Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c06b4483
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c06b4483
编写于
5月 14, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into feature/exec_strategy
上级
e5281b3c
8c7d2e29
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
76 addition
and
30 deletion
+76
-30
paddle/fluid/operators/softmax_mkldnn_op.cc
paddle/fluid/operators/softmax_mkldnn_op.cc
+54
-19
paddle/gserver/layers/PriorBox.cpp
paddle/gserver/layers/PriorBox.cpp
+22
-11
未找到文件。
paddle/fluid/operators/softmax_mkldnn_op.cc
浏览文件 @
c06b4483
...
...
@@ -53,25 +53,60 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
"Softmax input and output dimensions should match"
);
// Same memory descriptor to be used for input and output
memory
::
dims
softmax_tz
=
{
src_tz
[
0
],
src_tz
[
1
]};
// Currently only supports NC data format
// TODO(jczaja-intel): support more formats
auto
softmax_md
=
MKLDNNMemDesc
({
softmax_tz
},
memory
::
f32
,
memory
::
format
::
nc
);
// Normalization is made after innermost dimension eg. C out of NC
auto
softmax_desc
=
softmax_forward
::
desc
(
prop_kind
::
forward_scoring
,
softmax_md
,
1
/*dim: C*/
);
// create memory primitives
auto
softmax_src_memory
=
memory
({
softmax_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
const_cast
<
T
*>
(
input_data
)));
auto
softmax_dst_memory
=
memory
({
softmax_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
const_cast
<
T
*>
(
output_data
)));
auto
softmax_prim_desc
=
softmax_forward
::
primitive_desc
(
softmax_desc
,
mkldnn_engine
);
auto
softmax
=
softmax_forward
(
softmax_prim_desc
,
softmax_src_memory
,
softmax_dst_memory
);
std
::
vector
<
primitive
>
pipeline
{
softmax
};
// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Each MKLDNN operator may have diffrent hashing function
auto
gethash
=
[](
memory
::
dims
&
operand_dims
)
{
return
std
::
string
(
std
::
to_string
(
operand_dims
[
0
])
+
"-"
+
std
::
to_string
(
operand_dims
[
1
]));
};
const
std
::
string
key
=
gethash
(
softmax_tz
);
const
std
::
string
key_softmax_p
=
key
+
"@softmax_p"
;
const
std
::
string
key_softmax_src_mem_p
=
key
+
"@softmax_src_mem_p"
;
const
std
::
string
key_softmax_dst_mem_p
=
key
+
"@softmax_dst_mem_p"
;
std
::
shared_ptr
<
void
>
softmax_p
=
dev_ctx
.
GetBlob
(
key_softmax_p
);
if
(
softmax_p
==
nullptr
)
{
// Currently only NC data format is supported
auto
softmax_md
=
MKLDNNMemDesc
({
softmax_tz
},
memory
::
f32
,
memory
::
format
::
nc
);
// Normalization is made after innermost dimension eg. C out of NC
auto
softmax_desc
=
softmax_forward
::
desc
(
prop_kind
::
forward_scoring
,
softmax_md
,
1
/*dim: C*/
);
// create memory primitives
auto
softmax_src_memory_p
=
std
::
make_shared
<
memory
>
(
memory
::
primitive_desc
{
softmax_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
const_cast
<
T
*>
(
input_data
)));
dev_ctx
.
SetBlob
(
key_softmax_src_mem_p
,
softmax_src_memory_p
);
auto
softmax_dst_memory_p
=
std
::
make_shared
<
memory
>
(
memory
::
primitive_desc
{
softmax_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
output_data
));
dev_ctx
.
SetBlob
(
key_softmax_dst_mem_p
,
softmax_dst_memory_p
);
auto
softmax_forward_pd
=
std
::
make_shared
<
softmax_forward
::
primitive_desc
>
(
softmax_desc
,
mkldnn_engine
);
softmax_p
=
std
::
make_shared
<
softmax_forward
>
(
*
(
softmax_forward_pd
.
get
()),
*
(
static_cast
<
memory
*>
(
softmax_src_memory_p
.
get
())),
*
(
static_cast
<
memory
*>
(
softmax_dst_memory_p
.
get
())));
dev_ctx
.
SetBlob
(
key_softmax_p
,
softmax_p
);
}
else
{
// Primitives already exist
auto
src_memory_p
=
std
::
static_pointer_cast
<
memory
>
(
dev_ctx
.
