提交 c0876cf6 编写于 作者: Y Yibing Liu

update due to upstream's change

......@@ -146,6 +146,7 @@ include(external/cares)
include(external/grpc)
include(cudnn) # set cudnn libraries, must before configure
include(cupti)
include(configure) # add paddle env configuration
include(generic) # simplify cmake module
include(package) # set paddle packages
......
#FROM python:2.7.14
FROM nvidia/cuda:8.0-cudnn5-runtime-ubuntu16.04
RUN apt-get update && apt-get install -y python
RUN pip install -U kubernetes opencv-python && apt-get update -y && apt-get install -y iputils-ping libgtk2.0-dev
# NOTE: By default CI built wheel packages turn WITH_DISTRIBUTE=OFF,
# so we must build one with distribute support to install in this image.
# you can get mirror list here:
# https://launchpad.net/ubuntu/+archivemirrors
ARG UBUNTU_MIRROR
RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com/ubuntu#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi'
RUN apt-get update && apt-get install -y python python-dev python-pip iputils-ping libgtk2.0-dev
RUN pip install -U kubernetes opencv-python
RUN pip install paddlepaddle
# if network is slowly, you may need to add proxy here.
# ENV https_proxy=
RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.cifar.train10()" | python'
RUN pip uninstall -y paddlepaddle
# unset proxy if it is setted.
# ENV https_proxy=""
# NOTE: By default CI built wheel packages turn WITH_DISTRIBUTE=OFF,
# so we must build one with distribute support to install in this image.
ADD *.whl /
RUN pip install /*.whl && rm -f /*.whl
ENV LD_LIBRARY_PATH=/usr/local/lib
# tf k8s
RUN pip install tensorflow==1.4.0
ADD tf_k8s /usr/bin
RUN chmod +x /usr/bin/tf_k8s
ADD vgg16_tf.py /workspace/
# below lines may change a lot for debugging
ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/paddle_k8s /usr/bin
ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/k8s_tools.py /root
ADD *.whl /
RUN pip install /*.whl && rm -f /*.whl && \
chmod +x /usr/bin/paddle_k8s
ENV LD_LIBRARY_PATH=/usr/local/lib
RUN chmod +x /usr/bin/paddle_k8s
ADD vgg16_fluid.py vgg16_v2.py /workspace/
......@@ -11,7 +11,7 @@ spec:
paddle-job: vgg16job
spec:
imagePullSecrets:
- name: job-registry-secret
- name: job-registry-secret
hostNetwork: true
containers:
- name: trainer
......
#!/bin/bash
check_trainer_ret() {
ret=$1
stdbuf -oL echo "job returned $ret...setting pod return message..."
stdbuf -oL echo "==============================="
if [ $ret -eq 136 ] ; then
echo "Error Arithmetic Operation(Floating Point Exception)" > /dev/termination-log
elif [ $ret -eq 139 ] ; then
echo "Segmentation Fault" > /dev/termination-log
elif [ $ret -eq 1 ] ; then
echo "General Error" > /dev/termination-log
elif [ $ret -eq 134 ] ; then
echo "Program Abort" > /dev/termination-log
fi
stdbuf -oL echo "termination log wroted..."
exit $ret
}
g_pservers=""
g_trainers=""
wait_running_pods(){
pserver_label="tf-job-pserver=${JOB_NAME}"
trainer_label="tf-job-trainer=${JOB_NAME}"
stdbuf -oL python /root/k8s_tools.py wait_pods_running ${pserver_label} ${PSERVERS_NUM}
stdbuf -oL python /root/k8s_tools.py wait_pods_running ${trainer_label} ${TRAINERS_NUM}
g_pservers=$(python /root/k8s_tools.py fetch_endpoints ${pserver_label} ${PORT})
g_trainers=$(python /root/k8s_tools.py fetch_endpoints ${trainer_label} ${PORT})
}
start_tf_pserver(){
wait_running_pods
label="tf-job-pserver=${JOB_NAME}"
pserver_id=$(python /root/k8s_tools.py fetch_id ${label})
cmd="${ENTRY} --ps_hosts=${g_pservers} --worker_hosts=${g_trainers} \
--job_name=${TF_JOB_NAME} --task_index=${pserver_id}"
stdbuf -oL sh -c "cd ${TRAINER_PACKAGE} && ${cmd}"
}
start_tf_trainer(){
wait_running_pods
label="tf-job-trainer=${JOB_NAME}"
trainer_id=$(python /root/k8s_tools.py fetch_id ${label})
cmd="${ENTRY} --ps_hosts=${g_pservers} --worker_hosts=${g_trainers} \
--job_name=${TF_JOB_NAME} --task_index=${trainer_id} --batch_size=${BATCH_SIZE}"
stdbuf -oL sh -c "cd ${TRAINER_PACKAGE} && ${cmd}"
check_trainer_ret $?
}
start_tf(){
if [[ "${TF_JOB_NAME}" == "worker" ]]; then
start_tf_trainer
else
start_tf_pserver
fi
}
usage() {
echo "usage: tf_k8s [<args>]:"
echo " start_tf Start tensorflow jobs"
}
case "$1" in
start_tf)
start_tf
;;
--help)
usage
;;
*)
usage
;;
esac
apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
name: vgg16job-tf-pserver
spec:
replicas: 10
template:
metadata:
labels:
tf-job-pserver: vgg16job-tf
spec:
hostNetwork: true
imagePullSecrets:
- name: job-registry-secret
containers:
- name: pserver
image: "registry.baidu.com/paddlepaddle/fluid_benchmark_tf:vgg16"
imagePullPolicy: Always
command: ["tf_k8s", "start_tf"]
ports:
- name: jobport-30236
containerPort: 30236
env:
- name: PORT
value: "32036"
- name: ENTRY
value: "python vgg16_tf.py"
- name: JOB_NAME
value: vgg16job-tf
- name: PSERVERS_NUM
value: "10"
- name: TF_JOB_NAME
value: "ps"
- name: TRAINERS_NUM
value: "20"
- name: BATCH_SIZE
value: "128"
- name: TRAINER_PACKAGE
value: "/workspace"
- name: NUM_PASSES
value: "1"
- name: NAMESPACE
valueFrom:
fieldRef:
fieldPath: "metadata.namespace"
- name: POD_IP
valueFrom:
fieldRef:
fieldPath: "status.podIP"
resources:
requests:
memory: 10Gi
cpu: 4
limits:
memory: 10Gi
cpu: 4
apiVersion: batch/v1
kind: Job
metadata:
name: vgg16job-tf-trainer
spec:
parallelism: 20
completions: 20
template:
metadata:
labels:
tf-job-trainer: vgg16job-tf
spec:
imagePullSecrets:
- name: job-registry-secret
hostNetwork: true
containers:
- name: trainer
image: "registry.baidu.com/paddlepaddle/fluid_benchmark_tf:vgg16"
imagePullPolicy: Always
command: ["tf_k8s", "start_tf"]
ports:
- name: jobport-30236
containerPort: 30236
env:
- name: PORT
value: "32036"
- name: JOB_NAME
value: vgg16job-tf
- name: TF_JOB_NAME
value: "worker"
- name: ENTRY
value: "python vgg16_tf.py"
- name: PSERVERS_NUM
value: "10"
- name: BATCH_SIZE
value: "128"
- name: TRAINERS_NUM
value: "20"
- name: TRAINER_PACKAGE
value: "/workspace"
- name: NUM_PASSES
value: "1"
- name: NAMESPACE
valueFrom:
fieldRef:
fieldPath: "metadata.namespace"
- name: POD_IP
valueFrom:
fieldRef:
fieldPath: "status.podIP"
resources:
requests:
memory: 40Gi
cpu: 2
limits:
memory: 40Gi
cpu: 2
restartPolicy: Never
......@@ -68,6 +68,21 @@ parser.add_argument(
type=str2bool,
default=True,
help='Whether to run as local mode.')
parser.add_argument(
"--ps_hosts",
type=str,
default="",
help="Comma-separated list of hostname:port pairs")
parser.add_argument(
"--trainer_hosts",
type=str,
default="",
help="Comma-separated list of hostname:port pairs")
# Flags for defining the tf.train.Server
parser.add_argument(
"--task_index", type=int, default=0, help="Index of task within the job")
args = parser.parse_args()
......@@ -180,8 +195,9 @@ def main():
iters += 1
num_samples += len(data)
print(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, spent %f"
% (pass_id, iters, loss, acc, time.time() - ts)
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
% (pass_id, iters, loss, acc,
len(data) / (time.time() - ts))
) # The accuracy is the accumulation of batches, but not the current batch.
pass_elapsed = time.time() - start_time
......@@ -209,27 +225,24 @@ def main():
batch_size=args.batch_size)
train_loop(exe, fluid.default_main_program())
else:
pserver_ips = os.getenv("PADDLE_INIT_PSERVERS") # all pserver endpoints
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, "6174"]))
pserver_endpoints = ",".join(eplist)
print("pserver endpoints: ", pserver_endpoints)
trainers = int(os.getenv("TRAINERS")) # total trainer count
print("trainers total: ", trainers)
current_endpoint = os.getenv(
"POD_IP") + ":6174" # current pserver endpoint
training_role = os.getenv(
"TRAINING_ROLE",
"TRAINER") # get the training role: trainer/pserver
t = fluid.DistributeTranspiler()
t.transpile(
optimize_ops,
params_grads,
pservers=pserver_endpoints,
trainer_id=args.task_index,
pservers=args.ps_hosts,
trainers=trainers)
if training_role == "PSERVER":
current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
"PADDLE_INIT_PORT")
if not current_endpoint:
print("need env SERVER_ENDPOINT")
exit(1)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VGG16 benchmark in TensorFlow
You can get distribution example template structure here:
https://medium.com/clusterone/how-to-write-distributed-tensorflow-code-with-an-example-on-tensorport-70bf3306adcb
https://www.tensorflow.org/deploy/distributed
"""
import tensorflow as tf
import paddle.v2 as paddle
import numpy as np
import argparse
import time
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--batch_size', type=int, default=128, help="Batch size for training.")
parser.add_argument(
'--learning_rate',
type=float,
default=1e-3,
help="Learning rate for training.")
parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")
parser.add_argument(
'--device',
type=str,
default='CPU',
choices=['CPU', 'GPU'],
help="The device type.")
parser.add_argument(
'--data_format',
type=str,
default='NHWC',
choices=['NCHW', 'NHWC'],
help='The data order, NCHW=[batch, channels, height, width].'
'Only support NHWC right now.')
parser.add_argument(
'--data_set',
type=str,
default='cifar10',
choices=['cifar10', 'flowers'],
help='Optional dataset for benchmark.')
parser.add_argument(
"--ps_hosts",
type=str,
default="",
help="Comma-separated list of hostname:port pairs")
parser.add_argument(
"--worker_hosts",
type=str,
default="",
help="Comma-separated list of hostname:port pairs")
parser.add_argument(
"--job_name", type=str, default="", help="One of 'worker', 'ps'")
# Flags for defining the tf.train.Server
parser.add_argument(
"--task_index", type=int, default=0, help="Index of task within the job")
args = parser.parse_args()
class VGG16Model(object):
def __init__(self):
self.parameters = []
def batch_norm_relu(self, inputs, is_training):
"""Performs a batch normalization followed by a ReLU."""
# We set fused=True for a significant speed boost. See
# https://www.tensorflow.org/speed/speed_guide#common_fused_ops
inputs = tf.layers.batch_normalization(
inputs=inputs,
axis=1 if args.data_format == 'NCHW' else -1,
momentum=0.9,
epsilon=1e-05,
center=True,
scale=True,
training=is_training,
fused=True)
inputs = tf.nn.relu(inputs)
return inputs
def conv_bn_layer(self,
name,
images,
kernel_shape,
is_training,
drop_rate=0.0):
with tf.name_scope(name) as scope:
kernel = tf.Variable(
tf.truncated_normal(
kernel_shape, dtype=tf.float32, stddev=1e-1),
name='weights')
conv = tf.nn.conv2d(
images,
kernel, [1, 1, 1, 1],
data_format=args.data_format,
padding='SAME')
biases = tf.Variable(
tf.constant(
0.0, shape=[kernel_shape[-1]], dtype=tf.float32),
trainable=True,
name='biases')
out = tf.nn.bias_add(conv, biases)
out = self.batch_norm_relu(out, is_training)
out = tf.layers.dropout(out, rate=drop_rate, training=is_training)
return out
def fc_layer(self, name, inputs, shape):
with tf.name_scope(name) as scope:
fc_w = tf.Variable(
tf.truncated_normal(
shape, dtype=tf.float32, stddev=1e-1),
name='weights')
fc_b = tf.Variable(
tf.constant(
0.0, shape=[shape[-1]], dtype=tf.float32),
trainable=True,
name='biases')
out = tf.nn.bias_add(tf.matmul(inputs, fc_w), fc_b)
return out
def network(self, images, class_dim, is_training):
""" VGG16 model structure.
