col_shape, context.GetPlace());
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
math::SetConstant<Place, T> set_zero;
if (input_grad) {
input_grad->mutable_data<T>(context.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*input_grad);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
set_zero(context.device_context(), input_grad, static_cast<T>(0));
for (int i = 0; i < batch_size; i++) {
Tensor out_grad_batch =
......@@ -208,13 +257,22 @@ class GemmConvGrad2DKernel : public framework::OpKernel<T> {
math::matmul<Place, T>(context.device_context(), filter_slice, true,
out_grad_slice, false, T(1.0), &col_matrix,
T(0.0));
// col2im
Tensor in_grad_slice =
in_grad_batch.Slice(g * in_step, (g + 1) * in_step);
col2im(context.device_context(), in_grad_slice, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1],
paddings[1]);
if (filter_shape_vec.size() == 2) {
math::Col2ImFunctor<math::ColFormat::kCFO, Place, T> col2im;
col2im(context.device_context(), in_grad_slice, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1],
paddings[1]);
} else if (filter_shape_vec.size() == 3) {
math::Col2VolFunctor<Place, T> col2vol;
col2vol(context.device_context(), in_grad_slice, col, strides[0],
strides[1], strides[2], paddings[0], paddings[1],
paddings[2]);
}
}
}
}
......@@ -223,8 +281,7 @@ class GemmConvGrad2DKernel : public framework::OpKernel<T> {
filter_grad->mutable_data<T>(context.GetPlace());
Tensor filter_grad_ = *filter_grad;
filter_grad_.Resize(filter_matrix_shape);
auto t = framework::EigenVector<T>::Flatten(filter_grad_);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
set_zero(context.device_context(), filter_grad, static_cast<T>(0));
for (int i = 0; i < batch_size; i++) {
Tensor out_grad_batch =
......@@ -235,9 +292,18 @@ class GemmConvGrad2DKernel : public framework::OpKernel<T> {
Tensor out_grad_slice =
out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
im2col(context.device_context(), in_slice, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1],
paddings[1]);
if (filter_shape_vec.size() == 2) {
math::Im2ColFunctor<math::ColFormat::kCFO, Place, T> im2col;
im2col(context.device_context(), in_slice, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1],
paddings[1]);
} else if (filter_shape_vec.size() == 3) {
math::Vol2ColFunctor<Place, T> vol2col;
vol2col(context.device_context(), in_slice, col, strides[0],
strides[1], strides[2], paddings[0], paddings[1],
paddings[2]);
}
// gemm
Tensor filter_grad_slice =
......@@ -250,6 +316,5 @@ class GemmConvGrad2DKernel : public framework::OpKernel<T> {
}
}
};
} // namespace operators
} // namespace paddle
......@@ -96,14 +96,13 @@ as used in the Neural Turing Machine: https://arxiv.org/abs/1410.5401
The equation is:
\f[
Out[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} X_{i+j} * Y_{j}
\f]
$$Out[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} X_{i+j} * Y_{j}$$
where X's index is computed modulo M, and b's index is computed modulo N.
where X's index is computed modulo M, and Y's index is computed modulo N.
Both inputs X and Y can carry LoD (Level of Details) information.
However, the output only shares the LoD information with input X.
Both of the input `X` and `Y` can carry LoD (Level of Details) information.
However, the output only shares the LoD information with input `X`.
)DOC");
}
};
......
......@@ -130,9 +130,7 @@ class ConvShiftKernel<platform::GPUPlace, T> : public framework::OpKernel<T> {
dim3 grid_dim(num_x_blocks, batch_size);
auto stream = reinterpret_cast<const platform::CUDADeviceContext &>(
context.device_context())
.stream();
auto stream = context.cuda_device_context().stream();
conv_shift_forward<T><<<grid_dim, x_per_block, mem_per_block, stream>>>(
x_data, y_data, out_data, x_width, y_width, y_half_width, batch_size);
......@@ -159,9 +157,7 @@ class ConvShiftGradKernel<platform::GPUPlace, T>
int y_width = Y->dims()[1];
int y_half_width = (y_width - 1) / 2;
auto stream = reinterpret_cast<const platform::CUDADeviceContext &>(
context.device_context())
.stream();
auto stream = context.cuda_device_context().stream();
const int x_per_block = 256;
int num_x_blocks = div_up(x_width, x_per_block);
......
