Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c09fe142
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
c09fe142
编写于
10月 27, 2021
作者:
F
fuqianya
提交者:
GitHub
10月 27, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PaddlePaddle Hackathon] add DenseNet (#36069)
* add DenseNet
上级
737992eb
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
451 addition
and
1 deletion
+451
-1
python/paddle/tests/test_pretrained_model.py
python/paddle/tests/test_pretrained_model.py
+1
-1
python/paddle/tests/test_vision_models.py
python/paddle/tests/test_vision_models.py
+15
-0
python/paddle/vision/__init__.py
python/paddle/vision/__init__.py
+6
-0
python/paddle/vision/models/__init__.py
python/paddle/vision/models/__init__.py
+12
-0
python/paddle/vision/models/densenet.py
python/paddle/vision/models/densenet.py
+417
-0
未找到文件。
python/paddle/tests/test_pretrained_model.py
浏览文件 @
c09fe142
...
...
@@ -54,7 +54,7 @@ class TestPretrainedModel(unittest.TestCase):
def
test_models
(
self
):
arches
=
[
'mobilenet_v1'
,
'mobilenet_v2'
,
'resnet18'
,
'vgg16'
,
'alexnet'
,
'resnext50_32x4d'
,
'inception_v3'
'resnext50_32x4d'
,
'inception_v3'
,
'densenet121'
]
for
arch
in
arches
:
self
.
infer
(
arch
)
...
...
python/paddle/tests/test_vision_models.py
浏览文件 @
c09fe142
...
...
@@ -70,6 +70,21 @@ class TestVisonModels(unittest.TestCase):
def
test_resnet152
(
self
):
self
.
models_infer
(
'resnet152'
)
def
test_densenet121
(
self
):
self
.
models_infer
(
'densenet121'
)
def
test_densenet161
(
self
):
self
.
models_infer
(
'densenet161'
)
def
test_densenet169
(
self
):
self
.
models_infer
(
'densenet169'
)
def
test_densenet201
(
self
):
self
.
models_infer
(
'densenet201'
)
def
test_densenet264
(
self
):
self
.
models_infer
(
'densenet264'
)
def
test_alexnet
(
self
):
self
.
models_infer
(
'alexnet'
)
...
...
python/paddle/vision/__init__.py
浏览文件 @
c09fe142
...
...
@@ -44,6 +44,12 @@ from .models import vgg13 # noqa: F401
from
.models
import
vgg16
# noqa: F401
from
.models
import
vgg19
# noqa: F401
from
.models
import
LeNet
# noqa: F401
from
.models
import
DenseNet
# noqa: F401
from
.models
import
densenet121
# noqa: F401
from
.models
import
densenet161
# noqa: F401
from
.models
import
densenet169
# noqa: F401
from
.models
import
densenet201
# noqa: F401
from
.models
import
densenet264
# noqa: F401
from
.models
import
AlexNet
# noqa: F401
from
.models
import
alexnet
# noqa: F401
from
.models
import
ResNeXt
# noqa: F401
...
...
python/paddle/vision/models/__init__.py
浏览文件 @
c09fe142
...
...
@@ -28,6 +28,12 @@ from .vgg import vgg13 # noqa: F401
from
.vgg
import
vgg16
# noqa: F401
from
.vgg
import
vgg19
# noqa: F401
from
.lenet
import
LeNet
# noqa: F401
from
.densenet
import
DenseNet
# noqa: F401
from
.densenet
import
densenet121
# noqa: F401
from
.densenet
import
densenet161
# noqa: F401
from
.densenet
import
densenet169
# noqa: F401
from
.densenet
import
densenet201
# noqa: F401
from
.densenet
import
densenet264
# noqa: F401
from
.alexnet
import
AlexNet
# noqa: F401
from
.alexnet
import
alexnet
# noqa: F401
from
.resnext
import
ResNeXt
# noqa: F401
...
...
@@ -57,6 +63,12 @@ __all__ = [ #noqa
'MobileNetV2'
,
'mobilenet_v2'
,
'LeNet'
,
'DenseNet'
,
'densenet121'
,
'densenet161'
,
'densenet169'
,
'densenet201'
,
'densenet264'
,
'AlexNet'
,
'alexnet'
,
'ResNeXt'
,
...
...
python/paddle/vision/models/densenet.py
0 → 100644
浏览文件 @
c09fe142
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2D
,
MaxPool2D
,
AvgPool2D
from
paddle.nn.initializer
import
Uniform
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.utils.download
import
get_weights_path_from_url
__all__
=
[]
model_urls
=
{
'densenet121'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams'
,
'db1b239ed80a905290fd8b01d3af08e4'
),
'densenet161'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams'
,
'62158869cb315098bd25ddbfd308a853'
),
'densenet169'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams'
,
'82cc7c635c3f19098c748850efb2d796'
),
'densenet201'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams'
,
'16ca29565a7712329cf9e36e02caaf58'
),
'densenet264'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams'
,
'3270ce516b85370bba88cfdd9f60bff4'
),
}
class
BNACConvLayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
pad
=
0
,
groups
=
1
,
act
=
"relu"
):
super
(
BNACConvLayer
,
self
).