TODO(kuke): enable this network to support the 'NCHW' data format
"""
# conv1
conv1_1 = self.conv_bn_layer(
'conv1_1', images, [3, 3, 3, 64], is_training, drop_rate=0.3)
conv1_2 = self.conv_bn_layer(
'conv1_2', conv1_1, [3, 3, 64, 64], is_training, drop_rate=0.0)
# pool1
pool1 = tf.nn.max_pool(
conv1_2,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool1')
# conv2
conv2_1 = self.conv_bn_layer(
'conv2_1', pool1, [3, 3, 64, 128], is_training, drop_rate=0.4)
conv2_2 = self.conv_bn_layer(
'conv2_2', conv2_1, [3, 3, 128, 128], is_training, drop_rate=0.0)
# pool2
pool2 = tf.nn.max_pool(
conv2_2,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool2')
# conv3
conv3_1 = self.conv_bn_layer(
'conv3_1', pool2, [3, 3, 128, 256], is_training, drop_rate=0.4)
conv3_2 = self.conv_bn_layer(
'conv3_2', conv3_1, [3, 3, 256, 256], is_training, drop_rate=0.4)
conv3_3 = self.conv_bn_layer(
'conv3_3', conv3_2, [3, 3, 256, 256], is_training, drop_rate=0.0)
# pool3
pool3 = tf.nn.max_pool(
conv3_3,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool3')
# conv4
conv4_1 = self.conv_bn_layer(
'conv4_1', pool3, [3, 3, 256, 512], is_training, drop_rate=0.4)
conv4_2 = self.conv_bn_layer(
'conv4_2', conv4_1, [3, 3, 512, 512], is_training, drop_rate=0.4)
conv4_3 = self.conv_bn_layer(
'conv4_3', conv4_2, [3, 3, 512, 512], is_training, drop_rate=0.0)
# pool4
pool4 = tf.nn.max_pool(
conv4_3,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool4')
# conv5
conv5_1 = self.conv_bn_layer(
'conv5_1', pool4, [3, 3, 512, 512], is_training, drop_rate=0.4)
conv5_2 = self.conv_bn_layer(
'conv5_2', conv5_1, [3, 3, 512, 512], is_training, drop_rate=0.4)
conv5_3 = self.conv_bn_layer(
'conv5_3', conv5_2, [3, 3, 512, 512], is_training, drop_rate=0.0)
# pool5
pool5 = tf.nn.max_pool(
conv5_3,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool4')
# flatten
shape = int(np.prod(pool5.get_shape()[1:]))
pool5_flat = tf.reshape(pool5, [-1, shape])
# fc1
drop = tf.layers.dropout(pool5_flat, rate=0.5, training=is_training)
fc1 = self.fc_layer('fc1', drop, [shape, 512])
# fc2
bn = self.batch_norm_relu(fc1, is_training)
drop = tf.layers.dropout(bn, rate=0.5, training=is_training)
fc2 = self.fc_layer('fc2', drop, [512, 512])
fc3 = self.fc_layer('fc3', fc2, [512, class_dim])
return fc3
def run_benchmark(cluster_spec, server):
"""Run benchmark on cifar10 or flowers."""
if args.data_set == "cifar10":
class_dim = 10
raw_shape = (3, 32, 32)
dat_shape = (None, 32, 32, 3) if args.data_format == 'NHWC' else (
None, 3, 32, 32)
else:
class_dim = 102
raw_shape = (3, 224, 224)
dat_shape = (None, 224, 224, 3) if args.data_format == 'NHWC' else (
None, 3, 224, 224)
device = tf.train.replica_device_setter(
worker_device="/job:worker/task:{}".format(args.task_index),
cluster=cluster_spec)
with tf.device(device):
images = tf.placeholder(tf.float32, shape=dat_shape)
labels = tf.placeholder(tf.int64, shape=(None, ))
is_training = tf.placeholder('bool')
onehot_labels = tf.one_hot(labels, depth=class_dim)
vgg16 = VGG16Model()
logits = vgg16.network(images, class_dim, is_training)
loss = tf.losses.softmax_cross_entropy(
onehot_labels=onehot_labels, logits=logits)
avg_loss = tf.reduce_mean(loss)
correct = tf.equal(tf.argmax(logits, 1), labels)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
global_step = tf.Variable(0, name='global_step', trainable=False)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(avg_loss, global_step=global_step)
summary_op = tf.summary.merge_all()
init_op = tf.global_variables_initializer()
# data reader
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
buf_size=5120),
batch_size=args.batch_size)
# test
def test():
test_accs = []
for batch_id, data in enumerate(test_reader()):
test_images = np.array(
map(lambda x: np.transpose(x[0].reshape(raw_shape),
axes=[1, 2, 0]) if args.data_format == 'NHWC' else x[0], data)).astype("float32")
test_labels = np.array(map(lambda x: x[1], data)).astype('int64')
test_accs.append(
accuracy.eval(feed_dict={
images: test_images,
labels: test_labels,
is_training: False
}))
return np.mean(test_accs)
config = tf.ConfigProto(
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
config.gpu_options.allow_growth = True
hooks = [tf.train.StopAtStepHook(last_step=1000000)]
with tf.train.MonitoredTrainingSession(
master=server.target, is_chief=(args.task_index == 0),
hooks=hooks) as sess:
iters, num_samples, start_time = 0, 0, 0.0
for pass_id in range(args.num_passes):
# train
num_samples = 0
start_time = time.time()
for batch_id, data in enumerate(train_reader()):
train_images = np.array(
map(lambda x: np.transpose(x[0].reshape(raw_shape),
axes=[1, 2, 0]) if args.data_format == 'NHWC' else x[0], data)).astype("float32")
train_labels = np.array(map(lambda x: x[1], data)).astype(
'int64')
iter_begin_time = time.time()
_, loss, acc = sess.run([train_op, avg_loss, accuracy],
feed_dict={
images: train_images,
labels: train_labels,
is_training: True
})
iters += 1
print(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed=%.2f imgs/sec"
% (pass_id, iters, loss, acc,
len(data) / (time.time() - iter_begin_time)))
num_samples += len(data)
train_elapsed = time.time() - start_time
# test
pass_test_acc = test()
print("Pass = %d, Train speed = %f imgs/s, Test accuracy = %f\n" %
(pass_id, num_samples / train_elapsed, pass_test_acc))
def print_arguments():
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == '__main__':
print_arguments()
ps_hosts = args.ps_hosts.split(",")
worker_hosts = args.worker_hosts.split(",")
# Create a cluster from the parameter server and worker hosts.
cluster_spec = tf.train.ClusterSpec({
"ps": ps_hosts,
"worker": worker_hosts
})
# Create and start a server for the local task.
server = tf.train.Server(
cluster_spec, job_name=args.job_name, task_index=args.task_index)
if args.job_name == "ps":
print("start pserver")
server.join()
elif args.job_name == "worker":
print("start worker")
run_benchmark(cluster_spec, server)
......@@ -59,6 +59,7 @@ endif(NOT WITH_GOLANG)
if(NOT WITH_GPU)
add_definitions(-DHPPL_STUB_FUNC)
add_definitions("-DCUPTI_LIB_PATH=\"\"")
list(APPEND CMAKE_CXX_SOURCE_FILE_EXTENSIONS cu)
else()
......@@ -73,7 +74,14 @@ else()
if(NOT CUDNN_FOUND)
message(FATAL_ERROR "Paddle needs cudnn to compile")
endif()
if(CUPTI_FOUND)
include_directories(${CUPTI_INCLUDE_DIR})
add_definitions(-DPADDLE_WITH_CUPTI)
add_definitions("-DCUPTI_LIB_PATH=\"${CUPTI_LIBRARY_PATH}\"")
else()
add_definitions("-DCUPTI_LIB_PATH=\"\"")
message(STATUS "Cannot find CUPTI, GPU Profiling is incorrect.")
endif()
set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} "-Xcompiler ${SIMD_FLAG}")
# Include cuda and cudnn
......
......@@ -155,7 +155,8 @@ endif()
include_directories(${CUDA_INCLUDE_DIRS})
list(APPEND EXTERNAL_LIBS ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY})
if(NOT WITH_DSO)
list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY} ${NCCL_LIBRARY})
# TODO(panyx0718): CUPTI only allows DSO?
list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUPTI_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY} ${NCCL_LIBRARY})
endif(NOT WITH_DSO)
# setting nvcc arch flags
......
if(NOT WITH_GPU)
return()
endif()
set(CUPTI_ROOT "/usr" CACHE PATH "CUPTI ROOT")
find_path(CUPTI_INCLUDE_DIR cupti.h
PATHS ${CUPTI_ROOT} ${CUPTI_ROOT}/include
$ENV{CUPTI_ROOT} $ENV{CUPTI_ROOT}/include
${CUDA_TOOLKIT_ROOT_DIR}/extras/CUPTI/include
NO_DEFAULT_PATH
)
get_filename_component(__libpath_hist ${CUDA_CUDART_LIBRARY} PATH)
set(TARGET_ARCH "x86_64")
if(NOT ${CMAKE_SYSTEM_PROCESSOR})
set(TARGET_ARCH ${CMAKE_SYSTEM_PROCESSOR})
endif()
list(APPEND CUPTI_CHECK_LIBRARY_DIRS
${CUPTI_ROOT}
${CUPTI_ROOT}/lib64
${CUPTI_ROOT}/lib
${CUPTI_ROOT}/lib/${TARGET_ARCH}-linux-gnu
$ENV{CUPTI_ROOT}
$ENV{CUPTI_ROOT}/lib64
$ENV{CUPTI_ROOT}/lib
/usr/lib
${CUDA_TOOLKIT_ROOT_DIR}/extras/CUPTI/lib64)
find_library(CUPTI_LIBRARY NAMES libcupti.so libcupti.dylib # libcupti_static.a
PATHS ${CUPTI_CHECK_LIBRARY_DIRS} ${CUPTI_INCLUDE_DIR} ${__libpath_hist}
NO_DEFAULT_PATH
DOC "Path to cuPTI library.")
get_filename_component(CUPTI_LIBRARY_PATH ${CUPTI_LIBRARY} DIRECTORY)
if(CUPTI_INCLUDE_DIR AND CUPTI_LIBRARY)
set(CUPTI_FOUND ON)
else()
set(CUPTI_FOUND OFF)
endif()
......@@ -56,7 +56,7 @@ cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform lod_tensor)
shape_inference data_transform lod_tensor profiler)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry init)
cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog)
......@@ -80,7 +80,7 @@ cc_library(lod_rank_table SRCS lod_rank_table.cc DEPS lod_tensor)
cc_library(feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glog)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope
framework_proto backward glog lod_rank_table profiler feed_fetch_method)
framework_proto backward glog lod_rank_table feed_fetch_method)
cc_library(prune SRCS prune.cc DEPS framework_proto)
cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context)
......
......@@ -167,4 +167,6 @@ message BlockDesc {
// Please refer to
// https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/program.md
// for more details.
// TODO(panyx0718): A model can have multiple programs. Need a
// way to distinguish them. Maybe ID or name?
message ProgramDesc { repeated BlockDesc blocks = 1; }
......@@ -31,8 +31,14 @@ std::ostream &operator<<(std::ostream &os, const LoD &lod) {
os << "{";
for (auto &v : lod) {
os << "{";
bool is_first = true;
for (auto &i : v) {
os << i << ",";
if (is_first) {
os << i;
is_first = false;
} else {
os << ", " << i;
}
}
os << "}";
}
......
