Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c1075126
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c1075126
编写于
9月 06, 2017
作者:
C
Cao Ying
提交者:
GitHub
9月 06, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3873 from lcy-seso/update_doc
update the doc for how to write the operators.
上级
b59f3018
20be846c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
76 addition
and
81 deletion
+76
-81
doc/howto/dev/new_op_cn.md
doc/howto/dev/new_op_cn.md
+76
-81
未找到文件。
doc/howto/dev/new_op_cn.md
浏览文件 @
c1075126
...
...
@@ -23,17 +23,20 @@
-
`framework::OperatorWithKernel`
:继承自OperatorBase,Op有计算函数,称作有Kernel。
-
`class OpProtoAndCheckerMaker`
:描述该Op的输入、输出、属性、注释,主要用于Python API接口生成
依据是否包含kernel,将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自
`OperatorBase`
,后者继承自
`OperatorWithKernel`
。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:
依据是否包含kernel,
可以
将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自
`OperatorBase`
,后者继承自
`OperatorWithKernel`
。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:
内容 | 定义位置
-------------- | :----------------------
内容 | 定义位置
-------------- | :----------------------
OpProtoMake定义 |
`.cc`
文件,Backward Op不需要定义OpProtoMake
Op定义 |
`.cc`
文件
Kernel实现 | CPU、GPU共享Kernel在
`.h`
文件,否则,CPU可以在
`.cc`
文件,GPU可在
`.cu`
文件。
注册Op | Op注册在
`.cc`
文件;Kernel注册CPU在
`.cc`
文件,GPU在
`.cu`
文件
Op定义 |
`.cc`
文件
Kernel实现 | CPU、GPU共享Kernel实现在
`.h`
文件中,否则,CPU 实现在
`.cc`
文件中,GPU 实现在
`.cu`
文件中。
注册Op | Op注册实现在
`.cc`
文件;Kernel注册CPU实现在
`.cc`
文件中,GPU实现在
`.cu`
文件中
实现新的op都添加至目录
[
paddle/operators
](
https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators
)
下,文件命名以
`*_op.h`
(如有) 、
`*_op.cc`
、
`*_op.cu`
(如有)结尾。
下面以矩阵乘操作,即
[
MulOp
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc
)
为例来介绍如何写带Kernel的Operator。
...
...
@@ -43,8 +46,8 @@ Kernel实现 | CPU、GPU共享Kernel在`.h`文件,否则,CPU可以在`
### 1. 定义ProtoMaker类
矩阵乘的公式:$Out = X
*
Y$, 可见该计算由两个输入,一个输出组成。首先定义
`ProtoMaker`
来描述该Op的输入、输出及注释:
```
```
cpp
class
MulOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
MulOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
...
...
@@ -59,20 +62,20 @@ The equation is: Out = X * Y
}
};
```
[
`MulOpMaker`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43
)
继承自
`framework::OpProtoAndCheckerMaker`
,构造函数包括2个:
[
`MulOpMaker`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43
)
继承自
`framework::OpProtoAndCheckerMaker`
,构造函数包括2个
参数
:
-
`framework::OpProto`
: 前者存储Op的输入输出和参数属性,将用于Python API接口的生成。
-
`framework::OpAttrChecker`
:后者用于检查参数属性的合法性。
构造函数里通过
`AddInput`
添加输入参数,通过
`AddOutput`
添加输出参数,通过
`AddComment`
添加该Op的注释,这些函数会将对应内容添加到
`OpProto`
中。
在
`MulOp`
中添加两个输入
`X`
和
`Y`
,添加了一个输出
`Out`
,并解释了各自含义,该命名尽可能的规范。
在
`MulOp`
中添加两个输入
`X`
和
`Y`
,添加了一个输出
`Out`
,并解释了各自含义,命名请遵守命名规范。
再举个
[
`ScaleOp`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37
)
的例子:
```
```
cpp
template
<
typename
AttrType
>
class
ScaleOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
...
...