......@@ -12,18 +12,18 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv2d_transpose_op.h"
#include "paddle/operators/conv_transpose_op.h"
namespace paddle {
namespace operators {
void Conv2DTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of Conv2DTransposeOp should not be null.");
"Input(Input) of ConvTransposeOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"),
"Input(Filter) of Conv2DTransposeOp should not be null.");
"Input(Filter) of ConvTransposeOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output(Output) of Conv2DTransposeOp should not be null.");
"Output(Output) of ConvTransposeOp should not be null.");
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
......@@ -35,17 +35,27 @@ void Conv2DTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
"No Padding allowed in conv transpose op.");
}
PADDLE_ENFORCE_EQ(in_dims.size(), 4,
"Conv2DTransposeOp input should be 4-D tensor.");
PADDLE_ENFORCE_EQ(filter_dims.size(), 4,
"Conv2DTransposeOp filter should be 4-D tensor.");
PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
"ConvTransposeOp intput should be 4-D or 5-D tensor.");
PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
"ConvTransposeOp input dimension and filter dimension "
"should be the same.");
PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
"ConvTransposeOp input dimension and strides dimension should "
"be consistent.");
PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
"ConvTransposeOp paddings dimension and Conv strides "
"dimension should be the same.");
PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
"input and kernel input dimension should be equal.");
"In ConvTransposeOp, The input channel should be the same "
"as the number of filters.");
auto output_height = (in_dims[2] - 1) * strides[0] + filter_dims[2];
auto output_width = (in_dims[3] - 1) * strides[1] + filter_dims[3];
ctx->SetOutputDim("Output",
{in_dims[0], filter_dims[1], output_height, output_width});
std::vector<int64_t> output_shape({in_dims[0], filter_dims[1]});
for (size_t i = 0; i < paddings.size(); ++i) {
output_shape.push_back((in_dims[i + 2] - 1) * strides[i] +
filter_dims[i + 2]);
}
ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
}
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
......@@ -55,32 +65,108 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
"Input",
"(Tensor) The input tensor of convolution transpose operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of input channels, H and W is the height and width of image.");
"number of input channels, H is the height of the feature, and "
"W is the width of the feature.");
AddInput("Filter",
"(Tensor) The filter tensor of convolution transpose operator."
"(Tensor) The filter tensor of convolution transpose operator. "
"The format of the filter tensor is CMHW, where C is the number of "
"output image channels, M is the number of input image channels, "
"H and W is height and width of filter. "
"H is the height of the filter, and W is the width of the filter. "
"We enforce groups number == 1 and padding == 0 in "
"convolution transpose Scenario.");
"the convolution transpose scenario.");
AddOutput("Output",
"(Tensor) The output tensor of convolution transpose operator."
"(Tensor) The output tensor of convolution transpose operator. "
"The format of output tensor is also NCHW.");
AddAttr<std::vector<int>>("strides",
"strides of convolution transpose operator.")
AddAttr<std::vector<int>>(
"strides",
"(vector defalut:{1, 1}), strides of convolution transpose operator.")
.SetDefault({1, 1});
AddAttr<std::vector<int>>("paddings",
"paddings of convolution transpose operator.")
AddAttr<std::vector<int>>(
"paddings",
"(vector defalut:{0, 0}), paddings of convolution transpose operator.")
.SetDefault({0, 0});
AddComment(R"DOC(
Convolution2D Transpose Operator.
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch
size, C is the number of channels, H is the height of the feature, and
W is the width of the feature. Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
Input shape: (N, C_in, H_in, W_in)
Filter shape: (C_in, C_out, H_f, W_f)
Output:
Output shape: (N, C_out, H_out, W_out)
where
H_out = (H_in - 1) * strides[0] - 2 * paddings[0] + filter_size[0];
W_out = (W_in - 1) * strides[1] - 2 * paddings[1] + filter_size[1];
)DOC");
}
void Conv2DTransposeOpGrad::InferShape(
framework::InferShapeContext* ctx) const {
Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(
framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Input",
"(Tensor) The input tensor of convolution transpose operator."
"The format of input tensor is NCDHW. Where N is batch size, C is "
"the number of channels, D is the depth of the feature, H is the "
"height of the feature, and "
"W is the width of the feature.");
AddInput("Filter",
"(Tensor) The filter tensor of convolution transpose operator."
"The format of the filter tensor is CMDHW, where C is the number of "
"output image channels, M is the number of input image channels, D "
"is the depth of the filter, H is the height of the filter, and "
"W is the width of the filter."
"We enforce groups number == 1 and padding == 0 in "
"the convolution3d transpose scenario.");
AddOutput("Output",
"(Tensor) The output tensor of convolution transpose operator."
"The format of output tensor is also NCDHW."
"Where N is batch size, C is "
"the number of channels, D is the depth of the feature, H is the "
"height of the feature, and W is the width of the feature.");
AddAttr<std::vector<int>>(
"strides",
"(vector defalut:{1, 1, 1}), strides of convolution transpose operator.")
.SetDefault({1, 1, 1});
AddAttr<std::vector<int>>(
"paddings",
"(vector defalut:{0, 0, 0}), paddings of convolution transpose operator.")
.SetDefault({0, 0, 0});
AddComment(R"DOC(
Convolution3D Transpose Operator.
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
size, C is the number of channels, D is the depth of the feature,
H is the height of the feature, and W is the width of the feature.
Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
Input shape: (N, C_in, D_in, H_in, W_in)
Filter shape: (C_in, C_out, D_f, H_f, W_f)
Output:
Output shape: (N, C_out, D_out, H_out, W_out)
where
D_out = (D_in - 1) * strides[0] - 2 * paddings[0] + filter_size[0];
H_out = (H_in - 1) * strides[1] - 2 * paddings[1] + filter_size[1];
W_out = (W_in - 1) * strides[2] - 2 * paddings[2] + filter_size[2];
)DOC");
}
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
......@@ -95,13 +181,23 @@ void Conv2DTransposeOpGrad::InferShape(
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(conv2d_transpose, ops::Conv2DTransposeOp,
ops::Conv2DTransposeOpMaker, conv2d_transpose_grad,
ops::Conv2DTransposeOpGrad);
REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
conv2d_transpose_grad, ops::ConvTransposeOpGrad);
REGISTER_OP_CPU_KERNEL(
conv2d_transpose,
ops::GemmConv2DTransposeKernel<paddle::platform::CPUPlace, float>);
ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv2d_transpose_grad,
ops::GemmConv2DTransposeGradKernel<paddle::platform::CPUPlace, float>);
ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker,
conv3d_transpose_grad, ops::ConvTransposeOpGrad);
REGISTER_OP_CPU_KERNEL(
conv3d_transpose,
ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv3d_transpose_grad,
ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, float>);
......@@ -12,13 +12,20 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv2d_transpose_op.h"
#include "paddle/operators/conv_transpose_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
conv2d_transpose,
ops::GemmConv2DTransposeKernel<paddle::platform::GPUPlace, float>);
ops::GemmConvTransposeKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
conv2d_transpose_grad,
ops::GemmConv2DTransposeGradKernel<paddle::platform::GPUPlace, float>);
ops::GemmConvTransposeGradKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
conv3d_transpose,
ops::GemmConvTransposeKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
conv3d_transpose_grad,
ops::GemmConvTransposeGradKernel<paddle::platform::GPUPlace, float>);
......@@ -18,6 +18,7 @@ limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h"
namespace paddle {
namespace operators {
......@@ -33,7 +34,13 @@ class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
framework::OpAttrChecker* op_checker);
};
class Conv2DTransposeOp : public framework::OperatorWithKernel {
class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv3DTransposeOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
class ConvTransposeOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......@@ -41,7 +48,7 @@ class Conv2DTransposeOp : public framework::OperatorWithKernel {
void InferShape(framework::InferShapeContext* ctx) const override;
};
class Conv2DTransposeOpGrad : public framework::OperatorWithKernel {
class ConvTransposeOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......@@ -50,41 +57,44 @@ class Conv2DTransposeOpGrad : public framework::OperatorWithKernel {
};
template <typename Place, typename T>
class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
class GemmConvTransposeKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
// The filter will be reshaped, so it should not be constant pointer
Tensor filter = *context.Input<Tensor>("Filter");
Tensor* output = context.Output<Tensor>("Output");
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
// TODO(Zhuoyuan): Paddings can be added in future.
// groups will alway be disabled in conv2d_transpose.
const int batch_size = input->dims()[0];
const int m = input->dims()[1];
const int h = input->dims()[2];
const int w = input->dims()[3];
const int k_h = filter.dims()[2];
const int k_w = filter.dims()[3];
const int c = output->dims()[1]; // output channels
const int o_h = output->dims()[2];
const int o_w = output->dims()[3];
paddle::operators::math::Col2ImFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
col2im;
// use col_shape in the im2col and col2im calculation
DDim col_shape = {c, k_h, k_w, h, w};
// groups will alway be disabled in conv2dtranspose.