......@@ -125,6 +125,8 @@ class OpDesc {
BlockDesc *Block() { return this->block_; }
const BlockDesc &BlockRef() const { return *this->block_; }
void SetBlock(BlockDesc *block) { this->block_ = block; }
private:
......
......@@ -32,23 +32,11 @@ void ReadBinaryFile(const std::string& filename, std::string& contents) {
inputfs.close();
}
bool IsParameter(const framework::VarDesc* var,
const framework::ProgramDesc& main_program) {
if (var->Persistable()) {
// There are many unreachable variables in the program
for (size_t i = 0; i < main_program.Size(); ++i) {
const framework::BlockDesc& block = main_program.Block(i);
for (auto* op : block.AllOps()) {
if (op->Type() == framework::kFeedOpType) {
continue;
}
for (auto input_argument_name : op->InputArgumentNames()) {
if (input_argument_name == var->Name()) {
return true;
}
}
}
}
bool IsPersistable(const framework::VarDesc* var) {
if (var->Persistable() &&
var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
var->GetType() != framework::proto::VarType::FETCH_LIST) {
return true;
}
return false;
}
......@@ -65,8 +53,8 @@ void LoadPersistables(framework::Executor& executor,
std::vector<std::string> paramlist;
for (auto* var : global_block.AllVars()) {
if (IsParameter(var, main_program)) {
VLOG(3) << "parameter's name: " << var->Name();
if (IsPersistable(var)) {
VLOG(3) << "persistable variable's name: " << var->Name();
framework::VarDesc* new_var = load_block->Var(var->Name());
new_var->SetShape(var->GetShape());
......@@ -101,7 +89,6 @@ void LoadPersistables(framework::Executor& executor,
executor.Run(*load_program, &scope, 0, true, true);
VLOG(3) << "Ran loading successfully";
delete load_program;
}
......
......@@ -30,5 +30,5 @@ inference_test(label_semantic_roles)
inference_test(recognize_digits ARGS mlp conv)
inference_test(recommender_system)
#inference_test(rnn_encoder_decoder)
inference_test(understand_sentiment)
inference_test(understand_sentiment ARGS conv)
inference_test(word2vec)
......@@ -32,16 +32,42 @@ TEST(inference, label_semantic_roles) {
paddle::framework::LoDTensor word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1,
ctx_p2, mark;
paddle::framework::LoD lod{{0, 4, 10}};
SetupLoDTensor(word, lod, static_cast<int64_t>(0), static_cast<int64_t>(1));
SetupLoDTensor(
predicate, lod, static_cast<int64_t>(0), static_cast<int64_t>(1));
SetupLoDTensor(ctx_n2, lod, static_cast<int64_t>(0), static_cast<int64_t>(1));
SetupLoDTensor(ctx_n1, lod, static_cast<int64_t>(0), static_cast<int64_t>(1));
SetupLoDTensor(ctx_0, lod, static_cast<int64_t>(0), static_cast<int64_t>(1));
SetupLoDTensor(ctx_p1, lod, static_cast<int64_t>(0), static_cast<int64_t>(1));
SetupLoDTensor(ctx_p2, lod, static_cast<int64_t>(0), static_cast<int64_t>(1));
SetupLoDTensor(mark, lod, static_cast<int64_t>(0), static_cast<int64_t>(1));
int64_t word_dict_len = 44068;
int64_t predicate_dict_len = 3162;
int64_t mark_dict_len = 2;
SetupLoDTensor(word,
lod,
static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(predicate,
lod,
static_cast<int64_t>(0),
static_cast<int64_t>(predicate_dict_len - 1));
SetupLoDTensor(ctx_n2,
lod,
static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(ctx_n1,
lod,
static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(ctx_0,
lod,
static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(ctx_p1,
lod,
static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(ctx_p2,
lod,
static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
SetupLoDTensor(mark,
lod,
static_cast<int64_t>(0),
static_cast<int64_t>(mark_dict_len - 1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&word);
......
......@@ -31,7 +31,12 @@ TEST(inference, understand_sentiment) {
paddle::framework::LoDTensor words;
paddle::framework::LoD lod{{0, 4, 10}};
SetupLoDTensor(words, lod, static_cast<int64_t>(0), static_cast<int64_t>(10));
int64_t word_dict_len = 5147;
SetupLoDTensor(words,
lod,
static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&words);
......
......@@ -31,12 +31,12 @@ TEST(inference, word2vec) {
paddle::framework::LoDTensor first_word, second_word, third_word, fourth_word;
paddle::framework::LoD lod{{0, 1}};
int64_t dict_size = 2072; // Hard-coding the size of dictionary
int64_t dict_size = 2073; // The size of dictionary
SetupLoDTensor(first_word, lod, static_cast<int64_t>(0), dict_size);
SetupLoDTensor(second_word, lod, static_cast<int64_t>(0), dict_size);
SetupLoDTensor(third_word, lod, static_cast<int64_t>(0), dict_size);
SetupLoDTensor(fourth_word, lod, static_cast<int64_t>(0), dict_size);
SetupLoDTensor(first_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(second_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(third_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(fourth_word, lod, static_cast<int64_t>(0), dict_size - 1);
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&first_word);
......
......@@ -101,8 +101,8 @@ void TestInference(const std::string& dirname,
if (IsCombined) {
// All parameters are saved in a single file.
// Hard-coding the file names of program and parameters in unittest.
// Users are free to specify different filename
// (provided: the filenames are changed in the python api as well: io.py)
// The file names should be consistent with that used in Python API
// `fluid.io.save_inference_model`.
std::string prog_filename = "__model_combined__";
std::string param_filename = "__params_combined__";
inference_program = paddle::inference::Load(executor,
......
......@@ -11,6 +11,8 @@ function(op_library TARGET)
set(cc_srcs)
set(cu_srcs)
set(cu_cc_srcs)
set(cudnn_cu_cc_srcs)
set(CUDNN_FILE)
set(op_common_deps operator op_registry math_function)
set(options "")
set(oneValueArgs "")
......@@ -30,10 +32,16 @@ function(op_library TARGET)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cu)
list(APPEND cu_srcs ${TARGET}.cu)
endif()
string(REPLACE "_op" "_cudnn_op" CUDNN_FILE "${TARGET}")
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${CUDNN_FILE}.cu.cc)
list(APPEND cudnn_cu_cc_srcs ${CUDNN_FILE}.cu.cc)
endif()
else()
foreach(src ${op_library_SRCS})
if (${src} MATCHES ".*\\.cu$")
list(APPEND cu_srcs ${src})
elseif(${src} MATCHES ".*_cudnn_op.cu.cc$")
list(APPEND cudnn_cu_cc_srcs ${src})
elseif(${src} MATCHES ".*\\.cu.cc$")
list(APPEND cu_cc_srcs ${src})
elseif(${src} MATCHES ".*\\.cc$")
......@@ -54,7 +62,7 @@ function(op_library TARGET)
set(DEPS_OPS ${TARGET} ${DEPS_OPS} PARENT_SCOPE)
endif()
if (WITH_GPU)
nv_library(${TARGET} SRCS ${cc_srcs} ${cu_cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS}
nv_library(${TARGET} SRCS ${cc_srcs} ${cu_cc_srcs} ${cudnn_cu_cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
else()
cc_library(${TARGET} SRCS ${cc_srcs} DEPS ${op_library_DEPS}
......@@ -98,6 +106,12 @@ function(op_library TARGET)
set(pybind_flag 1)
endif()
# pybind USE_OP_DEVICE_KERNEL for CUDNN
list(LENGTH cudnn_cu_cc_srcs cudnn_cu_cc_srcs_len)
if (WITH_GPU AND ${cudnn_cu_cc_srcs_len} GREATER 0)
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(${TARGET}, CUDNN);\n")
endif()
# pybind USE_OP
if (${pybind_flag} EQUAL 0)
file(APPEND ${pybind_file} "USE_OP(${TARGET});\n")
......@@ -152,43 +166,24 @@ op_library(lstm_op DEPS sequence2batch lstm_compute)
op_library(lstmp_op DEPS sequence2batch lstm_compute)
op_library(gru_op DEPS sequence2batch gru_compute)
op_library(recurrent_op DEPS executor)
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale math_function)
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale)
op_library(cos_sim_op DEPS cos_sim_functor)
op_library(parallel_do_op DEPS executor)
op_library(create_reader_op DEPS reader)
# Regist multiple Kernel to pybind
if (WITH_GPU)
op_library(conv_op SRCS conv_op.cc conv_op.cu.cc conv_cudnn_op.cu.cc DEPS
vol2col depthwise_conv)
op_library(edit_distance_op SRCS edit_distance_op.cc edit_distance_op.cu DEPS math_function)
op_library(pool_op SRCS pool_op.cc pool_op.cu.cc pool_cudnn_op.cu.cc DEPS pooling)
op_library(conv_transpose_op SRCS conv_transpose_op.cc conv_transpose_op.cu.cc
conv_transpose_cudnn_op.cu.cc DEPS vol2col)
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(conv2d, CUDNN);\n")
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(pool2d, CUDNN);\n")
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(conv2d_transpose, CUDNN);\n")
op_library(conv_op DEPS vol2col depthwise_conv)
else()
op_library(conv_op SRCS conv_op.cc DEPS vol2col)
op_library(pool_op SRCS pool_op.cc DEPS pooling)
op_library(conv_transpose_op SRCS conv_transpose_op.cc DEPS vol2col)
op_library(conv_op DEPS vol2col)
endif()
op_library(pool_op DEPS pooling)
op_library(conv_transpose_op DEPS vol2col)
cc_library(batch_size_like SRCS batch_size_like.cc DEPS op_registry)
op_library(fill_constant_batch_size_like_op
SRCS fill_constant_batch_size_like_op.cc fill_constant_batch_size_like_op.cu.cc
DEPS batch_size_like)
op_library(uniform_random_batch_size_like_op
SRCS uniform_random_batch_size_like_op.cc
DEPS batch_size_like uniform_random_op)
op_library(gaussian_random_batch_size_like_op
SRCS gaussian_random_batch_size_like_op.cc
DEPS batch_size_like gaussian_random_op)
op_library(fill_constant_batch_size_like_op DEPS batch_size_like)
op_library(uniform_random_batch_size_like_op DEPS batch_size_like uniform_random_op)
op_library(gaussian_random_batch_size_like_op DEPS batch_size_like gaussian_random_op)
# FIXME(typhoonzero): save/load depends lodtensor serialization functions
op_library(save_op DEPS lod_tensor)
......
......@@ -94,6 +94,38 @@ class BipartiteMatchKernel : public framework::OpKernel<T> {
}
}
void ArgMaxMatch(const Tensor& dist, int* match_indices, T* match_dist,
T overlap_threshold) const {
constexpr T kEPS = static_cast<T>(1e-6);
int64_t row = dist.dims()[0];
int64_t col = dist.dims()[1];
auto* dist_data = dist.data<T>();
for (int64_t j = 0; j < col; ++j) {
if (match_indices[j] != -1) {
// the j-th column has been matched to one entity.
continue;
}
int max_row_idx = -1;
T max_dist = -1;
for (int i = 0; i < row; ++i) {
T dist = dist_data[i * col + j];
if (dist < kEPS) {
// distance is 0 between m-th row and j-th column
continue;
}
if (dist >= overlap_threshold && dist > max_dist) {
max_row_idx = i;
max_dist = dist;
}
}
if (max_row_idx != -1) {
PADDLE_ENFORCE_EQ(match_indices[j], -1);
match_indices[j] = max_row_idx;
match_dist[j] = max_dist;
}
}
}
void Compute(const framework::ExecutionContext& context) const override {
auto* dist_mat = context.Input<LoDTensor>("DistMat");
auto* match_indices = context.Output<Tensor>("ColToRowMatchIndices");
......@@ -120,13 +152,21 @@ class BipartiteMatchKernel : public framework::OpKernel<T> {
int* indices = match_indices->data<int>();
T* dist = match_dist->data<T>();
auto type = context.Attr<std::string>("match_type");
auto threshold = context.Attr<float>("dist_threshold");
if (n == 1) {
BipartiteMatch(*dist_mat, indices, dist);
if (type == "per_prediction") {
ArgMaxMatch(*dist_mat, indices, dist, threshold);
}
} else {
auto lod = dist_mat->lod().back();
for (size_t i = 0; i < lod.size() - 1; ++i) {
Tensor one_ins = dist_mat->Slice(lod[i], lod[i + 1]);
BipartiteMatch(one_ins, indices + i * col, dist + i * col);
if (type == "per_prediction") {
ArgMaxMatch(one_ins, indices + i * col, dist + i * col, threshold);
}
}
}
}
......@@ -147,6 +187,19 @@ class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
"This tensor can contain LoD information to represent a batch of "
"inputs. One instance of this batch can contain different numbers of "
"entities.");
AddAttr<std::string>(
"match_type",
"(string, defalut: per_prediction) "
"The type of matching method, should be 'bipartite' or "
"'per_prediction', 'bipartite' by defalut.")