@@ -87,17 +90,17 @@ The equation is: Out = scale*X
}
};
```
在这个例子里,
两处不同:
这个例子有
两处不同:
-
`AddInput("X","...").NotInGradient()`
: 表示
`X`
这个输入不参与
`ScaleOp`
对应的梯度Op计算之中。
-
`AddAttr<AttrType>("scale", "...").SetDefault(1.0);`
: 增加
`scale`
系数,作为参数属性,并且设置默认值为1.0。
### 2. 定义Operator类
```
c
++
```
c
pp
class
MulOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -121,20 +124,20 @@ class MulOp : public framework::OperatorWithKernel {
```
[
`MulOp`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22
)
继承自
`OperatorWithKernel`
。
`public`
成员:
```
c
++
```
c
pp
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
```
这句表示使用基类
`OperatorWithKernel`
的构造函数,也可写成:
```
c
++
```
c
pp
MulOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
```
```
还需要重写
`InferShape`
接口。
`InferShape`
为const函数,不能修改Op的成员变量,参数为
`const framework::InferShapeContext &ctx`
,通过该参数可获取到输入输出以及属性。它的功能是:
-
1). 做检查, 尽早报错:检查输入数据维度、类型等是否合法。
...
...
@@ -144,7 +147,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs,
### 3. 定义OpKernel类
```
C++
```
cpp
template
<
typename
Place
,
typename
T
>
class
MulKernel
:
public
framework
::
OpKernel
{
public:
...
...
@@ -163,36 +166,36 @@ class MulKernel : public framework::OpKernel {
`MulKernel`
继承自
`framework::OpKernel`
,带有模板参数:
-
`typename Place`
: 表示设备类型,不同设备(CPU、GPU)共享同一个Kernel时,需加该模板参数,不共享则不加,一个不共享的例子是
[
`OnehotCrossEntropyOpKernel`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43
)
。
-
`typename T`
: 表示数据类型,如
`float`
,
`double`
等。
`MulKernel`
需要重写
`Compute`
接口,该接口参数为
`const framework::ExecutionContext& context`
,
`ExecutionContext`
相比
`InferShapeContext`
增加了设备类型,同样可获取到输入输出和属性参数,
`Compute`
函数里写具体实现时。
注意,不同设备(CPU、GPU)共享一个Op定义,是否则共享同一个
`OpKernel`
,取决于
`Compute`
调用的函数是否支持不同设备。
`MulOp`
的CPU、GPU实现共享同一个
`Kernel`
,
`OpKernel`
不共享的例子可以参考
[
`OnehotCrossEntropyOpKernel`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43
)
。
为了使得
`OpKernel`
的计算过程书写较为简单,CPU、GPU的代码可以复用,我们通常借助Eigen unsupported Tensor模块来实现。关于在paddle中如何使用Eigen库,请参考对应的使用
[
文档
](
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md
)
到此前向Op实现完成,需要在
`.cc`
文件中注册该op和kernel。反向Op类的定义和Kernel定义与前向Op类似,这里不再重复。但注意,反向Op没有
`ProtoMaker`
。
### 4. 注册Operator
在
`.cc`
文件中注册前向、反向Op类,注册CPU Kernel。
```
c
++
```
c
pp
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
mul
,
ops
::
MulOp
,
ops
::
MulOpMaker
,
mul_grad
,
ops
::
MulOpGrad
);
REGISTER_OP_CPU_KERNEL
(
mul
,
ops
::
MulKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
mul_grad
,
ops
::
MulGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
```
-
`REGISTER_OP`
: 注册
`ops::MulOp`
类,类型名为
`mul`
,该类的
`ProtoMaker`
为
`ops::MulOpMaker`
,注册
`ops::MulOpGrad`
,类型名为
`mul_grad`
,
-
`REGISTER_OP_WITHOUT_GRADIENT`
: 用于注册没有反向的Op。
-
`REGISTER_OP_CPU_KERNEL`
:注册
`ops::MulKernel`
类,并特化模板参数为
`paddle::platform::CPUPlace`
和
`float`
类型,同理,注册
`ops::MulKernel`
类。
在
`.cu`
文件中注册GPU Kernel。请注意,如果GPU Kernel的实现是基于Eigen unsupported模块,那么在
`.cu`
的最前面请加上宏定义
`#define EIGEN_USE_GPU`
```
c
++
```
c
pp
// if use Eigen unsupported module before include head files
#define EIGEN_USE_GPU
...
...