const int batch_size = static_cast<int>(input->dims()[0]);
// input_shape_vec: {h, w} or {d, h, w}
std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
input_shape_vec.erase(input_shape_vec.begin(), input_shape_vec.begin() + 2);
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());
filter_shape_vec.erase(filter_shape_vec.begin(),
filter_shape_vec.begin() + 2);
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// calculation
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
std::vector<int64_t> col_shape_vec;
col_shape_vec.push_back(output->dims()[1]);
col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
filter_shape_vec.end());
col_shape_vec.insert(col_shape_vec.end(), input_shape_vec.begin(),
input_shape_vec.end());
DDim col_shape(framework::make_ddim(col_shape_vec));
// use col_matrix_shape in the gemm calculation
DDim col_matrix_shape = {c * k_h * k_w, h * w};
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
......@@ -95,160 +105,189 @@ class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
DDim output_shape = {c, o_h, o_w};
DDim input_matrix_shape = {m, h * w};
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
DDim output_shape =
framework::slice_ddim(output->dims(), 1, output->dims().size());
DDim filter_matrix_shape = {m, c * k_h * k_w};
filter.Resize(filter_matrix_shape);
// input matrix size: (m, h * w) or (m, d * h * w)
DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};
// convolution transpose: gemm + col2im (similar to conv-backward on input)
// filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
filter.Resize(filter_matrix_shape);
output->mutable_data<T>(context.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*output);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
math::SetConstant<Place, T> set_zero;
set_zero(context.device_context(), output, static_cast<T>(0));
// convolution transpose: gemm + col2im or col2vol (similar to conv-backward
// on input)
for (int i = 0; i < batch_size; i++) {
// batch with size (M, h * w)
// batch with size (m, h * w) or (m, d * h * w)
Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
// filter size: (M, c * k_h * k_w)
// output size: (c, o_h, o_w)
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);
// col_matrix = filter * input_batch
// of shape (c * k_h * k_w, h * w)
// of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
math::matmul<Place, T>(context.device_context(), filter, true,
input_batch, false, T(1.0), &col_matrix, T(0.0));
col2im(context.device_context(), output_batch, col, strides[0],
strides[1], 0, 0, 0, 0);
input_batch, false, static_cast<T>(1.0),
&col_matrix, static_cast<T>(0.0));
if (filter_shape_vec.size() == 2) {
// col2im: col_matrix -> dy
// from (c * k_h * k_w, h * w) to (c, o_h, o_w)
math::Col2ImFunctor<math::ColFormat::kCFO, Place, T> col2im;
col2im(context.device_context(), output_batch, col, strides[0],
strides[1], 0, 0, 0, 0);
} else if (filter_shape_vec.size() == 3) {
// col2vol: col_matrix -> dy
// from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
math::Col2VolFunctor<Place, T> col2vol;
col2vol(context.device_context(), output_batch, col, strides[0],
strides[1], strides[2], 0, 0, 0);
}
}
}
};
template <typename Place, typename T>
class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
const Tensor* output_grad =
context.Input<Tensor>(framework::GradVarName("Output"));
// For filter, we do not use const pointer b/c we will do reshape,
// but we should avoid modifying its value.
Tensor filter = *context.Input<Tensor>("Filter");
Tensor* input_grad =
context.Output<Tensor>(framework::GradVarName("Input"));
Tensor* filter_grad =
context.Output<Tensor>(framework::GradVarName("Filter"));
if ((!input_grad) && (!filter_grad)) return;
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
// Actually, no paddings and groups allowed in conv transpose.
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
const int batch_size = input->dims()[0];
const int m = input->dims()[1];
const int h = input->dims()[2];
const int w = input->dims()[3];
const int batch_size = static_cast<int>(input->dims()[0]);
const int k_h = filter.dims()[2];
const int k_w = filter.dims()[3];
// input_shape_vec: {h, w} or {d, h, w}
std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
input_shape_vec.erase(input_shape_vec.begin(), input_shape_vec.begin() + 2);
const int c = output_grad->dims()[1]; // output channels
const int o_h = output_grad->dims()[2];
const int o_w = output_grad->dims()[3];
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());
filter_shape_vec.erase(filter_shape_vec.begin(),
filter_shape_vec.begin() + 2);
// Only im2col functor required for bp to get to the right shape
paddle::operators::math::Im2ColFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
im2col;
// use col_shape in the im2col and col2im calculation
DDim col_shape = {c, k_h, k_w, h, w};
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// calculation
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
std::vector<int64_t> col_shape_vec;
col_shape_vec.push_back(output_grad->dims()[1]);
col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
filter_shape_vec.end());
col_shape_vec.insert(col_shape_vec.end(), input_shape_vec.begin(),
input_shape_vec.end());
DDim col_shape(framework::make_ddim(col_shape_vec));
// use col_matrix_shape in the gemm calculation
DDim col_matrix_shape_f = {c * h * w, k_h * k_w};
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
DDim output_shape = framework::slice_ddim(output_grad->dims(), 1,
output_grad->dims().size());
DDim output_shape = {c, o_h, o_w};
DDim input_matrix_shape = {m, h * w};
// input matrix size: (m, h * w) or (m, d * h * w)
DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};
DDim filter_matrix_shape = {m, c * k_h * k_w};
// filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
filter.Resize(filter_matrix_shape);
// convolution transpose grad on input:
// im2col + gemm (similar to conv-forward)
// input need to compute gradient
if (input_grad) {
if (input_grad || filter_grad) {
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor col_matrix;
col_matrix.ShareDataWith(col);
DDim col_matrix_shape = {c * k_h * k_w, h * w};
col_matrix.Resize(col_matrix_shape);