.SetDefault("bipartite")
.InEnum({"bipartite", "per_prediction"});
AddAttr<float>(
"dist_threshold",
"(float, defalut: 0.5) "
"If `match_type` is 'per_prediction', this threshold is to determine "
"the extra matching bboxes based on the maximum distance.")
.SetDefault(0.5);
AddOutput("ColToRowMatchIndices",
"(Tensor) A 2-D Tensor with shape [N, M] in int type. "
"N is the batch size. If ColToRowMatchIndices[i][j] is -1, it "
......@@ -168,10 +221,10 @@ distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row, also can find the matched row for
each column. And this operator only calculate matched indices from column
to row. For each instance, the number of matched indices is the number of
of columns of the input ditance matrix.
of columns of the input distance matrix.
There are two outputs to save matched indices and distance.
A simple description, this algothrim matched the best (maximum distance)
A simple description, this algorithm matched the best (maximum distance)
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.
......
proto_library(profiler_proto SRCS profiler.proto)
if(WITH_GPU)
cc_library(enforce SRCS enforce.cc DEPS)
else()
......@@ -37,7 +39,8 @@ nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda)
nv_test(transform_test SRCS transform_test.cu DEPS paddle_memory place device_context)
nv_test(nccl_test SRCS nccl_test.cu DEPS dynload_cuda gpu_info device_context)
cc_library(profiler SRCS profiler.cc DEPS device_context)
cc_library(device_tracer SRCS device_tracer.cc DEPS profiler_proto ${GPU_CTX_DEPS})
cc_library(profiler SRCS profiler.cc DEPS device_context device_tracer)
cc_test(profiler_test SRCS profiler_test.cc DEPS profiler)
nv_test(float16_gpu_test SRCS float16_test.cu)
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/device_tracer.h"
#include <map>
#include <mutex>
#include "glog/logging.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/string/printf.h"
namespace paddle {
namespace platform {
namespace {
thread_local const char *cur_annotation = nullptr;
std::once_flag tracer_once_flag;
DeviceTracer *tracer = nullptr;
} // namespace
#ifdef PADDLE_WITH_CUPTI
namespace {
// TODO(panyx0718): Revisit the buffer size here.
uint64_t kBufSize = 32 * 1024;
uint64_t kAlignSize = 8;
#define ALIGN_BUFFER(buffer, align) \
(((uintptr_t)(buffer) & ((align)-1)) \
? ((buffer) + (align) - ((uintptr_t)(buffer) & ((align)-1))) \
: (buffer))
#define CUPTI_CALL(call) \
do { \
CUptiResult _status = call; \
if (_status != CUPTI_SUCCESS) { \
const char *errstr; \
dynload::cuptiGetResultString(_status, &errstr); \
fprintf(stderr, "%s:%d: error: function %s failed with error %s.\n", \
__FILE__, __LINE__, #call, errstr); \
exit(-1); \
} \
} while (0)
void EnableActivity() {
// Device activity record is created when CUDA initializes, so we
// want to enable it before cuInit() or any CUDA runtime call.
CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_MEMCPY));
CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_KERNEL));
CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_DEVICE));
CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_MEMSET));
CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_OVERHEAD));
// We don't track these activities for now.
// CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_CONTEXT));
// CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_DRIVER));
// CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_RUNTIME));
// CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_NAME));
// CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_MARKER));
}
void DisableActivity() {
CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_MEMCPY));
CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_KERNEL));
CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_DEVICE));
// Disable all other activity record kinds.
CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_CONTEXT));
CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_DRIVER));
CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_RUNTIME));
CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_MEMSET));
CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_NAME));
CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_MARKER));
CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_OVERHEAD));
}
void CUPTIAPI bufferRequested(uint8_t **buffer, size_t *size,
size_t *maxNumRecords) {
uint8_t *buf = (uint8_t *)malloc(kBufSize + kAlignSize);
*size = kBufSize;
*buffer = ALIGN_BUFFER(buf, kAlignSize);
*maxNumRecords = 0;
}
void CUPTIAPI bufferCompleted(CUcontext ctx, uint32_t streamId, uint8_t *buffer,
size_t size, size_t validSize) {
CUptiResult status;
CUpti_Activity *record = NULL;
if (validSize > 0) {
do {
status = dynload::cuptiActivityGetNextRecord(buffer, validSize, &record);
if (status == CUPTI_SUCCESS) {
switch (record->kind) {
case CUPTI_ACTIVITY_KIND_KERNEL:
case CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL: {
auto *kernel =
reinterpret_cast<const CUpti_ActivityKernel3 *>(record);
tracer->AddKernelRecords(kernel->start, kernel->end,
kernel->deviceId, kernel->streamId,
kernel->correlationId);
break;
}
default: { break; }
}
} else if (status == CUPTI_ERROR_MAX_LIMIT_REACHED) {
// Seems not an error in this case.
break;
} else {
CUPTI_CALL(status);
}
} while (1);
size_t dropped;
CUPTI_CALL(
dynload::cuptiActivityGetNumDroppedRecords(ctx, streamId, &dropped));
if (dropped != 0) {
fprintf(stderr, "Dropped %u activity records\n", (unsigned int)dropped);
}
}
free(buffer);
}
} // namespace
class DeviceTracerImpl : public DeviceTracer {
public:
DeviceTracerImpl() : enabled_(false) {}
void AddAnnotation(uint64_t id, const std::string &anno) {
std::lock_guard<std::mutex> l(trace_mu_);
correlations_[id] = anno;
}
void AddKernelRecords(uint64_t start, uint64_t end, uint32_t device_id,
uint32_t stream_id, uint32_t correlation_id) {
std::lock_guard<std::mutex> l(trace_mu_);
kernel_records_.push_back(
KernelRecord{start, end, device_id, stream_id, correlation_id});
}
bool IsEnabled() {
std::lock_guard<std::mutex> l(trace_mu_);
return enabled_;
}
void Enable() {
std::lock_guard<std::mutex> l(trace_mu_);
if (enabled_) {
fprintf(stderr, "DeviceTracer already enabled\n");
return;
}
EnableActivity();
// Register callbacks for buffer requests and completed by CUPTI.
CUPTI_CALL(dynload::cuptiActivityRegisterCallbacks(bufferRequested,
bufferCompleted));
CUptiResult ret;
ret = dynload::cuptiSubscribe(
&subscriber_, static_cast<CUpti_CallbackFunc>(ApiCallback), this);
if (ret == CUPTI_ERROR_MAX_LIMIT_REACHED) {
fprintf(stderr, "CUPTI subcriber limit reached.\n");
} else if (ret != CUPTI_SUCCESS) {
fprintf(stderr, "Failed to create CUPTI subscriber.\n");
}
CUPTI_CALL(
dynload::cuptiEnableCallback(1, subscriber_, CUPTI_CB_DOMAIN_DRIVER_API,
CUPTI_DRIVER_TRACE_CBID_cuLaunchKernel));
CUPTI_CALL(dynload::cuptiGetTimestamp(&start_ns_));
enabled_ = true;
}
proto::Profile GenProfile() {
std::lock_guard<std::mutex> l(trace_mu_);
proto::Profile profile_pb;
profile_pb.set_start_ns(start_ns_);
profile_pb.set_end_ns(end_ns_);
std::map<std::string, std::vector<uint64_t>> event_times;
for (const KernelRecord &r : kernel_records_) {
if (correlations_.find(r.correlation_id) == correlations_.end()) {
fprintf(stderr, "cannot relate a kernel activity\n");
continue;
}
auto *event = profile_pb.add_events();
event->set_name(correlations_.at(r.correlation_id));
event->set_start_ns(r.start_ns);
event->set_end_ns(r.end_ns);
event->set_stream_id(r.stream_id);
event->set_device_id(r.device_id);
event_times[event->name()].push_back(r.end_ns - r.start_ns);
}
for (const auto &et : event_times) {
fprintf(
stderr, "%s: total: %fms invoked cuda kernels: %lu\n",
et.first.c_str(),
std::accumulate(et.second.begin(), et.second.end(), 0) / 1000000.0,
et.second.size());
}
return profile_pb;
}
void Disable() {
// flush might cause additional calls to DeviceTracker.
dynload::cuptiActivityFlushAll(CUPTI_ACTIVITY_FLAG_FLUSH_FORCED);
std::lock_guard<std::mutex> l(trace_mu_);
DisableActivity();
dynload::cuptiUnsubscribe(subscriber_);
CUPTI_CALL(dynload::cuptiGetTimestamp(&end_ns_));
PADDLE_ENFORCE(dynload::cuptiFinalize());
enabled_ = false;
}
private:
static void CUPTIAPI ApiCallback(void *userdata, CUpti_CallbackDomain domain,
CUpti_CallbackId cbid, const void *cbdata) {
auto *cbInfo = reinterpret_cast<const CUpti_CallbackData *>(cbdata);
DeviceTracer *tracer = reinterpret_cast<DeviceTracer *>(userdata);
if ((domain == CUPTI_CB_DOMAIN_DRIVER_API) &&
(cbid == CUPTI_DRIVER_TRACE_CBID_cuLaunchKernel)) {
if (cbInfo->callbackSite == CUPTI_API_ENTER) {
const std::string anno =
cur_annotation ? cur_annotation : cbInfo->symbolName;
tracer->AddAnnotation(cbInfo->correlationId, anno);
}
} else {
VLOG(1) << "Unhandled API Callback for " << domain << " " << cbid;
}
}
std::mutex trace_mu_;
bool enabled_;
uint64_t start_ns_;
uint64_t end_ns_;
std::vector<KernelRecord> kernel_records_;
std::unordered_map<uint32_t, std::string> correlations_;
CUpti_SubscriberHandle subscriber_;
};
#endif // PADDLE_WITH_CUPTI
class DeviceTracerDummy : public DeviceTracer {
public:
DeviceTracerDummy() {}
void AddAnnotation(uint64_t id, const std::string &anno) {}
void AddKernelRecords(uint64_t start, uint64_t end, uint32_t device_id,
uint32_t stream_id, uint32_t correlation_id) {}
bool IsEnabled() { return false; }
void Enable() {}
proto::Profile GenProfile() { return proto::Profile(); }
void Disable() {}
};
void CreateTracer(DeviceTracer **t) {
#ifdef PADDLE_WITH_CUPTI
*t = new DeviceTracerImpl();
#else
*t = new DeviceTracerDummy();
#endif // PADDLE_WITH_CUPTI
}
DeviceTracer *GetDeviceTracer() {
std::call_once(tracer_once_flag, CreateTracer, &tracer);
return tracer;
}
void SetCurAnnotation(const char *anno) { cur_annotation = anno; }
void ClearCurAnnotation() { cur_annotation = nullptr; }
} // namespace platform
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/platform/dynload/cupti.h"
#include "paddle/fluid/platform/profiler.pb.h"
namespace paddle {
namespace platform {
///////////////////////
// WARN: Under Development. Don't depend on it yet.
//////////////////////
// DeviceTracer performs the following tasks:
// 1. Register cuda callbacks for various events: kernel, memcpy, etc.
// 2. Collect cuda statistics: start/end ts, memory, etc.
