未验证 提交 c09fe142 编写于 作者: F fuqianya 提交者: GitHub

[PaddlePaddle Hackathon] add DenseNet (#36069)

* add DenseNet
上级 737992eb
......@@ -54,7 +54,7 @@ class TestPretrainedModel(unittest.TestCase):
def test_models(self):
arches = [
'mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16', 'alexnet',
'resnext50_32x4d', 'inception_v3'
'resnext50_32x4d', 'inception_v3', 'densenet121'
]
for arch in arches:
self.infer(arch)
......
......@@ -70,6 +70,21 @@ class TestVisonModels(unittest.TestCase):
def test_resnet152(self):
self.models_infer('resnet152')
def test_densenet121(self):
self.models_infer('densenet121')
def test_densenet161(self):
self.models_infer('densenet161')
def test_densenet169(self):
self.models_infer('densenet169')
def test_densenet201(self):
self.models_infer('densenet201')
def test_densenet264(self):
self.models_infer('densenet264')
def test_alexnet(self):
self.models_infer('alexnet')
......
......@@ -44,6 +44,12 @@ from .models import vgg13 # noqa: F401
from .models import vgg16 # noqa: F401
from .models import vgg19 # noqa: F401
from .models import LeNet # noqa: F401
from .models import DenseNet # noqa: F401
from .models import densenet121 # noqa: F401
from .models import densenet161 # noqa: F401
from .models import densenet169 # noqa: F401
from .models import densenet201 # noqa: F401
from .models import densenet264 # noqa: F401
from .models import AlexNet # noqa: F401
from .models import alexnet # noqa: F401
from .models import ResNeXt # noqa: F401
......
......@@ -28,6 +28,12 @@ from .vgg import vgg13 # noqa: F401
from .vgg import vgg16 # noqa: F401
from .vgg import vgg19 # noqa: F401
from .lenet import LeNet # noqa: F401
from .densenet import DenseNet # noqa: F401
from .densenet import densenet121 # noqa: F401
from .densenet import densenet161 # noqa: F401
from .densenet import densenet169 # noqa: F401
from .densenet import densenet201 # noqa: F401
from .densenet import densenet264 # noqa: F401
from .alexnet import AlexNet # noqa: F401
from .alexnet import alexnet # noqa: F401
from .resnext import ResNeXt # noqa: F401
......@@ -57,6 +63,12 @@ __all__ = [ #noqa
'MobileNetV2',
'mobilenet_v2',
'LeNet',
'DenseNet',
'densenet121',
'densenet161',
'densenet169',
'densenet201',
'densenet264',
'AlexNet',
'alexnet',
'ResNeXt',
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
from paddle.fluid.param_attr import ParamAttr
from paddle.utils.download import get_weights_path_from_url
__all__ = []
model_urls = {
'densenet121':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams',
'db1b239ed80a905290fd8b01d3af08e4'),
'densenet161':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams',
'62158869cb315098bd25ddbfd308a853'),
'densenet169':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams',
'82cc7c635c3f19098c748850efb2d796'),
'densenet201':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams',
'16ca29565a7712329cf9e36e02caaf58'),
'densenet264':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams',
'3270ce516b85370bba88cfdd9f60bff4'),
}
class BNACConvLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
pad=0,
groups=1,
act="relu"):
super(BNACConvLayer, self).__init__()
self._batch_norm = BatchNorm(num_channels, act=act)
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=pad,
groups=groups,
weight_attr=ParamAttr(),
bias_attr=False)
def forward(self, input):
y = self._batch_norm(input)
y = self._conv(y)
return y
class DenseLayer(nn.Layer):
def __init__(self, num_channels, growth_rate, bn_size, dropout):
super(DenseLayer, self).__init__()
self.dropout = dropout
self.bn_ac_func1 = BNACConvLayer(
num_channels=num_channels,
num_filters=bn_size * growth_rate,
filter_size=1,
pad=0,
stride=1)
self.bn_ac_func2 = BNACConvLayer(
num_channels=bn_size * growth_rate,
num_filters=growth_rate,
filter_size=3,
pad=1,
stride=1)
if dropout:
self.dropout_func = Dropout(p=dropout, mode="downscale_in_infer")
def forward(self, input):
conv = self.bn_ac_func1(input)
conv = self.bn_ac_func2(conv)
if self.dropout:
conv = self.dropout_func(conv)
conv = paddle.concat([input, conv], axis=1)
return conv
class DenseBlock(nn.Layer):
def __init__(self,
num_channels,
num_layers,
bn_size,
growth_rate,
dropout,
name=None):
super(DenseBlock, self).__init__()
self.dropout = dropout
self.dense_layer_func = []
pre_channel = num_channels
for layer in range(num_layers):
self.dense_layer_func.append(
self.add_sublayer(
"{}_{}".format(name, layer + 1),
DenseLayer(
num_channels=pre_channel,
growth_rate=growth_rate,
bn_size=bn_size,
dropout=dropout)))
pre_channel = pre_channel + growth_rate
def forward(self, input):
conv = input
for func in self.dense_layer_func:
conv = func(conv)
return conv
class TransitionLayer(nn.Layer):
def __init__(self, num_channels, num_output_features):
super(TransitionLayer, self).__init__()
self.conv_ac_func = BNACConvLayer(
num_channels=num_channels,
num_filters=num_output_features,
filter_size=1,
pad=0,
stride=1)
self.pool2d_avg = AvgPool2D(kernel_size=2, stride=2, padding=0)
def forward(self, input):
y = self.conv_ac_func(input)
y = self.pool2d_avg(y)
return y
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
pad=0,
groups=1,
act="relu"):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=pad,
groups=groups,
weight_attr=ParamAttr(),
bias_attr=False)
self._batch_norm = BatchNorm(num_filters, act=act)
def forward(self, input):
y = self._conv(input)
y = self._batch_norm(y)
return y
class DenseNet(nn.Layer):
"""DenseNet model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
layers (int): layers of densenet. Default: 121.