__init__
()
self
.
_batch_norm
=
BatchNorm
(
num_channels
,
act
=
act
)
self
.
_conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
pad
,
groups
=
groups
,
weight_attr
=
ParamAttr
(),
bias_attr
=
False
)
def
forward
(
self
,
input
):
y
=
self
.
_batch_norm
(
input
)
y
=
self
.
_conv
(
y
)
return
y
class
DenseLayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
growth_rate
,
bn_size
,
dropout
):
super
(
DenseLayer
,
self
).
__init__
()
self
.
dropout
=
dropout
self
.
bn_ac_func1
=
BNACConvLayer
(
num_channels
=
num_channels
,
num_filters
=
bn_size
*
growth_rate
,
filter_size
=
1
,
pad
=
0
,
stride
=
1
)
self
.
bn_ac_func2
=
BNACConvLayer
(
num_channels
=
bn_size
*
growth_rate
,
num_filters
=
growth_rate
,
filter_size
=
3
,
pad
=
1
,
stride
=
1
)
if
dropout
:
self
.
dropout_func
=
Dropout
(
p
=
dropout
,
mode
=
"downscale_in_infer"
)
def
forward
(
self
,
input
):
conv
=
self
.
bn_ac_func1
(
input
)
conv
=
self
.
bn_ac_func2
(
conv
)
if
self
.
dropout
:
conv
=
self
.
dropout_func
(
conv
)
conv
=
paddle
.
concat
([
input
,
conv
],
axis
=
1
)
return
conv
class
DenseBlock
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_layers
,
bn_size
,
growth_rate
,
dropout
,
name
=
None
):
super
(
DenseBlock
,
self
).
__init__
()
self
.
dropout
=
dropout
self
.
dense_layer_func
=
[]
pre_channel
=
num_channels
for
layer
in
range
(
num_layers
):
self
.
dense_layer_func
.
append
(
self
.
add_sublayer
(
"{}_{}"
.
format
(
name
,
layer
+
1
),
DenseLayer
(
num_channels
=
pre_channel
,
growth_rate
=
growth_rate
,
bn_size
=
bn_size
,
dropout
=
dropout
)))
pre_channel
=
pre_channel
+
growth_rate
def
forward
(
self
,
input
):
conv
=
input
for
func
in
self
.
dense_layer_func
:
conv
=
func
(
conv
)
return
conv
class
TransitionLayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_output_features
):
super
(
TransitionLayer
,
self
).
__init__
()
self
.
conv_ac_func
=
BNACConvLayer
(
num_channels
=
num_channels
,
num_filters
=
num_output_features
,
filter_size
=
1
,
pad
=
0
,
stride
=
1
)
self
.
pool2d_avg
=
AvgPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
)
def
forward
(
self
,
input
):
y
=
self
.
conv_ac_func
(
input
)
y
=
self
.
pool2d_avg
(
y
)
return
y
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
pad
=
0
,
groups
=
1
,
act
=
"relu"
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
pad
,
groups
=
groups
,
weight_attr
=
ParamAttr
(),
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
)
def
forward
(
self
,
input
):
y
=
self
.
_conv
(
input
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
DenseNet
(
nn
.
Layer
):
"""DenseNet model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
layers (int): layers of densenet. Default: 121.
bn_size (int): expansion of growth rate in the middle layer. Default: 4.
dropout (float): dropout rate. Default: 0..
num_classes (int): output dim of last fc layer. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import DenseNet
# build model
densenet = DenseNet()
x = paddle.rand([1, 3, 224, 224])
out = densenet(x)
print(out.shape)
"""
def
__init__
(
self
,
layers
=
121
,
bn_size
=
4
,
dropout
=
0.
,
num_classes
=
1000
,
with_pool
=
True
):
super
(
DenseNet
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
with_pool
=
with_pool
supported_layers
=
[
121
,
161
,
169
,
201
,
264
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
densenet_spec
=
{
121
:
(
64
,
32
,
[
6
,
12
,
24
,
16
]),
161
:
(
96
,
48
,
[
6
,
12
,
36
,
24
]),
169
:
(
64
,
32
,
[
6
,
12
,
32
,
32
]),
201
:
(
64
,
32
,
[
6
,
12
,
48
,
32
]),
264
:
(
64
,
32
,
[
6
,
12
,
64
,
48
])
}
num_init_features
,
growth_rate
,
block_config
=
densenet_spec
[
layers
]
self
.