// 3. Generate a protobuf for further analysis.
class DeviceTracer {
public:
struct KernelRecord {
uint64_t start_ns;
uint64_t end_ns;
uint32_t device_id;
uint32_t stream_id;
uint32_t correlation_id;
};
virtual ~DeviceTracer() {}
// Needs to be called once before use.
virtual void Enable() = 0;
// Needs to be called once after use.
virtual void Disable() = 0;
// Add a pair to correlate internal cuda id with high level
// annotation (string). So cuda statistics can be represented by
// human-readable annotations.
virtual void AddAnnotation(uint64_t id, const std::string& anno) = 0;
// Add a cuda kernel stats. `correlation_id` will be mapped to annotation
// added before for human readability.
virtual void AddKernelRecords(uint64_t start, uint64_t end,
uint32_t device_id, uint32_t stream_id,
uint32_t correlation_id) = 0;
// Generate a proto after done (Disabled).
virtual proto::Profile GenProfile() = 0;
virtual bool IsEnabled() = 0;
};
// Get a DeviceTracer.
DeviceTracer* GetDeviceTracer();
// Set a name for the cuda kernel operation being launched by the thread.
void SetCurAnnotation(const char* anno);
// Clear the name after the operation is done.
void ClearCurAnnotation();
} // namespace platform
} // namespace paddle
cc_library(dynamic_loader SRCS dynamic_loader.cc DEPS glog gflags enforce)
nv_library(dynload_cuda SRCS cublas.cc cudnn.cc curand.cc nccl.cc
DEPS dynamic_loader)
list(APPEND CUDA_SRCS cublas.cc cudnn.cc curand.cc nccl.cc)
if (CUPTI_FOUND)
list(APPEND CUDA_SRCS cupti.cc)
endif(CUPTI_FOUND)
nv_library(dynload_cuda SRCS ${CUDA_SRCS} DEPS dynamic_loader)
cc_library(dynload_warpctc SRCS warpctc.cc DEPS dynamic_loader warpctc)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_CUPTI
#include "paddle/fluid/platform/dynload/cupti.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace platform {
namespace dynload {
std::once_flag cupti_dso_flag;
void *cupti_dso_handle = nullptr;
#define DEFINE_WRAP(__name) DynLoad__##__name __name
CUPTI_ROUTINE_EACH(DEFINE_WRAP);
} // namespace dynload
} // namespace platform
} // namespace paddle
#endif // PADDLE_WITH_CUPTI
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_CUPTI
#include <cuda.h>
#include <cupti.h>
#include <dlfcn.h>
#include <mutex>
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
namespace paddle {
namespace platform {
namespace dynload {
extern std::once_flag cupti_dso_flag;
extern void *cupti_dso_handle;
/**
* The following macro definition can generate structs
* (for each function) to dynamic load cupti routine
* via operator overloading.
*
* note: default dynamic linked libs
*/
#ifdef PADDLE_USE_DSO
#define DECLARE_DYNAMIC_LOAD_CUPTI_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
inline CUptiResult CUPTIAPI operator()(Args... args) { \
typedef CUptiResult CUPTIAPI (*cuptiFunc)(Args...); \
std::call_once(cupti_dso_flag, \
paddle::platform::dynload::GetCUPTIDsoHandle, \
&cupti_dso_handle); \
void *p_##__name = dlsym(cupti_dso_handle, #__name); \
return reinterpret_cast<cuptiFunc>(p_##__name)(args...); \
} \
}; \
extern DynLoad__##__name __name
#else
#define DECLARE_DYNAMIC_LOAD_CUPTI_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
inline CUptiResult CUPTIAPI operator()(Args... args) { \
return __name(args...); \
} \
}; \
extern DynLoad__##__name __name
#endif
#define CUPTI_ROUTINE_EACH(__macro) \
__macro(cuptiActivityEnable); \
__macro(cuptiActivityDisable); \
__macro(cuptiActivityRegisterCallbacks); \
__macro(cuptiActivityGetAttribute); \
__macro(cuptiActivitySetAttribute); \
__macro(cuptiGetTimestamp); \
__macro(cuptiActivityGetNextRecord); \
__macro(cuptiGetResultString); \
__macro(cuptiActivityGetNumDroppedRecords); \
__macro(cuptiActivityFlushAll); \
__macro(cuptiFinalize); \
__macro(cuptiSubscribe); \
__macro(cuptiUnsubscribe); \
__macro(cuptiEnableCallback);
CUPTI_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CUPTI_WRAP);
#undef DECLARE_DYNAMIC_LOAD_CUPTI_WRAP
} // namespace dynload
} // namespace platform
} // namespace paddle
#endif // PADDLE_WITH_CUPTI
......@@ -40,10 +40,14 @@ DEFINE_string(nccl_dir, "",
"libcurand. For instance, /usr/local/cuda/lib64. If default, "
"dlopen will search cuda from LD_LIBRARY_PATH");
DEFINE_string(cupti_dir, "", "Specify path for loading cupti.so.");
namespace paddle {
namespace platform {
namespace dynload {
static const char* cupti_lib_path = CUPTI_LIB_PATH;
static inline std::string join(const std::string& part1,
const std::string& part2) {
// directory separator
......@@ -143,6 +147,18 @@ void GetCUDNNDsoHandle(void** dso_handle) {
#endif
}
void GetCUPTIDsoHandle(void** dso_handle) {
std::string cupti_path = cupti_lib_path;
if (!FLAGS_cupti_dir.empty()) {
cupti_path = FLAGS_cupti_dir;
}
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(cupti_path, "libcupti.dylib", dso_handle, false);
#else
GetDsoHandleFromSearchPath(cupti_path, "libcupti.so", dso_handle, false);
#endif
}
void GetCurandDsoHandle(void** dso_handle) {
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcurand.dylib", dso_handle);
......
......@@ -34,6 +34,8 @@ void GetCublasDsoHandle(void** dso_handle);
*/
void GetCUDNNDsoHandle(void** dso_handle);
void GetCUPTIDsoHandle(void** dso_handle);
/**
* @brief load the DSO of CURAND
*
......
......@@ -15,7 +15,13 @@ limitations under the License. */
#include "paddle/fluid/platform/profiler.h"
#include <iomanip>
#include <map>
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#endif // PADDLE_WITH_CUDA
#include "glog/logging.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/platform/device_tracer.h"
#include "paddle/fluid/string/printf.h"
namespace paddle {
namespace platform {
......@@ -132,10 +138,13 @@ RecordEvent::RecordEvent(const std::string& name,
dev_ctx_ = dev_ctx;
name_ = name;
PushEvent(name_, dev_ctx_);
// Maybe need the same push/pop behavior.
SetCurAnnotation(name_.c_str());
}
RecordEvent::~RecordEvent() {
if (g_state == ProfilerState::kDisabled) return;
ClearCurAnnotation();
PopEvent(name_, dev_ctx_);
}
......@@ -147,7 +156,14 @@ void EnableProfiler(ProfilerState state) {
"The profiling state should be disabled when calling ",
"EnableProfiler.");
g_state = state;
g_profiler_place = (g_state == ProfilerState::kCUDA) ? "CUDA" : "CPU";
if (g_state == ProfilerState::kCUDA) {
g_profiler_place = "CUDA";
} else if (g_state == ProfilerState::kCPU) {
g_profiler_place = "CPU";
} else {
g_profiler_place = "All";
GetDeviceTracer()->Enable();
}
#ifdef PADDLE_WITH_CUDA
if (g_state == ProfilerState::kCUDA) {
// Generate some dummy evenets first to reduce the startup overhead.
......@@ -190,6 +206,12 @@ void DisableProfiler(EventSortingKey sorted_key) {
Mark("_stop_profiler_", nullptr);
g_state = ProfilerState::kDisabled;
DeviceTracer* tracer = GetDeviceTracer();
if (g_profiler_place == "All" && tracer && tracer->IsEnabled()) {
tracer->Disable();
tracer->GenProfile();
}
std::vector<std::vector<Event>> all_events = GetAllEvents();
ParseEvents(all_events, sorted_key);
ResetProfiler();
......@@ -254,9 +276,11 @@ void ParseEvents(std::vector<std::vector<Event>>& events,
}
if (rit != pushed_events.rend()) {
double event_time = (g_profiler_place == "CUDA")
? rit->CudaElapsedMs(events[i][j])
: rit->CpuElapsedMs(events[i][j]);
double event_time =
(g_profiler_place == "CUDA" || g_profiler_place == "All")
? rit->CudaElapsedMs(events[i][j])
: rit->CpuElapsedMs(events[i][j]);
std::string event_name =
"thread" + std::to_string(rit->thread_id()) + "::" + rit->name();
max_name_width = std::max(max_name_width, event_name.size());
......
......@@ -18,6 +18,7 @@ limitations under the License. */
#include <mutex>
#include <vector>
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/profiler.pb.h"
namespace paddle {
namespace platform {
......@@ -93,6 +94,7 @@ enum ProfilerState {
kDisabled, // disabled state
kCPU, // CPU profiling state
kCUDA, // GPU profiling state
kAll, // Profile both CPU and GPU. (Currently experimental).
};
void Mark(const std::string& name, const DeviceContext* dev_ctx);
......@@ -102,7 +104,7 @@ void PushEvent(const std::string& name, const DeviceContext* dev_ctx);
void PopEvent(const std::string& name, const DeviceContext* dev_ctx);
struct RecordEvent {
explicit RecordEvent(const std::string& name, const DeviceContext* dev_ctx);
RecordEvent(const std::string& name, const DeviceContext* dev_ctx);
~RecordEvent();
......@@ -110,9 +112,12 @@ struct RecordEvent {
const DeviceContext* dev_ctx_;
// Event name
std::string name_;
// Need to distinguish name by op type, block_id, program_id and perhaps
// different kernel invocations within an op.
std::string full_name_;
};
// Return the event list of all threads. Asummed the returned value calls
// Return the event list of all threads. Assumed the returned value calls
// event_lists, event_lists[i][j] represents the j-th Event of i-th thread.
std::vector<std::vector<Event>> GetAllEvents();
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
syntax = "proto2";
package paddle.platform.proto;
message Event {
optional string name = 1;
optional uint64 start_ns = 2;
optional uint64 end_ns = 3;
optional uint32 device_id = 5;
optional uint32 stream_id = 6;
}
message Profile {
repeated Event events = 1;
optional uint64 start_ns = 2;
optional uint64 end_ns = 3;
}
\ No newline at end of file
......@@ -459,6 +459,7 @@ All parameter, weight, gradient are variables in Paddle.
.value("kDisabled", platform::ProfilerState::kDisabled)
.value("kCPU", platform::ProfilerState::kCPU)
.value("kCUDA", platform::ProfilerState::kCUDA)
.value("kAll", platform::ProfilerState::kAll)
.export_values();
py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
......
......@@ -784,6 +784,7 @@ class Block(object):
elif type(v) == Variable:
var = Variable(
self,
type=v.type,
name=new_name,
error_clip=error_clip,
stop_gradient=stop_gradient)
......
......@@ -68,7 +68,7 @@ def save_vars(executor,
main_program=None,
vars=None,
predicate=None,
save_file_name=None):
filename=None):
"""
Save variables to directory by executor.
......@@ -80,8 +80,8 @@ def save_vars(executor,
as a bool. If it returns true, the corresponding input variable will be saved.
:param vars: variables need to be saved. If vars is specified, program & predicate
will be ignored
:param save_file_name: The name of a single file that all vars are saved to.
If it is None, save variables to separate files.
:param filename: The name of a single file that all vars are saved to.
If it is None, save variables to separate files.
:return: None
"""
......@@ -95,7 +95,7 @@ def save_vars(executor,
executor,
dirname=dirname,
vars=filter(predicate, main_program.list_vars()),
save_file_name=save_file_name)
filename=filename)
else:
save_program = Program()
save_block = save_program.global_block()
......@@ -103,7 +103,7 @@ def save_vars(executor,
save_var_map = {}
for each_var in vars:
new_var = _clone_var_in_block_(save_block, each_var)
if save_file_name is None:
if filename is None:
save_block.append_op(
type='save',
inputs={'X': [new_var]},
......@@ -112,7 +112,7 @@ def save_vars(executor,
else:
save_var_map[new_var.name] = new_var
if save_file_name is not None:
if filename is not None:
save_var_list = []
for name in sorted(save_var_map.keys()):
save_var_list.append(save_var_map[name])
......@@ -121,12 +121,12 @@ def save_vars(executor,
type='save_combine',
inputs={'X': save_var_list},
outputs={},
attrs={'file_path': os.path.join(dirname, save_file_name)})
attrs={'file_path': os.path.join(dirname, filename)})
executor.run(save_program)
def save_params(executor, dirname, main_program=None, save_file_name=None):
def save_params(executor, dirname, main_program=None, filename=None):
"""
Save all parameters to directory with executor.