input_grad->mutable_data<T>(context.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*input_grad);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
Tensor filter_grad_;
math::SetConstant<Place, T> set_zero;
if (input_grad) {
input_grad->mutable_data<T>(context.GetPlace());
set_zero(context.device_context(), input_grad, static_cast<T>(0));
}
if (filter_grad) { // filter size (m, c, k_h, k_w)
filter_grad->mutable_data<T>(context.GetPlace());
set_zero(context.device_context(), filter_grad, static_cast<T>(0));
filter_grad_ = *filter_grad;
filter_grad_.Resize(filter_matrix_shape);
}
for (int i = 0; i < batch_size; i++) {
// batch with size (c, o_h * o_w)
Tensor output_grad_batch =
output_grad->Slice(i, i + 1).Resize(output_shape);
// filter of size (m, c * k_h * k_w)
// batch with size (m, h, w)
Tensor input_grad_batch =
input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
// im2col: dy from (c, o_h, o_w) -> (c * k_h * k_w, h * w)
im2col(context.device_context(), output_grad_batch, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1], paddings[1]);
// gemm: dx = filter * dy
// (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, c, h)
math::matmul<Place, T>(context.device_context(), filter, false,
col_matrix, false, T(1.0), &input_grad_batch,
T(0.0));
}
}
// filter gradient required
if (filter_grad) {
Tensor col_matrix_f;
col_matrix_f.ShareDataWith(col);
DDim col_matrix_shape_f = {c * h * w, k_h * k_w};
col_matrix_f.Resize(col_matrix_shape_f);
filter_grad->mutable_data<T>(context.GetPlace());
Tensor filter_grad_ = *filter_grad;
filter_grad_.Resize(filter_matrix_shape);
auto t = framework::EigenVector<T>::Flatten(filter_grad_);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
for (int i = 0; i < batch_size; ++i) {
// batch with size (c, o_h, o_w)
Tensor output_grad_batch =
output_grad->Slice(i, i + 1).Resize(output_shape);
// input batch
Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
// im2col: (c * h * w, k_h * k_w)
im2col(context.device_context(), output_grad_batch, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1], paddings[1]);
// gemm: d_filter = x * y_grad^T
// (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, c, h)
math::matmul<Place, T>(context.device_context(), in_batch, false,
col_matrix_f, true, T(1.0), &filter_grad_,
T(1.0));
if (filter_shape_vec.size() == 2) {
// im2col: dy -> col matrix
// from (c, o_h, o_w) to (c * k_h * k_w, h * w)
math::Im2ColFunctor<math::ColFormat::kCFO, Place, T> im2col;
im2col(context.device_context(), output_grad_batch, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1],
paddings[1]);
} else if (filter_shape_vec.size() == 3) {
// vol2col: dy -> col_matrix
// from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
math::Vol2ColFunctor<Place, T> vol2col;
vol2col(context.device_context(), output_grad_batch, col, strides[0],
strides[1], strides[2], paddings[0], paddings[1],
paddings[2]);
}
if (input_grad) {
// batch with size (m, h, w)
Tensor input_grad_batch =
input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
// gemm: dx = filter * dy
// (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
// or
// (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
// d, h, w)
math::matmul<Place, T>(context.device_context(), filter, false,
col_matrix, false, static_cast<T>(1.0),
&input_grad_batch, static_cast<T>(0.0));
}
if (filter_grad) {
// input batch
Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
// gemm: d_filter = x * dy^T
// (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
// or
// (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
// k_h * k_w)
math::matmul<Place, T>(context.device_context(), in_batch, false,
col_matrix, true, static_cast<T>(1.0),
&filter_grad_, static_cast<T>(1.0));
}
}
}
}
};
} // namespace operators
} // namespace paddle
......@@ -79,15 +79,16 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC(
Cosine Similarity Operator.
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)).
$Out = X^T * Y / (\sqrt{X^T * X} * \sqrt{Y^T * Y})$
The input `X` and `Y` must have the same shape, except that the 1st dimension
of input `Y` could be just 1 (different from input `X`), which will be
broadcasted to match the shape of input `X` before computing their cosine
The input X and Y must have the same shape, except that the 1st dimension
of input Y could be just 1 (different from input X), which will be
broadcasted to match the shape of input X before computing their cosine
similarity.
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.
)DOC");
}
};
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/crf_decoding_op.h"
namespace paddle {
namespace operators {
class CRFDecodingOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CRFDecodingOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Emission",
"(LoDTensor, default: LoDTensor<float>). A LoDTensor with shape "
"[N x D] where N is the size of the mini-batch and D is the total "
"tag number. This input is the unscaled emission weight matrix of "
"the linear_chain_crf operator.");
AddInput(
"Transition",
"(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
"This input is the transition weights learned by the linear_chain_crf "
"operator, denoted as w. The 1st row of w are transition weights for "
"the start mask. The 2nd row of w are transition weights for the end "
"mask. Transition weights between other tags begin from the 3rd row of "
"w. See more details in comments of the linear_chain_crf operator.");
AddInput(
"Label",
"(LoDTensor, LoDTensor<int>). The ground truth with shape "
"[N x 1]. This input is optional. See more details in the operator's "
"comments.")
.AsDispensable();
AddOutput("ViterbiPath",
"(LoDTensor, LoDTensor<int>). The decoding results. What to "
"return changes depending on whether the Input(Label) (the groud "
"truth) is given. See more details in the operator's comment.");
AddComment(R"DOC(
The crf_decoding operator reads the emission feature weights and the transition
freature weights learned by the linear_chain_crf operator. It implements the
Viterbi algorithm which is a dynamic programming algorithm for finding the most
likely sequence of hidden states, called the Viterbi path, that results in a
sequence of observed tags.
