Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c153c520
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c153c520
编写于
3月 20, 2017
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
24b00ac6
上级
aa789fc3
变更
6
展开全部
隐藏空白更改
内联
并排
Showing
6 changed file
with
58 addition
and
10 deletion
+58
-10
develop/doc/api/v1/trainer_config_helpers/layers.html
develop/doc/api/v1/trainer_config_helpers/layers.html
+23
-3
develop/doc/api/v2/config/layer.html
develop/doc/api/v2/config/layer.html
+5
-1
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/api/v1/trainer_config_helpers/layers.html
develop/doc_cn/api/v1/trainer_config_helpers/layers.html
+23
-3
develop/doc_cn/api/v2/config/layer.html
develop/doc_cn/api/v2/config/layer.html
+5
-1
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/api/v1/trainer_config_helpers/layers.html
浏览文件 @
c153c520
...
...
@@ -388,6 +388,12 @@ reasons.</p>
</tr>
</tbody>
</table>
<dl
class=
"method"
>
<dt>
<code
class=
"descname"
>
set_input
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Set the input for a memory layer. Can only be used for memory layer
</p>
</dd></dl>
</dd></dl>
</div>
...
...
@@ -1269,7 +1275,7 @@ will get a warning.</li>
<h3>
memory
<a
class=
"headerlink"
href=
"#memory"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.trainer_config_helpers.layers.
</code><code
class=
"descname"
>
memory
</code><span
class=
"sig-paren"
>
(
</span><em>
name
</em>
,
<em>
size
</em>
,
<em>
is_seq=False
</em>
,
<em>
boot_layer=None
</em>
,
<em>
boot_bias=None
</em>
,
<em>
boot_bias_active_type=None
</em>
,
<em>
boot_with_const_id=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.trainer_config_helpers.layers.
</code><code
class=
"descname"
>
memory
</code><span
class=
"sig-paren"
>
(
</span><em>
*args
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
The memory layers is a layer cross each time step. Reference this output
as previous time step layer
<code
class=
"code docutils literal"
><span
class=
"pre"
>
name
</span></code>
‘
s output.
</p>
<p>
The default memory is zero in first time step, previous time step
’
s
...
...
@@ -1282,13 +1288,23 @@ Arguments.ids()[0] is this <code class="code docutils literal"><span class="pre"
Set
<code
class=
"code docutils literal"
><span
class=
"pre"
>
is_seq
</span></code>
is true boot layer is sequence.
</p>
<p>
The same name layer in recurrent group will set memory on each time
step.
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
mem
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
256
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
state
'
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
state
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fc_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
mem
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
256
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
state
'
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<p>
If you do not want to specify the name, you can equivalently use set_input()
to specify the layer needs to be remembered as the following:
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
memory
’
s name.
</li>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
the name of the layer which this memory remembers.
If name is None, user should call set_input() to specify the
name of the layer which this memory remembers.
</li>
<li><strong>
size
</strong>
(
<em>
int
</em>
)
–
size of memory.
</li>
<li><strong>
memory_name
</strong>
(
<em>
basestring
</em>
)
–
the name of the memory.
It is ignored when name is provided.
</li>
<li><strong>
is_seq
</strong>
(
<em>
bool
</em>
)
–
is sequence for boot_layer
</li>
<li><strong>
boot_layer
</strong>
(
<em>
LayerOutput|None
</em>
)
–
boot layer of memory.
</li>
<li><strong>
boot_bias
</strong>
(
<em>
ParameterAttribute|None
</em>
)
–
boot layer
’
s bias
</li>
...
...
@@ -2950,7 +2966,11 @@ in width dimension.</p>
<li><strong>
input
</strong>
(
<em>
LayerOutput.
</em>
)
–
The first input layer.
</li>
<li><strong>
label
</strong>
–
The input label.
</li>
<li><strong>
name
</strong>
(
<em>
None|basestring.
</em>
)
–
The name of this layers. It is not necessary.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The coefficient affects the gradient in the backward.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The cost is multiplied with coeff.
The coefficient affects the gradient in the backward.
</li>
<li><strong>
weight
</strong>
(
<em>
LayerOutout
</em>
)
–
The cost of each sample is multiplied with each weight.
The weight should be a layer with size=1. Note that gradient
will not be calculated for weight.
</li>
<li><strong>
layer_attr
</strong>
(
<a
class=
"reference internal"
href=
"attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"
title=
"paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"
><em>
ExtraLayerAttribute
</em></a>
)
–
Extra Layer Attribute.
</li>
</ul>
</td>
...
...
develop/doc/api/v2/config/layer.html
浏览文件 @
c153c520
...
...
@@ -3458,7 +3458,11 @@ the way how to configure a neural network topology in Paddle Python code.</p>
<li><strong>
input
</strong>
(
<em>
paddle.v2.config_base.Layer.
</em>
)
–
The first input layer.
</li>
<li><strong>
label
</strong>
–
The input label.
</li>
<li><strong>
name
</strong>
(
<em>
None|basestring.
</em>
)
–
The name of this layers. It is not necessary.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The coefficient affects the gradient in the backward.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The cost is multiplied with coeff.
The coefficient affects the gradient in the backward.
</li>
<li><strong>
weight
</strong>
(
<em>
LayerOutout
</em>
)
–
The cost of each sample is multiplied with each weight.
The weight should be a layer with size=1. Note that gradient
will not be calculated for weight.