"""
......@@ -136,11 +136,10 @@ def save_params(executor, dirname, main_program=None, save_file_name=None):
main_program=main_program,
vars=None,
predicate=is_parameter,
save_file_name=save_file_name)
filename=filename)
def save_persistables(executor, dirname, main_program=None,
save_file_name=None):
def save_persistables(executor, dirname, main_program=None, filename=None):
"""
Save all persistables to directory with executor.
"""
......@@ -150,7 +149,7 @@ def save_persistables(executor, dirname, main_program=None,
main_program=main_program,
vars=None,
predicate=is_persistable,
save_file_name=save_file_name)
filename=filename)
def load_vars(executor,
......@@ -158,7 +157,7 @@ def load_vars(executor,
main_program=None,
vars=None,
predicate=None,
load_file_name=None):
filename=None):
"""
Load variables from directory by executor.
......@@ -170,8 +169,8 @@ def load_vars(executor,
as a bool. If it returns true, the corresponding input variable will be loaded.
:param vars: variables need to be loaded. If vars is specified, program &
predicate will be ignored
:param load_file_name: The name of the single file that all vars are loaded from.
If it is None, load variables from separate files.
:param filename: The name of the single file that all vars are loaded from.
If it is None, load variables from separate files.
:return: None
"""
......@@ -185,7 +184,7 @@ def load_vars(executor,
executor,
dirname=dirname,
vars=filter(predicate, main_program.list_vars()),
load_file_name=load_file_name)
filename=filename)
else:
load_prog = Program()
load_block = load_prog.global_block()
......@@ -194,7 +193,7 @@ def load_vars(executor,
for each_var in vars:
assert isinstance(each_var, Variable)
new_var = _clone_var_in_block_(load_block, each_var)
if load_file_name is None:
if filename is None:
load_block.append_op(
type='load',
inputs={},
......@@ -203,7 +202,7 @@ def load_vars(executor,
else:
load_var_map[new_var.name] = new_var
if load_file_name is not None:
if filename is not None:
load_var_list = []
for name in sorted(load_var_map.keys()):
load_var_list.append(load_var_map[name])
......@@ -212,12 +211,12 @@ def load_vars(executor,
type='load_combine',
inputs={},
outputs={"Out": load_var_list},
attrs={'file_path': os.path.join(dirname, load_file_name)})
attrs={'file_path': os.path.join(dirname, filename)})
executor.run(load_prog)
def load_params(executor, dirname, main_program=None, load_file_name=None):
def load_params(executor, dirname, main_program=None, filename=None):
"""
load all parameters from directory by executor.
"""
......@@ -226,11 +225,10 @@ def load_params(executor, dirname, main_program=None, load_file_name=None):
dirname=dirname,
main_program=main_program,
predicate=is_parameter,
load_file_name=load_file_name)
filename=filename)
def load_persistables(executor, dirname, main_program=None,
load_file_name=None):
def load_persistables(executor, dirname, main_program=None, filename=None):
"""
load all persistables from directory by executor.
"""
......@@ -239,7 +237,7 @@ def load_persistables(executor, dirname, main_program=None,
dirname=dirname,
main_program=main_program,
predicate=is_persistable,
load_file_name=load_file_name)
filename=filename)
def get_inference_program(target_vars, main_program=None):
......@@ -299,7 +297,8 @@ def save_inference_model(dirname,
target_vars,
executor,
main_program=None,
save_file_name=None):
model_filename=None,
params_filename=None):
"""
Build a model especially for inference,
and save it to directory by the executor.
......@@ -310,8 +309,11 @@ def save_inference_model(dirname,
:param executor: executor that save inference model
:param main_program: original program, which will be pruned to build the inference model.
Default default_main_program().
:param save_file_name: The name of a single file that all parameters are saved to.
If it is None, save parameters to separate files.
:param model_filename: The name of file to save inference program.
If not specified, default filename `__model__` will be used.
:param params_filename: The name of file to save parameters.
It is used for the case that all parameters are saved in a single binary file.
If not specified, parameters are considered saved in separate files.
:return: None
"""
......@@ -342,15 +344,19 @@ def save_inference_model(dirname,
prepend_feed_ops(inference_program, feeded_var_names)
append_fetch_ops(inference_program, fetch_var_names)
if save_file_name == None:
model_file_name = dirname + "/__model__"
if model_filename is not None:
model_filename = os.path.basename(model_filename)
else:
model_file_name = dirname + "/__model_combined__"
model_filename = "__model__"
model_filename = os.path.join(dirname, model_filename)
with open(model_file_name, "wb") as f:
if params_filename is not None:
params_filename = os.path.basename(params_filename)
with open(model_filename, "wb") as f:
f.write(inference_program.desc.serialize_to_string())
save_persistables(executor, dirname, inference_program, save_file_name)
save_persistables(executor, dirname, inference_program, params_filename)
def get_feed_targets_names(program):
......@@ -371,15 +377,21 @@ def get_fetch_targets_names(program):
return fetch_targets_names
def load_inference_model(dirname, executor, load_file_name=None):
def load_inference_model(dirname,
executor,
model_filename=None,
params_filename=None):
"""
Load inference model from a directory
:param dirname: directory path
:param executor: executor that load inference model
:param load_file_name: The name of the single file that all parameters are loaded from.
If it is None, load parameters from separate files.
:param model_filename: The name of file to load inference program.
If not specified, default filename `__model__` will be used.
:param params_filename: The name of file to load parameters.
It is used for the case that all parameters are saved in a single binary file.
If not specified, parameters are considered saved in separate files.
:return: [program, feed_target_names, fetch_targets]
program: program especially for inference.
feed_target_names: Names of variables that need to feed data
......@@ -388,16 +400,20 @@ def load_inference_model(dirname, executor, load_file_name=None):
if not os.path.isdir(dirname):
raise ValueError("There is no directory named '%s'", dirname)
if load_file_name == None:
model_file_name = dirname + "/__model__"
if model_filename is not None:
model_filename = os.path.basename(model_filename)
else:
model_file_name = dirname + "/__model_combined__"
model_filename = "__model__"
model_filename = os.path.join(dirname, model_filename)
if params_filename is not None:
params_filename = os.path.basename(params_filename)
with open(model_file_name, "rb") as f:
with open(model_filename, "rb") as f:
program_desc_str = f.read()
program = Program.parse_from_string(program_desc_str)
load_persistables(executor, dirname, program, load_file_name)
load_persistables(executor, dirname, program, params_filename)
feed_target_names = get_feed_targets_names(program)
fetch_target_names = get_fetch_targets_names(program)
......
......@@ -132,7 +132,10 @@ def detection_output(scores,
return nmsed_outs
def bipartite_match(dist_matrix, name=None):
def bipartite_match(dist_matrix,
match_type=None,
dist_threshold=None,
name=None):
"""
**Bipartite matchint operator**
......@@ -164,6 +167,11 @@ def bipartite_match(dist_matrix, name=None):
This tensor can contain LoD information to represent a batch of
inputs. One instance of this batch can contain different numbers of
entities.
match_type(string|None): The type of matching method, should be
'bipartite' or 'per_prediction', 'bipartite' by defalut.
dist_threshold(float|None): If `match_type` is 'per_prediction',
this threshold is to determine the extra matching bboxes based
on the maximum distance, 0.5 by defalut.
Returns:
match_indices(Variable): A 2-D Tensor with shape [N, M] in int type.
N is the batch size. If match_indices[i][j] is -1, it
......@@ -183,6 +191,10 @@ def bipartite_match(dist_matrix, name=None):
helper.append_op(
type='bipartite_match',
inputs={'DistMat': dist_matrix},
attrs={
'match_type': match_type,
'dist_threshold': dist_threshold,
},
outputs={
'ColToRowMatchIndices': match_indices,
'ColToRowMatchDist': match_distance
......@@ -333,7 +345,7 @@ def ssd_loss(location,
loc_loss_weight (float): Weight for localization loss, 1.0 by default.
conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
match_type (str): The type of matching method during training, should
be 'bipartite' or 'per_prediction'.
be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
mining_type (str): The hard example mining type, should be 'hard_example'
or 'max_negative', now only support `max_negative`.
......@@ -381,7 +393,8 @@ def ssd_loss(location,
# 1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
iou = iou_similarity(x=gt_box, y=prior_box)
# 1.2 Compute matched boundding box by bipartite matching algorithm.
matched_indices, matched_dist = bipartite_match(iou)
matched_indices, matched_dist = bipartite_match(iou, match_type,
overlap_threshold)
# 2. Compute confidence for mining hard examples
# 2.1. Get the target label based on matched indices
......
......@@ -97,9 +97,14 @@ def profiler(state, sorted_key=None):
The `ave` means sorting by the average execution time.
"""
if state not in ['CPU', 'GPU']:
raise ValueError("The state must be 'CPU' or 'GPU'.")
prof_state = core.ProfilerState.kCUDA if state == "GPU" else core.ProfilerState.kCPU
if state not in ['CPU', 'GPU', "All"]:
raise ValueError("The state must be 'CPU' or 'GPU' or 'All'.")
if state == "GPU":
prof_state = core.ProfilerState.kCUDA
elif state == "CPU":
prof_state = core.ProfilerState.kCPU
else:
prof_state = core.ProfilerState.kAll
core.enable_profiler(prof_state)
yield
......
......@@ -228,32 +228,34 @@ def infer(use_cuda, save_dirname=None):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
lod = [0, 4, 10]
word_data = create_random_lodtensor(lod, place, low=0, high=1)
trg_word = create_random_lodtensor(lod, place, low=0, high=1)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert feed_target_names[0] == 'source_sequence'
assert feed_target_names[1] == 'target_sequence'
results = exe.run(inference_program,
feed={
feed_target_names[0]: word_data,
feed_target_names[1]: trg_word,
},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].lod())
np_data = np.array(results[0])
print("Inference shape: ", np_data.shape)
print("Inference results: ", np_data)
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
lod = [0, 4, 10]
word_data = create_random_lodtensor(lod, place, low=0, high=1)
trg_word = create_random_lodtensor(lod, place, low=0, high=1)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert feed_target_names[0] == 'source_sequence'
assert feed_target_names[1] == 'target_sequence'
results = exe.run(inference_program,
feed={
feed_target_names[0]: word_data,
feed_target_names[1]: trg_word,
},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].lod())
np_data = np.array(results[0])
print("Inference shape: ", np_data.shape)
print("Inference results: ", np_data)
def main(use_cuda):
......
......@@ -72,23 +72,26 @@ def infer(use_cuda, save_dirname=None):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# The input's dimension should be 2-D and the second dim is 13
# The input data should be >= 0
batch_size = 10
tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
assert feed_target_names[0] == 'x'
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_x},
fetch_list=fetch_targets)
print("infer shape: ", results[0].shape)
print("infer results: ", results[0])
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# The input's dimension should be 2-D and the second dim is 13
# The input data should be >= 0
batch_size = 10
tensor_x = numpy.random.uniform(0, 10,
[batch_size, 13]).astype("float32")
assert feed_target_names[0] == 'x'
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_x},
fetch_list=fetch_targets)
print("infer shape: ", results[0].shape)
print("infer results: ", results[0])
def main(use_cuda):
......
......@@ -174,22 +174,26 @@ def infer(use_cuda, save_dirname=None):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# The input's dimension of conv should be 4-D or 5-D.
tensor_img = numpy.random.rand(1, 3, 32, 32).astype("float32")
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
print("infer results: ", results[0])
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range [0, 1.0].
batch_size = 1
tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
print("infer results: ", results[0])
def main(net_type, use_cuda):
......