The output of this operator changes according to whether Input(Label) is given:
1. Input(Label) is given:
This happens in training. This operator is used to co-work with the chunk_eval
operator.
When Input(Label) is given, the crf_decoding operator returns a row vector
with shape [N x 1] whose values are fixed to be 0, indicating an incorrect
prediction, or 1 indicating a tag is correctly predicted. Such an ouput is the
input to chunk_eval operator.
2. Input(Label) is not given:
This is the standard decoding process.
The crf_decoding operator returns a row vecotr with shape [N x 1] whose values
range from 0 to maximum tag number - 1. Each element indicates an index of a
predicted tag.
)DOC");
}
};
class CRFDecodingOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Emission"),
"Input(Emission) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Transition"),
"Input(Transition) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("ViterbiPath"),
"Output(ViterbiPath) should be not null.");
auto emission_dims = ctx->GetInputDim("Emission");
PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL,
"The Input(Emission) should be a 2-D tensor.");
PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed.");
auto transition_dims = ctx->GetInputDim("Transition");
PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL,
"The Input(Transition) should be a 2-D tensor.");
PADDLE_ENFORCE_EQ(
transition_dims[0] - 2, transition_dims[1],
"An invalid dimension for the Input(Transition), which should "
"be a 2-D tensor with shape [(D + 2) x D].");
PADDLE_ENFORCE_EQ(
emission_dims[1], transition_dims[1],
"The 2nd dimension of the Input(Emission) and the Input(Transition) "
"should be equal to the tag number.");
if (ctx->HasInput("Label")) {
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1.");
PADDLE_ENFORCE_EQ(
emission_dims[0], label_dims[0],
"The height of Input(Emission) and the height of Input(Label) "
"should be the same.");
}
ctx->ShareLoD("Emission", /*->*/ "ViterbiPath");
ctx->SetOutputDim("ViterbiPath", {emission_dims[0], 1});
}
protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<LoDTensor>("Emission")->type()),
ctx.device_context());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(crf_decoding, ops::CRFDecodingOp,
ops::CRFDecodingOpMaker);
REGISTER_OP_CPU_KERNEL(
crf_decoding, ops::CRFDecodingOpKernel<paddle::platform::CPUPlace, float>,
ops::CRFDecodingOpKernel<paddle::platform::CPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
using framework::LoDTensor;
using framework::LoD;
using framework::Tensor;
template <typename Place, typename T>
class CRFDecodingOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"The crf_decoding operator can only run on CPU.");
auto* emission_weights = ctx.Input<LoDTensor>("Emission");
auto* transition_weights = ctx.Input<Tensor>("Transition");
auto* label = ctx.Input<LoDTensor>("Label");
auto* decoded_path = ctx.Output<Tensor>("ViterbiPath");
PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL,
"The Input(Emission) should be a sequence.");
auto lod = emission_weights->lod();
PADDLE_ENFORCE(lod.size(), "Input(Emission) must be a sequence.");
const size_t level = 0;
const size_t seq_num = lod[level].size() - 1;
int* path = decoded_path->mutable_data<int>(platform::CPUPlace());
math::SetConstant<platform::CPUPlace, int>()(ctx.device_context(),
decoded_path, 0);
for (size_t i = 0; i < seq_num; ++i) {
int start_pos = static_cast<int>(lod[level][i]);
int end_pos = static_cast<int>(lod[level][i + 1]);
Tensor decoded_path_one_seq = decoded_path->Slice(start_pos, end_pos);
Decode(emission_weights->Slice(start_pos, end_pos), *transition_weights,
&decoded_path_one_seq);
}
if (label) {
PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL,
"The Input(Label) should be a sequence.");
const int* label_value = label->data<int>();
size_t batch_size = emission_weights->dims()[0];
for (size_t i = 0; i < batch_size; ++i) {
path[i] = label_value[i] == path[i] ? 1 : 0;
}
}
}
private:
void Decode(const Tensor& emission_weights, const Tensor& transition_weights,
Tensor* decoded_path) const {
auto emission_dims = emission_weights.dims();
const size_t seq_len = emission_dims[0];
const size_t tag_num = emission_dims[1];
const size_t state_trans_base_idx = 2;
const T* x = emission_weights.data<T>();
const T* w = transition_weights.data<T>();
int* path = decoded_path->data<int>();
// alpha is a memo table. An element alpha(k, v) records the score of the
// best sequence of tags from position 1 to position k with v being the end
// tag.
