未验证 提交 c0d5b7ec 编写于 作者: W wenbin 提交者: GitHub

simplify_with_basic_ops_pass UT (#37704)

* first commit

* more uts

* file name duplicated

* timeout

* Update CMakeLists.txt

change TIMEOUT from 120 to 240

* Update CMakeLists.txt

more time

* Update CMakeLists.txt

timeout

* Update CMakeLists.txt

60s
上级 9ecb7461
......@@ -17,6 +17,7 @@ limitations under the License. */
#include "glog/logging.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
......@@ -231,3 +232,7 @@ void SimplifyWithBasicOpsPass::ReplaceOutputVar(Node* op, Node* old_var,
REGISTER_PASS(simplify_with_basic_ops_pass,
paddle::framework::ir::SimplifyWithBasicOpsPass);
REGISTER_PASS_CAPABILITY(simplify_with_basic_ops_pass)
.AddCombination(
paddle::framework::compatible::OpVersionComparatorCombination().EQ(
"scale", 0));
......@@ -71,6 +71,7 @@ set_tests_properties(test_trt_matmul_quant_dequant PROPERTIES TIMEOUT 100)
set_tests_properties(test_trt_conv3d_op PROPERTIES TIMEOUT 60)
set_tests_properties(test_trt_conv3d_transpose_op PROPERTIES TIMEOUT 60)
set_tests_properties(test_trt_nearest_interp_v2_op PROPERTIES TIMEOUT 30)
set_tests_properties(test_simplify_with_basic_ops_pass_autoscan PROPERTIES TIMEOUT 60)
if (WITH_MKLDNN AND TENSORRT_FOUND AND WITH_GPU)
set_tests_properties(test_emb_eltwise_layernorm_fuse_pass PROPERTIES TIMEOUT 120)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class TestSimplifyWithBasicOpsPassUpscale(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_config(self, draw):
#scale = draw(st.floats(min_value=0.01, max_value=1.0))
#bias = draw(st.floats(min_value=0.01, max_value=2.0))
#bias_after_scale = draw(st.booleans())
fix_seed = draw(st.booleans())
dropout_implementation = "upscale_in_train"
dropout_prob = draw(st.floats(min_value=0.0, max_value=1.0))
seed = draw(st.integers(min_value=0, max_value=512))
x_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=4), min_size=2, max_size=4))
is_test = True
dropout_op = OpConfig(
"dropout",
inputs={"X": ["input_data"]},
outputs={"Out": ["dropout_output"]},
fix_seed=fix_seed,
dropout_implementation=dropout_implementation,
dropout_prob=dropout_prob,
seed=seed,
is_test=is_test)
relu_op = OpConfig(
"relu",
inputs={"X": ["dropout_output"]},
outputs={"Out": ["relu_out"]})
ops = [dropout_op, relu_op]
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={"input_data": TensorConfig(shape=x_shape), },
outputs=["relu_out"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_gpu=True)
yield config, ['relu'], (1e-5, 1e-5)
config = self.create_inference_config(use_gpu=False)
yield config, ['relu'], (1e-5, 1e-5)
config = self.create_trt_inference_config()
config.enable_tensorrt_engine(
max_batch_size=4,
workspace_size=102400,
min_subgraph_size=0,
precision_mode=paddle_infer.PrecisionType.Float32,
use_static=False,
use_calib_mode=False)
yield config, ['relu'], (1e-5, 1e-5)
def test(self):
self.run_and_statis(
quant=False,
max_examples=30,
passes=["simplify_with_basic_ops_pass"],
min_success_num=30)
class TestSimplifyWithBasicOpsPassDowngrade(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_config(self, draw):
fix_seed = draw(st.booleans())
dropout_implementation = "downgrade_in_infer"
dropout_prob = draw(st.floats(min_value=0.0, max_value=1.0))
seed = draw(st.integers(min_value=0, max_value=512))
x_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=4), min_size=2, max_size=4))
is_test = True
dropout_op = OpConfig(
"dropout",
inputs={"X": ["input_data"]},
outputs={"Out": ["dropout_output"]},
fix_seed=fix_seed,
dropout_implementation=dropout_implementation,
dropout_prob=dropout_prob,
seed=seed,
is_test=is_test)
relu_op = OpConfig(
"relu",
inputs={"X": ["dropout_output"]},
outputs={"Out": ["relu_out"]})
ops = [dropout_op, relu_op]
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={"input_data": TensorConfig(shape=x_shape), },
outputs=["relu_out"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_gpu=True)
yield config, ['scale', 'relu'], (1e-5, 1e-5)
config = self.create_inference_config(use_gpu=False)
yield config, ['scale', 'relu'], (1e-5, 1e-5)
config = self.create_trt_inference_config()
config.enable_tensorrt_engine(
max_batch_size=4,
workspace_size=102400,
min_subgraph_size=0,
precision_mode=paddle_infer.PrecisionType.Float32,
use_static=False,
use_calib_mode=False)
yield config, ['scale', 'relu'], (1e-5, 1e-5)
def test(self):
self.run_and_statis(
quant=False,
max_examples=30,
passes=["simplify_with_basic_ops_pass"],
min_success_num=30)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册