......@@ -26,7 +26,7 @@ import unittest
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
pred_dict_len = len(verb_dict)
mark_dict_len = 2
word_dim = 32
......@@ -53,7 +53,7 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
# 8 features
predicate_embedding = fluid.layers.embedding(
input=predicate,
size=[pred_len, word_dim],
size=[pred_dict_len, word_dim],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr='vemb')
......@@ -234,6 +234,7 @@ def train(use_cuda, save_dirname=None):
# Set the threshold low to speed up the CI test
if float(pass_precision) > 0.05:
if save_dirname is not None:
# TODO(liuyiqun): Change the target to crf_decode
fluid.io.save_inference_model(save_dirname, [
'word_data', 'verb_data', 'ctx_n2_data',
'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data',
......@@ -251,51 +252,60 @@ def infer(use_cuda, save_dirname=None):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
lod = [0, 4, 10]
ts_word = create_random_lodtensor(lod, place, low=0, high=1)
ts_pred = create_random_lodtensor(lod, place, low=0, high=1)
ts_ctx_n2 = create_random_lodtensor(lod, place, low=0, high=1)
ts_ctx_n1 = create_random_lodtensor(lod, place, low=0, high=1)
ts_ctx_0 = create_random_lodtensor(lod, place, low=0, high=1)
ts_ctx_p1 = create_random_lodtensor(lod, place, low=0, high=1)
ts_ctx_p2 = create_random_lodtensor(lod, place, low=0, high=1)
ts_mark = create_random_lodtensor(lod, place, low=0, high=1)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert feed_target_names[0] == 'word_data'
assert feed_target_names[1] == 'verb_data'
assert feed_target_names[2] == 'ctx_n2_data'
assert feed_target_names[3] == 'ctx_n1_data'
assert feed_target_names[4] == 'ctx_0_data'
assert feed_target_names[5] == 'ctx_p1_data'
assert feed_target_names[6] == 'ctx_p2_data'
assert feed_target_names[7] == 'mark_data'
results = exe.run(inference_program,
feed={
feed_target_names[0]: ts_word,
feed_target_names[1]: ts_pred,
feed_target_names[2]: ts_ctx_n2,
feed_target_names[3]: ts_ctx_n1,
feed_target_names[4]: ts_ctx_0,
feed_target_names[5]: ts_ctx_p1,
feed_target_names[6]: ts_ctx_p2,
feed_target_names[7]: ts_mark
},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].lod())
np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape)
print("Inference results: ", np_data)
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
lod = [0, 4, 10]
word = create_random_lodtensor(
lod, place, low=0, high=word_dict_len - 1)
pred = create_random_lodtensor(
lod, place, low=0, high=pred_dict_len - 1)
ctx_n2 = create_random_lodtensor(
lod, place, low=0, high=word_dict_len - 1)
ctx_n1 = create_random_lodtensor(
lod, place, low=0, high=word_dict_len - 1)
ctx_0 = create_random_lodtensor(
lod, place, low=0, high=word_dict_len - 1)
ctx_p1 = create_random_lodtensor(
lod, place, low=0, high=word_dict_len - 1)
ctx_p2 = create_random_lodtensor(
lod, place, low=0, high=word_dict_len - 1)
mark = create_random_lodtensor(
lod, place, low=0, high=mark_dict_len - 1)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert feed_target_names[0] == 'word_data'
assert feed_target_names[1] == 'verb_data'
assert feed_target_names[2] == 'ctx_n2_data'
assert feed_target_names[3] == 'ctx_n1_data'
assert feed_target_names[4] == 'ctx_0_data'
assert feed_target_names[5] == 'ctx_p1_data'
assert feed_target_names[6] == 'ctx_p2_data'
assert feed_target_names[7] == 'mark_data'
results = exe.run(inference_program,
feed={
feed_target_names[0]: word,
feed_target_names[1]: pred,
feed_target_names[2]: ctx_n2,
feed_target_names[3]: ctx_n1,
feed_target_names[4]: ctx_0,
feed_target_names[5]: ctx_p1,
feed_target_names[6]: ctx_p2,
feed_target_names[7]: mark
},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].lod())
np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape)
def main(use_cuda):
......
......@@ -78,7 +78,12 @@ def conv_net(img, label):
return loss_net(conv_pool_2, label)
def train(nn_type, use_cuda, parallel, save_dirname, save_param_filename):
def train(nn_type,
use_cuda,
parallel,
save_dirname=None,
model_filename=None,
params_filename=None):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
......@@ -146,7 +151,8 @@ def train(nn_type, use_cuda, parallel, save_dirname, save_param_filename):
fluid.io.save_inference_model(
save_dirname, ["img"], [prediction],
exe,
save_file_name=save_param_filename)
model_filename=model_filename,
params_filename=params_filename)
return
else:
print(
......@@ -158,54 +164,62 @@ def train(nn_type, use_cuda, parallel, save_dirname, save_param_filename):
raise AssertionError("Loss of recognize digits is too large")
def infer(use_cuda, save_dirname=None, param_filename=None):
def infer(use_cuda,
save_dirname=None,
model_filename=None,
params_filename=None):
if save_dirname is None:
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names, fetch_targets
] = fluid.io.load_inference_model(save_dirname, exe, param_filename)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
batch_size = 1
tensor_img = numpy.random.uniform(-1.0, 1.0,
[batch_size, 1, 28, 28]).astype("float32")
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
print("infer results: ", results[0])
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(
save_dirname, exe, model_filename, params_filename)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
batch_size = 1
tensor_img = numpy.random.uniform(
-1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
print("infer results: ", results[0])
def main(use_cuda, parallel, nn_type, combine):
save_dirname = None
model_filename = None
params_filename = None
if not use_cuda and not parallel:
save_dirname = "recognize_digits_" + nn_type + ".inference.model"
save_filename = None
if combine == True:
save_filename = "__params_combined__"
else:
save_dirname = None
save_filename = None
model_filename = "__model_combined__"
params_filename = "__params_combined__"
train(
nn_type=nn_type,
use_cuda=use_cuda,
parallel=parallel,
save_dirname=save_dirname,
save_param_filename=save_filename)
model_filename=model_filename,
params_filename=params_filename)
infer(
use_cuda=use_cuda,
save_dirname=save_dirname,
param_filename=save_filename)
model_filename=model_filename,
params_filename=params_filename)
class TestRecognizeDigits(unittest.TestCase):
......
......@@ -251,13 +251,6 @@ def infer(use_cuda, save_dirname=None):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
def create_lod_tensor(data, lod=None):
tensor = fluid.LoDTensor()
if lod is None:
......@@ -275,44 +268,53 @@ def infer(use_cuda, save_dirname=None):
tensor.set(flattened_data, place)
return tensor
# Use the first data from paddle.dataset.movielens.test() as input
assert feed_target_names[0] == "user_id"
user_id = create_lod_tensor([[1]])
assert feed_target_names[1] == "gender_id"
gender_id = create_lod_tensor([[1]])
assert feed_target_names[2] == "age_id"
age_id = create_lod_tensor([[0]])
assert feed_target_names[3] == "job_id"
job_id = create_lod_tensor([[10]])
assert feed_target_names[4] == "movie_id"
movie_id = create_lod_tensor([[783]])
assert feed_target_names[5] == "category_id"
category_id = create_lod_tensor([[10], [8], [9]], [[0, 3]])
assert feed_target_names[6] == "movie_title"
movie_title = create_lod_tensor([[1069], [4140], [2923], [710], [988]],
[[0, 5]])
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={
feed_target_names[0]: user_id,
feed_target_names[1]: gender_id,
feed_target_names[2]: age_id,
feed_target_names[3]: job_id,
feed_target_names[4]: movie_id,
feed_target_names[5]: category_id,
feed_target_names[6]: movie_title
},
fetch_list=fetch_targets,
return_numpy=False)
print("inferred score: ", np.array(results[0]))
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# Use the first data from paddle.dataset.movielens.test() as input
assert feed_target_names[0] == "user_id"
user_id = create_lod_tensor([[1]])
assert feed_target_names[1] == "gender_id"
gender_id = create_lod_tensor([[1]])
assert feed_target_names[2] == "age_id"
age_id = create_lod_tensor([[0]])
assert feed_target_names[3] == "job_id"
job_id = create_lod_tensor([[10]])
assert feed_target_names[4] == "movie_id"
movie_id = create_lod_tensor([[783]])
assert feed_target_names[5] == "category_id"
category_id = create_lod_tensor([[10], [8], [9]], [[0, 3]])
assert feed_target_names[6] == "movie_title"
movie_title = create_lod_tensor([[1069], [4140], [2923], [710], [988]],
[[0, 5]])
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={
feed_target_names[0]: user_id,
feed_target_names[1]: gender_id,
feed_target_names[2]: age_id,
feed_target_names[3]: job_id,
feed_target_names[4]: movie_id,
feed_target_names[5]: category_id,
feed_target_names[6]: movie_title
},
fetch_list=fetch_targets,
return_numpy=False)
print("inferred score: ", np.array(results[0]))
def main(use_cuda):
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -193,36 +193,39 @@ def train(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
net_method.__name__))
def infer(use_cuda, save_dirname=None):
def infer(word_dict, use_cuda, save_dirname=None):
if save_dirname is None:
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
lod = [0, 4, 10]
word_dict = paddle.dataset.imdb.word_dict()
tensor_words = create_random_lodtensor(
lod, place, low=0, high=len(word_dict) - 1)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert feed_target_names[0] == "words"
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_words},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].lod())
np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape)
print("Inference results: ", np_data)
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
word_dict_len = len(word_dict)
lod = [0, 4, 10]
tensor_words = create_random_lodtensor(
lod, place, low=0, high=word_dict_len - 1)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert feed_target_names[0] == "words"
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_words},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].lod())
np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape)
print("Inference results: ", np_data)
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
......@@ -258,7 +261,7 @@ class TestUnderstandSentiment(unittest.TestCase):
self.word_dict,
net_method=convolution_net,
use_cuda=False,
save_dirname="understand_sentiment.inference.model")
save_dirname="understand_sentiment_conv.inference.model")
def test_conv_cpu_parallel(self):
with self.new_program_scope():
......@@ -271,7 +274,11 @@ class TestUnderstandSentiment(unittest.TestCase):
@unittest.skip(reason="make CI faster")
def test_stacked_lstm_cpu(self):
with self.new_program_scope():
main(self.word_dict, net_method=stacked_lstm_net, use_cuda=False)
main(
self.word_dict,
net_method=stacked_lstm_net,
use_cuda=False,
save_dirname="understand_sentiment_stacked_lstm.inference.model")
def test_stacked_lstm_cpu_parallel(self):
with self.new_program_scope():
......@@ -287,7 +294,7 @@ class TestUnderstandSentiment(unittest.TestCase):
self.word_dict,
net_method=convolution_net,
use_cuda=True,
save_dirname="understand_sentiment.inference.model")
save_dirname="understand_sentiment_conv.inference.model")
def test_conv_gpu_parallel(self):
with self.new_program_scope():
......@@ -300,7 +307,11 @@ class TestUnderstandSentiment(unittest.TestCase):
@unittest.skip(reason="make CI faster")
def test_stacked_lstm_gpu(self):
with self.new_program_scope():
main(self.word_dict, net_method=stacked_lstm_net, use_cuda=True)
main(
self.word_dict,
net_method=stacked_lstm_net,
use_cuda=True,
save_dirname="understand_sentiment_stacked_lstm.inference.model")
def test_stacked_lstm_gpu_parallel(self):
with self.new_program_scope():
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# # Licensed under the Apache License, Version 2.0 (the "License");
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
......@@ -21,6 +22,7 @@ import sys
def create_random_lodtensor(lod, place, low, high):
# The range of data elements is [low, high]
data = np.random.random_integers(low, high, [lod[-1], 1]).astype("int64")
res = fluid.LoDTensor()
res.set(data, place)
......@@ -28,54 +30,7 @@ def create_random_lodtensor(lod, place, low, high):