Tensor alpha;
T* alpha_value = alpha.mutable_data<T>(emission_dims, platform::CPUPlace());
Tensor track;
int* track_value =
track.mutable_data<int>(emission_dims, platform::CPUPlace());
for (size_t i = 0; i < tag_num; ++i) alpha_value[i] = w[i] + x[i];
for (size_t k = 1; k < seq_len; ++k) {
for (size_t i = 0; i < tag_num; ++i) {
T max_score = -std::numeric_limits<T>::max();
int max_j = 0;
for (size_t j = 0; j < tag_num; ++j) {
T score = alpha_value[(k - 1) * tag_num + j] +
w[(j + state_trans_base_idx) * tag_num + i];
if (score > max_score) {
max_score = score;
max_j = j;
}
}
alpha_value[k * tag_num + i] = max_score + x[k * tag_num + i];
track_value[k * tag_num + i] = max_j;
}
}
T max_score = -std::numeric_limits<T>::max();
int max_i = 0;
for (size_t i = 0; i < tag_num; ++i) {
T score = alpha_value[(seq_len - 1) * tag_num + i] + w[tag_num + i];
if (score > max_score) {
max_score = score;
max_i = i;
}
}
path[seq_len - 1] = max_i;
for (int k = seq_len - 1; k >= 1; --k) {
path[k - 1] = max_i = track_value[k * tag_num + max_i];
}
}
};
} // namespace operators
} // namespace paddle
......@@ -56,34 +56,35 @@ class CropOpMaker : public framework::OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"The input of pad op. "
"The input should be a k-D tensor(k > 0 and k < 7)");
"The input should be a k-D tensor(k > 0 and k < 7).");
AddInput("Y",
"The input used as reference for cropping"
" with the same dimension as X. ")
"The input used as reference for cropping, "
"which is of the same dimensions as X.")
.AsDispensable();
AddOutput("Out",
"The output of crop op "
"with the same dimension as X.");
"The output of crop op, "
"which is of the same dimensions as X.");
AddAttr<std::vector<int>>("offsets",
"A list<int> describing offsets to be cropped."
"The size of offsets list should be as same as "
"dimension size of input X.");
"A list<int> describing offsets to be cropped. "
"The size of offsets list should be the same as "
"the dimension size of input X.");
AddAttr<std::vector<int>>("shape",
"A list<int> describing the shape of output."
"The size of shape list should be as same as "
"dimension size of input X.")
"A list<int> describing the shape of output. "
"The size of shape list should be the same as "
"the dimension size of input X.")
.SetDefault(std::vector<int>());
AddComment(R"DOC(
Crop Operator.
Crop input into output, as specified by offsets and shape.
There are two ways to set shape:
1. referenc input: crop input X as shape as reference input.
1. reference input: crop input X into the same shape as reference input.
The dimension of reference input should
be as same as input X.
2. shape list: crop input X by shape described by a list<int>.
The size of shape list should be as same as
dimension size of input X.
be the same as the dimension of input X.
2. shape list: crop input X into the shape described by a list<int>.
The size of shape list should be the same as
the dimension size of input X.
The input should be a k-D tensor(k > 0 and k < 7). As an example:
......@@ -91,20 +92,20 @@ Given:
X = [[0, 1, 2, 0, 0]
[0, 3, 4, 0, 0]
[0, 0, 0, 0, 0]]
[0, 0, 0, 0, 0]],
and
offsets = [0, 1]
offsets = [0, 1],
and
shape = [2, 2]
shape = [2, 2],
then we get
we get:
Out = [[1, 2],
[3, 4]]
[3, 4]].
)DOC");
}
......
......@@ -49,11 +49,13 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
}
protected:
// Explicitly set that data type of the output of the cross_entropy operator
// Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X".
framework::DataType IndicateDataType(
framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("X")->type());
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
ctx.device_context());
}
};
......@@ -96,10 +98,13 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
}
protected:
// CrossEntropy's data type just determined by "X"
framework::DataType IndicateDataType(
// Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X".
framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("X")->type());
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
ctx.device_context());
}
};
......@@ -113,21 +118,17 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
"where N is the batch size and D is the number of classes. "
"This input is a probability computed by the previous operator, "
"which is almost always the result of a softmax operator.");
AddInput(
"Label",
"(Tensor, default Tensor<int>), the ground truth which is "
"a 2-D tensor. "
"When soft_label is set to false, `Label` is a Tensor<int> with shape "
"[N x 1]. "
"When soft_label is set to true, `Label` is a Tensor<float/double> "
"with shape [N x K].");
AddInput("Label",
"(Tensor), the ground truth which is a 2-D tensor. When "
"soft_label is set to false, Label is a Tensor<int64> with shape "
"[N x 1]. When soft_label is set to true, Label is a "
"Tensor<float/double> with shape [N x K].");
AddOutput("Y",
"(Tensor, default Tensor<float>), a 2-D tensor "
"with shape [N x 1]. The cross entropy loss.");
AddAttr<bool>(
"soft_label",
"(bool, default false), a flag to indicate whether to interpretate "
"the given labels as soft labels.")
"(Tensor, default Tensor<float>), a 2-D tensor with shape "
"[N x 1]. The cross entropy loss.");
AddAttr<bool>("soft_label",
"(bool, default false), a flag indicating whether to "
"interpretate the given labels as soft labels.")
.SetDefault(false);
AddComment(R"DOC(
CrossEntropy Operator.