</li>
<li><strong>
layer_attr
</strong>
(
<em>
paddle.v2.attr.ExtraAttribute
</em>
)
–
Extra Layer Attribute.
</li>
</ul>
</td>
...
...
develop/doc/searchindex.js
浏览文件 @
c153c520
此差异已折叠。
点击以展开。
develop/doc_cn/api/v1/trainer_config_helpers/layers.html
浏览文件 @
c153c520
...
...
@@ -395,6 +395,12 @@ reasons.</p>
</tr>
</tbody>
</table>
<dl
class=
"method"
>
<dt>
<code
class=
"descname"
>
set_input
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Set the input for a memory layer. Can only be used for memory layer
</p>
</dd></dl>
</dd></dl>
</div>
...
...
@@ -1276,7 +1282,7 @@ will get a warning.</li>
<h3>
memory
<a
class=
"headerlink"
href=
"#memory"
title=
"永久链接至标题"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.trainer_config_helpers.layers.
</code><code
class=
"descname"
>
memory
</code><span
class=
"sig-paren"
>
(
</span><em>
name
</em>
,
<em>
size
</em>
,
<em>
is_seq=False
</em>
,
<em>
boot_layer=None
</em>
,
<em>
boot_bias=None
</em>
,
<em>
boot_bias_active_type=None
</em>
,
<em>
boot_with_const_id=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.trainer_config_helpers.layers.
</code><code
class=
"descname"
>
memory
</code><span
class=
"sig-paren"
>
(
</span><em>
*args
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
The memory layers is a layer cross each time step. Reference this output
as previous time step layer
<code
class=
"code docutils literal"
><span
class=
"pre"
>
name
</span></code>
‘
s output.
</p>
<p>
The default memory is zero in first time step, previous time step
’
s
...
...
@@ -1289,13 +1295,23 @@ Arguments.ids()[0] is this <code class="code docutils literal"><span class="pre"
Set
<code
class=
"code docutils literal"
><span
class=
"pre"
>
is_seq
</span></code>
is true boot layer is sequence.
</p>
<p>
The same name layer in recurrent group will set memory on each time
step.
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
mem
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
256
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
state
'
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
state
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fc_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
mem
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
256
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
state
'
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<p>
If you do not want to specify the name, you can equivalently use set_input()
to specify the layer needs to be remembered as the following:
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
参数:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
memory
’
s name.
</li>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
the name of the layer which this memory remembers.
If name is None, user should call set_input() to specify the
name of the layer which this memory remembers.
</li>
<li><strong>
size
</strong>
(
<em>
int
</em>
)
–
size of memory.
</li>
<li><strong>
memory_name
</strong>
(
<em>
basestring
</em>
)
–
the name of the memory.
It is ignored when name is provided.
</li>
<li><strong>
is_seq
</strong>
(
<em>
bool
</em>
)
–
is sequence for boot_layer
</li>
<li><strong>
boot_layer
</strong>
(
<em>
LayerOutput|None
</em>
)
–
boot layer of memory.
</li>
<li><strong>
boot_bias
</strong>
(
<em>
ParameterAttribute|None
</em>
)
–
boot layer
’
s bias
</li>
...
...
@@ -2957,7 +2973,11 @@ in width dimension.</p>
<li><strong>
input
</strong>
(
<em>
LayerOutput.
</em>
)
–
The first input layer.
</li>
<li><strong>
label
</strong>
–
The input label.
</li>
<li><strong>
name
</strong>
(
<em>
None|basestring.
</em>
)
–
The name of this layers. It is not necessary.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The coefficient affects the gradient in the backward.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The cost is multiplied with coeff.
The coefficient affects the gradient in the backward.
</li>
<li><strong>
weight
</strong>
(
<em>
LayerOutout
</em>
)
–
The cost of each sample is multiplied with each weight.
The weight should be a layer with size=1. Note that gradient
will not be calculated for weight.
</li>
<li><strong>
layer_attr
</strong>
(
<a
class=
"reference internal"
href=
"attrs.html#paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"
title=
"paddle.trainer_config_helpers.attrs.ExtraLayerAttribute"
><em>
ExtraLayerAttribute
</em></a>
)
–
Extra Layer Attribute.
</li>
</ul>
</td>
...
...
develop/doc_cn/api/v2/config/layer.html
浏览文件 @
c153c520
...
...
@@ -3465,7 +3465,11 @@ the way how to configure a neural network topology in Paddle Python code.</p>
<li><strong>
input
</strong>
(
<em>
paddle.v2.config_base.Layer.
</em>
)
–
The first input layer.
</li>
<li><strong>
label
</strong>
–
The input label.
</li>
<li><strong>
name
</strong>
(
<em>
None|basestring.
</em>
)
–
The name of this layers. It is not necessary.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The coefficient affects the gradient in the backward.
</li>
<li><strong>
coeff
</strong>
(
<em>
float.
</em>
)
–
The cost is multiplied with coeff.
The coefficient affects the gradient in the backward.
</li>
<li><strong>
weight
</strong>
(
<em>
LayerOutout
</em>
)
–
The cost of each sample is multiplied with each weight.
The weight should be a layer with size=1. Note that gradient
will not be calculated for weight.
</li>
<li><strong>
layer_attr
</strong>
(
<em>
paddle.v2.attr.ExtraAttribute
</em>
)
–
Extra Layer Attribute.
</li>
</ul>
</td>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
c153c520
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录