return res
def infer(use_cuda, save_dirname=None):
if save_dirname is None:
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict) - 1
# Setup input, by creating 4 words, and setting up lod required for
# lookup_table_op
lod = [0, 1]
first_word = create_random_lodtensor(lod, place, low=0, high=dict_size)
second_word = create_random_lodtensor(lod, place, low=0, high=dict_size)
third_word = create_random_lodtensor(lod, place, low=0, high=dict_size)
fourth_word = create_random_lodtensor(lod, place, low=0, high=dict_size)
assert feed_target_names[0] == 'firstw'
assert feed_target_names[1] == 'secondw'
assert feed_target_names[2] == 'thirdw'
assert feed_target_names[3] == 'forthw'
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={
feed_target_names[0]: first_word,
feed_target_names[1]: second_word,
feed_target_names[2]: third_word,
feed_target_names[3]: fourth_word
},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].lod())
np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape)
print("Inference results: ", np_data)
def train(use_cuda, is_sparse, parallel, save_dirname):
def train(use_cuda, is_sparse, is_parallel, save_dirname):
PASS_NUM = 100
EMBED_SIZE = 32
HIDDEN_SIZE = 256
......@@ -130,7 +85,7 @@ def train(use_cuda, is_sparse, parallel, save_dirname):
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
if not parallel:
if not is_parallel:
avg_cost, predict_word = __network__(
[first_word, second_word, third_word, forth_word, next_word])
else:
......@@ -176,11 +131,67 @@ def train(use_cuda, is_sparse, parallel, save_dirname):
raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))
def main(use_cuda, is_sparse, parallel):
def infer(use_cuda, save_dirname=None):
if save_dirname is None:
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
# Setup inputs, by creating 4 words, the lod of which should be [0, 1]
lod = [0, 1]
first_word = create_random_lodtensor(
lod, place, low=0, high=dict_size - 1)
second_word = create_random_lodtensor(
lod, place, low=0, high=dict_size - 1)
third_word = create_random_lodtensor(
lod, place, low=0, high=dict_size - 1)
fourth_word = create_random_lodtensor(
lod, place, low=0, high=dict_size - 1)
assert feed_target_names[0] == 'firstw'
assert feed_target_names[1] == 'secondw'
assert feed_target_names[2] == 'thirdw'
assert feed_target_names[3] == 'forthw'
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={
feed_target_names[0]: first_word,
feed_target_names[1]: second_word,
feed_target_names[2]: third_word,
feed_target_names[3]: fourth_word
},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].lod())
np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape)
def main(use_cuda, is_sparse, is_parallel):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
save_dirname = "word2vec.inference.model"
train(use_cuda, is_sparse, parallel, save_dirname)
if not is_parallel:
save_dirname = "word2vec.inference.model"
else:
save_dirname = None
train(use_cuda, is_sparse, is_parallel, save_dirname)
infer(use_cuda, save_dirname)
......@@ -193,10 +204,10 @@ class W2VTest(unittest.TestCase):
pass
def inject_test_method(use_cuda, is_sparse, parallel):
def inject_test_method(use_cuda, is_sparse, is_parallel):
fn_name = "test_{0}_{1}_{2}".format("cuda" if use_cuda else "cpu", "sparse"
if is_sparse else "dense", "parallel"
if parallel else "normal")
if is_parallel else "normal")
def __impl__(*args, **kwargs):
prog = fluid.Program()
......@@ -204,10 +215,12 @@ def inject_test_method(use_cuda, is_sparse, parallel):
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
main(use_cuda=use_cuda, is_sparse=is_sparse, parallel=parallel)
main(
use_cuda=use_cuda,
is_sparse=is_sparse,
is_parallel=is_parallel)
# run only 2 cases: use_cuda is either True or False
if is_sparse == False and parallel == False:
if use_cuda and is_sparse:
fn = __impl__
else:
# skip the other test when on CI server
......@@ -219,8 +232,8 @@ def inject_test_method(use_cuda, is_sparse, parallel):
for use_cuda in (False, True):
for is_sparse in (False, True):
for parallel in (False, True):
inject_test_method(use_cuda, is_sparse, parallel)
for is_parallel in (False, True):
inject_test_method(use_cuda, is_sparse, is_parallel)
if __name__ == '__main__':
unittest.main()
......@@ -48,6 +48,7 @@ current_endpoint = os.getenv("SERVER_ENDPOINT")
# run as trainer or parameter server
training_role = os.getenv("TRAINING_ROLE",
"TRAINER") # get the training role: trainer/pserver
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
if training_role == "PSERVER":
......@@ -65,8 +66,6 @@ else:
PASS_NUM = 100
for pass_id in range(PASS_NUM):
fluid.io.save_persistables(exe, "./fit_a_line.model/")
fluid.io.load_persistables(exe, "./fit_a_line.model/")
for data in train_reader():
avg_loss_value = exe.run(trainer_prog,
feed=feeder.feed(data),
......
......@@ -138,6 +138,7 @@ current_endpoint = os.getenv("SERVER_ENDPOINT")
# run as trainer or parameter server
training_role = os.getenv("TRAINING_ROLE",
"TRAINER") # get the training role: trainer/pserver
t.transpile(
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=TRAINERS)
......
......@@ -191,6 +191,7 @@ def main():
# run as trainer or parameter server
training_role = os.getenv(
"TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver
t.transpile(
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
......
......@@ -82,6 +82,7 @@ current_endpoint = os.getenv("SERVER_ENDPOINT")
# run as trainer or parameter server
training_role = os.getenv("TRAINING_ROLE",
"TRAINER") # get the training role: trainer/pserver
t.transpile(
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=TRAINERS)
if training_role == "PSERVER":
......@@ -97,9 +98,10 @@ elif training_role == "TRAINER":
feed_list=[first_word, second_word, third_word, forth_word, next_word],
place=place)
exe.run(fluid.default_startup_program())
trainer_prog = t.get_trainer_program()
for pass_id in range(PASS_NUM):
for data in train_reader():
avg_cost_np = exe.run(t.get_trainer_program(),
avg_cost_np = exe.run(trainer_prog,
feed=feeder.feed(data),
fetch_list=[avg_cost])
print("avg_cost_np", avg_cost_np)
......
......@@ -115,6 +115,7 @@ def main():
# run as trainer or parameter server
training_role = os.getenv(
"TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver
t.transpile(
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
......
......@@ -64,11 +64,7 @@ if not current_endpoint:
t = fluid.DistributeTranspiler()
t.transpile(
optimize_ops,
params_grads,
0,
pservers=pserver_endpoints,
trainers=trainers)
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=trainers)
if training_role == "PSERVER":
pserver_prog = t.get_pserver_program(current_endpoint)
......
......@@ -171,6 +171,7 @@ def main():
current_endpoint = os.getenv("SERVER_ENDPOINT")
# run as trainer or parameter server
training_role = os.getenv("TRAINING_ROLE", "TRAINER")
t.transpile(
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
......
......@@ -90,6 +90,7 @@ def main():
# run as trainer or parameter server
training_role = os.getenv(
"TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver
t.transpile(
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
......
......@@ -102,6 +102,7 @@ def main():
# run as trainer or parameter server
training_role = os.getenv(
"TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver
t.transpile(
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
......
......@@ -41,6 +41,7 @@ list(REMOVE_ITEM TEST_OPS test_while_op)
list(REMOVE_ITEM TEST_OPS test_lod_array_length_op)
list(REMOVE_ITEM TEST_OPS test_reorder_lod_tensor)
list(REMOVE_ITEM TEST_OPS test_profiler)
list(REMOVE_ITEM TEST_OPS test_nvprof)
list(REMOVE_ITEM TEST_OPS test_normalization_wrapper)
list(REMOVE_ITEM TEST_OPS test_executor_and_mul)
list(REMOVE_ITEM TEST_OPS test_assign_value_op)
......@@ -75,6 +76,7 @@ py_test_modules(test_while_op MODULES test_while_op)
py_test_modules(test_lod_array_length_op MODULES test_lod_array_length_op)
py_test_modules(test_reorder_lod_tensor MODULES test_reorder_lod_tensor)
py_test_modules(test_profiler MODULES test_profiler)
py_test_modules(test_nvprof MODULES test_nvprof)
py_test_modules(test_normalization_wrapper MODULES test_normalization_wrapper)
py_test_modules(test_executor_and_mul MODULES test_executor_and_mul)
py_test_modules(test_assign_value_op MODULES test_assign_value_op)
......
......@@ -46,7 +46,20 @@ def bipartite_match(distance, match_indices, match_dist):
idx += 1
def batch_bipartite_match(distance, lod):
def argmax_match(distance, match_indices, match_dist, threshold):
r, c = distance.shape
for j in xrange(c):
if match_indices[j] != -1:
continue
col_dist = distance[:, j]
indices = np.argwhere(col_dist >= threshold).flatten()
if len(indices) < 1:
continue
match_indices[j] = indices[np.argmax(col_dist[indices])]
match_dist[j] = col_dist[match_indices[j]]
def batch_bipartite_match(distance, lod, match_type=None, dist_threshold=None):
"""Bipartite Matching algorithm for batch input.
Arg:
distance (numpy.array) : The distance of two entries with shape [M, N].
......@@ -59,6 +72,9 @@ def batch_bipartite_match(distance, lod):
for i in range(len(lod) - 1):
bipartite_match(distance[lod[i]:lod[i + 1], :], match_indices[i, :],
match_dist[i, :])
if match_type == 'per_prediction':
argmax_match(distance[lod[i]:lod[i + 1], :], match_indices[i, :],
match_dist[i, :], dist_threshold)
return match_indices, match_dist
......@@ -71,8 +87,8 @@ class TestBipartiteMatchOpWithLoD(OpTest):
self.inputs = {'DistMat': (dist, lod)}
self.outputs = {
'ColToRowMatchIndices': (match_indices),
'ColToRowMatchDist': (match_dist),
'ColToRowMatchIndices': match_indices,
'ColToRowMatchDist': match_dist,
}
def test_check_output(self):
......@@ -96,5 +112,27 @@ class TestBipartiteMatchOpWithoutLoD(OpTest):
self.check_output()
class TestBipartiteMatchOpWithPerPredictionType(OpTest):
def setUp(self):
self.op_type = 'bipartite_match'
lod = [[0, 5, 11, 23]]
dist = np.random.random((23, 237)).astype('float32')
match_indices, match_dist = batch_bipartite_match(dist, lod[0],
'per_prediction', 0.5)
self.inputs = {'DistMat': (dist, lod)}
self.outputs = {
'ColToRowMatchIndices': match_indices,
'ColToRowMatchDist': match_dist,
}
self.attrs = {
'match_type': 'per_prediction',
'dist_threshold': 0.5,
}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import os
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
class TestNVProf(unittest.TestCase):
def test_nvprof(self):
if not fluid.core.is_compiled_with_cuda():
return
epoc = 8
dshape = [4, 3, 28, 28]
data = layers.data(name='data', shape=[3, 28, 28], dtype='float32')
conv = layers.conv2d(data, 20, 3, stride=[1, 1], padding=[1, 1])
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
output_file = 'cuda_profiler.txt'
with profiler.cuda_profiler(output_file, 'csv') as nvprof:
for i in range(epoc):
input = np.random.random(dshape).astype('float32')
exe.run(fluid.default_main_program(), feed={'data': input})
os.remove(output_file)
if __name__ == '__main__':
unittest.main()
......@@ -22,27 +22,9 @@ import paddle.fluid.core as core
class TestProfiler(unittest.TestCase):
def test_nvprof(self):
if not fluid.core.is_compiled_with_cuda():
return
epoc = 8
dshape = [4, 3, 28, 28]
data = layers.data(name='data', shape=[3, 28, 28], dtype='float32')
conv = layers.conv2d(data, 20, 3, stride=[1, 1], padding=[1, 1])
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
output_file = 'cuda_profiler.txt'
with profiler.cuda_profiler(output_file, 'csv') as nvprof:
for i in range(epoc):
input = np.random.random(dshape).astype('float32')
exe.run(fluid.default_main_program(), feed={'data': input})
os.remove(output_file)
def net_profiler(self, state):
if state == 'GPU' and not core.is_compiled_with_cuda():
enable_if_gpu = state == 'GPU' or state == "All"
if enable_if_gpu and not core.is_compiled_with_cuda():
return
startup_program = fluid.Program()
main_program = fluid.Program()
......@@ -85,6 +67,9 @@ class TestProfiler(unittest.TestCase):
def test_cuda_profiler(self):
self.net_profiler('GPU')
def test_all_profiler(self):
self.net_profiler('All')
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册