GetBlob
(
key_softmax_src_mem_p
));
PADDLE_ENFORCE
(
src_memory_p
!=
nullptr
,
"Fail to find softmax src mem_p in device context"
);
auto
dst_memory_p
=
std
::
static_pointer_cast
<
memory
>
(
dev_ctx
.
GetBlob
(
key_softmax_dst_mem_p
));
PADDLE_ENFORCE
(
dst_memory_p
!=
nullptr
,
"Fail to find softmax dst mem_p in device context"
);
src_memory_p
->
set_data_handle
(
reinterpret_cast
<
void
*>
(
const_cast
<
T
*>
(
input_data
)));
dst_memory_p
->
set_data_handle
(
output_data
);
}
std
::
vector
<
primitive
>
pipeline
{
*
(
static_cast
<
softmax_forward
::
primitive
*>
(
softmax_p
.
get
()))};
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
...
...
paddle/gserver/layers/PriorBox.cpp
浏览文件 @
c06b4483
...
...
@@ -28,7 +28,7 @@ namespace paddle {
*/
class
PriorBoxLayer
:
public
Layer
{
public:
public:
// NOLINT
explicit
PriorBoxLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
...
...
@@ -36,7 +36,7 @@ public:
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
{}
protected:
protected:
// NOLINT
int
numPriors_
;
std
::
vector
<
int
>
minSize_
;
std
::
vector
<
int
>
maxSize_
;
...
...
@@ -109,11 +109,18 @@ void PriorBoxLayer::forward(PassType passType) {
real
boxWidth
=
minSize
;
real
boxHeight
=
minSize
;
// priors with different aspect ratios
for
(
size_t
r
=
0
;
r
<
aspectRatio_
.
size
();
r
++
)
{
real
ar
=
aspectRatio_
[
r
];
boxWidth
=
minSize
*
sqrt
(
ar
);
boxHeight
=
minSize
/
sqrt
(
ar
);
// first prior: aspect_ratio == 1.0, compatible to old logic
tmpPtr
[
idx
++
]
=
(
centerX
-
boxWidth
/
2.
)
/
imageWidth
;
tmpPtr
[
idx
++
]
=
(
centerY
-
boxHeight
/
2.
)
/
imageHeight
;
tmpPtr
[
idx
++
]
=
(
centerX
+
boxWidth
/
2.
)
/
imageWidth
;
tmpPtr
[
idx
++
]
=
(
centerY
+
boxHeight
/
2.
)
/
imageHeight
;
// set the variance.
for
(
int
t
=
0
;
t
<
4
;
t
++
)
tmpPtr
[
idx
++
]
=
variance_
[
t
];
if
(
maxSize_
.
size
()
>
0
)
{
// square prior with size sqrt(minSize * maxSize)
real
maxSize
=
maxSize_
[
s
];
boxWidth
=
boxHeight
=
sqrt
(
minSize
*
maxSize
);
tmpPtr
[
idx
++
]
=
(
centerX
-
boxWidth
/
2.
)
/
imageWidth
;
tmpPtr
[
idx
++
]
=
(
centerY
-
boxHeight
/
2.
)
/
imageHeight
;
tmpPtr
[
idx
++
]
=
(
centerX
+
boxWidth
/
2.
)
/
imageWidth
;
...
...
@@ -122,10 +129,14 @@ void PriorBoxLayer::forward(PassType passType) {
for
(
int
t
=
0
;
t
<
4
;
t
++
)
tmpPtr
[
idx
++
]
=
variance_
[
t
];
}
if
(
maxSize_
.
size
()
>
0
)
{
// square prior with size sqrt(minSize * maxSize)
real
maxSize
=
maxSize_
[
s
];
boxWidth
=
boxHeight
=
sqrt
(
minSize
*
maxSize
);
// priors with different aspect ratios
for
(
size_t
r
=
0
;
r
<
aspectRatio_
.
size
();
r
++
)
{
real
ar
=
aspectRatio_
[
r
];
if
(
fabs
(
ar
-
1.0
)
<
1e-6
)
{
continue
;
}
boxWidth
=
minSize
*
sqrt
(
ar
);
boxHeight
=
minSize
/
sqrt
(
ar
);
tmpPtr
[
idx
++
]
=
(
centerX
-
boxWidth
/
2.
)
/
imageWidth
;
tmpPtr
[
idx
++
]
=
(
centerY
-
boxHeight
/
2.
)
/
imageHeight
;
tmpPtr
[
idx
++
]
=
(
centerX
+
boxWidth
/
2.
)
/
imageWidth
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录