......@@ -137,13 +138,13 @@ computation.
1) One-hot cross-entropy:
soft_label = false, Label[i, 0] indicates the class index for sample i:
Y[i] = -log(X[i, Label[i]])
$Y[i] = -\log(X[i, Label[i]])$
2) Soft-label cross-entropy:
soft_label = true, Label[i, j] indicates the soft label of class j
for sample i:
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
$Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}$
Please make sure that in this case the summuation of each row of Label
equals one.
......@@ -153,8 +154,9 @@ computation.
non-zero element (equals 1), soft-label cross-entropy degenerates to a
one-hot cross-entropy with one-hot label representation.
Both the input `X` and `Label` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.
)DOC");
}
};
......
......@@ -82,24 +82,19 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel<T> {
int block = 512;
int grid = (batch_size * class_num + block - 1) / block;
auto stream = ctx.cuda_device_context().stream();
if (ctx.Attr<bool>("soft_label")) {
auto* label_data = label->data<T>();
SoftCrossEntropyGradientKernel<T><<<
grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream()>>>(dx_data, dy_data, x_data, label_data,
batch_size, class_num);
SoftCrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
dx_data, dy_data, x_data, label_data, batch_size, class_num);
} else {
math::SetConstant<platform::GPUPlace, T> functor;
functor(ctx.device_context(), dx, 0);
auto* label_data = label->data<int64_t>();
grid = (batch_size + block - 1) / block;
CrossEntropyGradientKernel<T><<<
grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream()>>>(dx_data, dy_data, x_data, label_data,
batch_size, class_num);
CrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
dx_data, dy_data, x_data, label_data, batch_size, class_num);
}
}
};
......
......@@ -75,11 +75,18 @@ class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
"Constant for numerical stability")
.SetDefault(1.0e-6f);
AddComment(R"DOC(
Decayed Adagrad Optimizer.
Decayed Adagrad
The update is done as follows:
moment_out = decay * moment + (1 - decay) * grad * grad
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)
$$
moment\_out = decay * moment + (1 - decay) * grad * grad \\
param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + epsilon}
$$
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
does not have an epsilon attribute. It is added here for numerical
stability to avoid the division by zero error.
)DOC");
}
......
......@@ -43,22 +43,24 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
DropoutOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
.SetDefault(.5f);
AddAttr<bool>("is_training", "Whether in training phase.").SetDefault(true);
AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);
AddInput("X", "The input of dropout op.");
AddOutput("Out", "The output of dropout op.");
AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate();
AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
.SetDefault(.5f);
AddAttr<bool>("is_training", "True if in training phase.").SetDefault(true);
AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);
AddComment(R"DOC(
Dropout Operator.
'Dropout' refers to randomly dropping out units in a nerual network. It is a
Dropout refers to randomly dropping out units in a nerual network. It is a
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
the given dropout probability) the outputs of some units to zero, while others
being set to their inputs.
are set equal to their corresponding inputs.
)DOC");
}
};
......
......@@ -386,12 +386,13 @@ class DynamicRecurrentOpProtoAndCheckerMaker
RNNAlgorithm::kArgNames[RNNAlgorithm::ComputeMode::kForward];
// inputs and outputs stored in proto
AddInput(name.inlinks,
"the inputs that need to be segmented for each step.")
"The inputs that need to be segmented for each step.")
.AsDuplicable();
AddInput(name.initial_states, "variables to initialize states.")
AddInput(name.initial_states, "Variables to initialize the states.")
.AsDuplicable();
AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
AddOutput(name.outlinks,
"The outputs that need to be concatenated for all steps.")
.AsDuplicable();
AddOutput(name.step_scopes, "step scopes");
......@@ -399,7 +400,12 @@ class DynamicRecurrentOpProtoAndCheckerMaker
AddAttr<std::vector<std::string>>(name.ex_states, "names of ex_states");
AddAttr<std::vector<std::string>>(name.states, "names of states");
AddComment("This is a RNN operator for varience-length sequences.");
AddComment(R"DOC(
Dynamic Recurrent Operator.
This is a RNN operator for varience-length sequences.
)DOC");
}
};
......
......@@ -22,7 +22,7 @@ class ElementwiseAddOpMaker : public ElementwiseOpMaker {
ElementwiseAddOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("add", "Out = X + Y");
SetComment("Add", "$Out = X + Y$");
AddComment(comment_);
}
};
......
......@@ -22,7 +22,7 @@ class ElementwiseDivOpMaker : public ElementwiseOpMaker {
ElementwiseDivOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Div", "Out = X / Y");
SetComment("Div", "$Out = X / Y$");
AddComment(comment_);
}
};
......
......@@ -23,7 +23,7 @@ class ElementwiseMulOpMaker : public ElementwiseOpMaker {
ElementwiseMulOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Mul", "Out = X ⊙ Y");
SetComment("Mul", "$Out = X \\odot\\ Y$");
AddComment(comment_);
}
};
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册