@@ -204,66 +207,57 @@ REGISTER_OP_GPU_KERNEL(mul_grad,
### 5. 编译
在
[
paddle/operators/CMakeLists.txt
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt
)
文件中添加编译。
```
op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function)
```
下面命令可以编译:
```
make mul_op
```
-
简单
**无特殊依赖**
的OP无需修改CMakeList.txt文件。
[
paddle/operators/CMakeLists.txt
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt
)
会自动将
`paddle/operators`
目录下新增的
`*_op.cc`
文件加入编译。
-
较为复杂、
**有额外依赖**
的operator仍需要修改
[
paddle/operators/CMakeLists.txt
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt
)
。如,
`mul_op`
依赖
`math_function`
,需要在
`CMakeLists.txt`
中添加如下内容:
```
op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function) +
```
-
运行下面命令可以进行编译:
```
make mul_op
```
## 绑定Python
-
绑定Python
在
[
`paddle/pybind/pybind.cc
-
绑定Python
在 [`paddle/pybind/pybind.cc
`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/pybind.cc)文件中添加该类:
```
USE_OP(mul);
```
如果只实现了CPU版本,则使用`
USE_CPU_ONLY_OP
`:
```
USE_CPU_ONLY_OP(gather);
```
如果OP不带Kernel,则使用`
USE_NO_KENREL_OP
`:
```
USE_NO_KENREL_OP(recurrent);
```
使用`
USE_OP
`告知编译器需要链接该Op的目标文件,具体解释参考[代码注释](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h#L81)。
- 生成库
在
[
`paddle/pybind/CMakeLists.txt`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt
)
文件添加类到
`DEPS`
中,使得该Op可以链接到生成的lib库中。
```
if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
mul_op
minus_op)
endif(WITH_PYTHON)
```
无需修改 [`
paddle/pybind/CMakeLists.txt
`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt)文件,`
paddle/operators
` 目录下新增的 `
*
_op.cc
` 文件会自动被添加链接到生成的lib库中。
## 实现单元测试
单测包括对比前向Op不同设备(CPU、GPU)的实现、对比反向OP不同设备(CPU、GPU)的实现、反向Op的梯度测试。下面介绍介绍[`
MulOp
`的单测](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py)。
### 前向Operator单
测
### 前向Operator单
元测试
前向Op单测继承自`
unittest.TestCase
`,并定义元类`
__metaclass__
= OpTestMeta
`,具体单测流程在`
OpTestMeta
`里完成。需在`
setUp
`函数定义输入输出和属性参数,以及Python对比的输出值。
```
```
python
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
...
...
@@ -281,17 +275,17 @@ class TestMulOp(unittest.TestCase):
self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
```
首先需要`
import
`必要的包,下面详细解释其他值:
- `
self.type = "mul"
` : 定义类型,和注册的类型一致。
- `
self.inputs
` : 定义输入,类型为Numpy.array,并初始化。
- `
self.outputs
` : 定义输出,并得到Python结算结果。
### 反向Operator单
测
### 反向Operator单
元测试
反向Op单测继承自`
GradientChecker
`,而`
GradientChecker
`集成自`
unittest.TestCase
`,所以反向单测函数需要`
test_
`开头。
```
```
cpp
class TestMulGradOp(GradientChecker):
def setUp(self):
self.op = create_op("mul")
...
...
@@ -337,21 +331,22 @@ class TestMulGradOp(GradientChecker):
- `
test_ignore_x
`和`
test_ignore_y
`分支测试只需要计算一个输入梯度的情况。
### 编译和执行
### 编译和执行
单元测试
单测完成之后,在
[
`python/paddle/v2/framework/tests/CMakeLists.txt`
](
https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt
)
里添加
编译
:
单测完成之后,在[`
python/paddle/v2/framework/tests/CMakeLists.txt
`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt)里添加
以下内容将单测加入工程中
:
```
py_test(test_mul_op SRCS test_mul_op.py)
```
编译时需要打开
`WITH_TESTING`
, 即
`cmake paddle_dir -DWITH_TESTING=ON`
,编译成功之后执行单测命令为
:
请注意,**不同于Op的编译测试,运行单元测试测时需要编译整个工程**,并且编译时需要打开`
WITH_TESTING
`, 即`
cmake paddle_dir -DWITH_TESTING=ON
`。编译成功后,执行下面的命令来运行单测
:
```
```
bash
make test ARGS="-R test_mul_op -V"
```
或者:
```
```
bash
ctest -R test_mul_op
``
`
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录