conv1_func
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
num_init_features
,
filter_size
=
7
,
stride
=
2
,
pad
=
3
,
act
=
'relu'
)
self
.
pool2d_max
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_config
=
block_config
self
.
dense_block_func_list
=
[]
self
.
transition_func_list
=
[]
pre_num_channels
=
num_init_features
num_features
=
num_init_features
for
i
,
num_layers
in
enumerate
(
block_config
):
self
.
dense_block_func_list
.
append
(
self
.
add_sublayer
(
"db_conv_{}"
.
format
(
i
+
2
),
DenseBlock
(
num_channels
=
pre_num_channels
,
num_layers
=
num_layers
,
bn_size
=
bn_size
,
growth_rate
=
growth_rate
,
dropout
=
dropout
,
name
=
'conv'
+
str
(
i
+
2
))))
num_features
=
num_features
+
num_layers
*
growth_rate
pre_num_channels
=
num_features
if
i
!=
len
(
block_config
)
-
1
:
self
.
transition_func_list
.
append
(
self
.
add_sublayer
(
"tr_conv{}_blk"
.
format
(
i
+
2
),
TransitionLayer
(
num_channels
=
pre_num_channels
,
num_output_features
=
num_features
//
2
)))
pre_num_channels
=
num_features
//
2
num_features
=
num_features
//
2
self
.
batch_norm
=
BatchNorm
(
num_features
,
act
=
"relu"
)
if
self
.
with_pool
:
self
.
pool2d_avg
=
AdaptiveAvgPool2D
(
1
)
if
self
.
num_classes
>
0
:
stdv
=
1.0
/
math
.
sqrt
(
num_features
*
1.0
)
self
.
out
=
Linear
(
num_features
,
num_classes
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
ParamAttr
())
def
forward
(
self
,
input
):
conv
=
self
.
conv1_func
(
input
)
conv
=
self
.
pool2d_max
(
conv
)
for
i
,
num_layers
in
enumerate
(
self
.
block_config
):
conv
=
self
.
dense_block_func_list
[
i
](
conv
)
if
i
!=
len
(
self
.
block_config
)
-
1
:
conv
=
self
.
transition_func_list
[
i
](
conv
)
conv
=
self
.
batch_norm
(
conv
)
if
self
.
with_pool
:
y
=
self
.
pool2d_avg
(
conv
)
if
self
.
num_classes
>
0
:
y
=
paddle
.
flatten
(
y
,
start_axis
=
1
,
stop_axis
=-
1
)
y
=
self
.
out
(
y
)
return
y
def
_densenet
(
arch
,
layers
,
pretrained
,
**
kwargs
):
model
=
DenseNet
(
layers
=
layers
,
**
kwargs
)
if
pretrained
:
assert
arch
in
model_urls
,
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
weight_path
=
get_weights_path_from_url
(
model_urls
[
arch
][
0
],
model_urls
[
arch
][
1
])
param
=
paddle
.
load
(
weight_path
)
model
.
set_dict
(
param
)
return
model
def
densenet121
(
pretrained
=
False
,
**
kwargs
):
"""DenseNet 121-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
from paddle.vision.models import densenet121
# build model
model = densenet121()
# build model and load imagenet pretrained weight
# model = densenet121(pretrained=True)
"""
return
_densenet
(
'densenet121'
,
121
,
pretrained
,
**
kwargs
)
def
densenet161
(
pretrained
=
False
,
**
kwargs
):
"""DenseNet 161-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
from paddle.vision.models import densenet161
# build model
model = densenet161()
# build model and load imagenet pretrained weight
# model = densenet161(pretrained=True)
"""
return
_densenet
(
'densenet161'
,
161
,
pretrained
,
**
kwargs
)
def
densenet169
(
pretrained
=
False
,
**
kwargs
):
"""DenseNet 169-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
from paddle.vision.models import densenet169
# build model
model = densenet169()
# build model and load imagenet pretrained weight
# model = densenet169(pretrained=True)
"""
return
_densenet
(
'densenet169'
,
169
,
pretrained
,
**
kwargs
)
def
densenet201
(
pretrained
=
False
,
**
kwargs
):
"""DenseNet 201-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
from paddle.vision.models import densenet201
# build model
model = densenet201()
# build model and load imagenet pretrained weight
# model = densenet201(pretrained=True)
"""
return
_densenet
(
'densenet201'
,
201
,
pretrained
,
**
kwargs
)
def
densenet264
(
pretrained
=
False
,
**
kwargs
):
"""DenseNet 264-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
from paddle.vision.models import densenet264
# build model
model = densenet264()
# build model and load imagenet pretrained weight
# model = densenet264(pretrained=True)
"""
return
_densenet
(
'densenet264'
,
264
,
pretrained
,
**
kwargs
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录