bn_size (int): expansion of growth rate in the middle layer. Default: 4.
dropout (float): dropout rate. Default: 0..
num_classes (int): output dim of last fc layer. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import DenseNet
# build model
densenet = DenseNet()
x = paddle.rand([1, 3, 224, 224])
out = densenet(x)
print(out.shape)
"""
def __init__(self,
layers=121,
bn_size=4,
dropout=0.,
num_classes=1000,
with_pool=True):
super(DenseNet, self).__init__()
self.num_classes = num_classes
self.with_pool = with_pool
supported_layers = [121, 161, 169, 201, 264]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
densenet_spec = {
121: (64, 32, [6, 12, 24, 16]),
161: (96, 48, [6, 12, 36, 24]),
169: (64, 32, [6, 12, 32, 32]),
201: (64, 32, [6, 12, 48, 32]),
264: (64, 32, [6, 12, 64, 48])
}
num_init_features, growth_rate, block_config = densenet_spec[layers]
self.conv1_func = ConvBNLayer(
num_channels=3,
num_filters=num_init_features,
filter_size=7,
stride=2,
pad=3,
act='relu')
self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
self.block_config = block_config
self.dense_block_func_list = []
self.transition_func_list = []
pre_num_channels = num_init_features
num_features = num_init_features
for i, num_layers in enumerate(block_config):
self.dense_block_func_list.append(
self.add_sublayer(
"db_conv_{}".format(i + 2),
DenseBlock(
num_channels=pre_num_channels,
num_layers=num_layers,
bn_size=bn_size,
growth_rate=growth_rate,
dropout=dropout,
name='conv' + str(i + 2))))
num_features = num_features + num_layers * growth_rate
pre_num_channels = num_features
if i != len(block_config) - 1:
self.transition_func_list.append(
self.add_sublayer(
"tr_conv{}_blk".format(i + 2),
TransitionLayer(
num_channels=pre_num_channels,
num_output_features=num_features // 2)))
pre_num_channels = num_features // 2
num_features = num_features // 2
self.batch_norm = BatchNorm(num_features, act="relu")
if self.with_pool:
self.pool2d_avg = AdaptiveAvgPool2D(1)
if self.num_classes > 0:
stdv = 1.0 / math.sqrt(num_features * 1.0)
self.out = Linear(
num_features,
num_classes,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr())
def forward(self, input):
conv = self.conv1_func(input)
conv = self.pool2d_max(conv)
for i, num_layers in enumerate(self.block_config):
conv = self.dense_block_func_list[i](conv)
if i != len(self.block_config) - 1:
conv = self.transition_func_list[i](conv)
conv = self.batch_norm(conv)
if self.with_pool:
y = self.pool2d_avg(conv)
if self.num_classes > 0:
y = paddle.flatten(y, start_axis=1, stop_axis=-1)
y = self.out(y)
return y
def _densenet(arch, layers, pretrained, **kwargs):
model = DenseNet(layers=layers, **kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path_from_url(model_urls[arch][0],
model_urls[arch][1])
param = paddle.load(weight_path)
model.set_dict(param)
return model
def densenet121(pretrained=False, **kwargs):
"""DenseNet 121-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
from paddle.vision.models import densenet121
# build model
model = densenet121()
# build model and load imagenet pretrained weight
# model = densenet121(pretrained=True)
"""
return _densenet('densenet121', 121, pretrained, **kwargs)
def densenet161(pretrained=False, **kwargs):
"""DenseNet 161-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
from paddle.vision.models import densenet161
# build model
model = densenet161()
# build model and load imagenet pretrained weight
# model = densenet161(pretrained=True)
"""
return _densenet('densenet161', 161, pretrained, **kwargs)
def densenet169(pretrained=False, **kwargs):
"""DenseNet 169-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
from paddle.vision.models import densenet169
# build model
model = densenet169()
# build model and load imagenet pretrained weight
# model = densenet169(pretrained=True)
"""
return _densenet('densenet169', 169, pretrained, **kwargs)
def densenet201(pretrained=False, **kwargs):
"""DenseNet 201-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
from paddle.vision.models import densenet201
# build model
model = densenet201()
# build model and load imagenet pretrained weight
# model = densenet201(pretrained=True)
"""
return _densenet('densenet201', 201, pretrained, **kwargs)
def densenet264(pretrained=False, **kwargs):
"""DenseNet 264-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
from paddle.vision.models import densenet264
# build model
model = densenet264()
# build model and load imagenet pretrained weight
# model = densenet264(pretrained=True)
"""
return _densenet('densenet264', 264, pretrained, **kwargs)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册