Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c0511c8a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
c0511c8a
编写于
10月 04, 2017
作者:
Q
Qiao Longfei
提交者:
GitHub
10月 04, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4598 from jacquesqiao/fix-sgd-learning-rate
use EigenVector to get learning_rate for GPU device in SGD operator
上级
ffd092db
8ebc31d9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
10 addition
and
13 deletion
+10
-13
paddle/operators/sgd_op.h
paddle/operators/sgd_op.h
+10
-13
未找到文件。
paddle/operators/sgd_op.h
浏览文件 @
c0511c8a
...
...
@@ -19,28 +19,25 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
SGDOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
param
=
ctx
.
Input
<
Tensor
>
(
"Param"
);
auto
grad
=
ctx
.
Input
<
Tensor
>
(
"Grad"
);
auto
param_out
=
ctx
.
Output
<
Tensor
>
(
"ParamOut"
);
float
lr
=
ctx
.
Input
<
Tensor
>
(
"LearningRate"
)
->
data
<
float
>
()[
0
]
;
auto
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
auto
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
)
;
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
p
=
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
g
=
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
o
=
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
o
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
lr
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
learning_rate
);
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
o
.
device
(
place
)
=
p
-
lr
*
g
;
Eigen
::
DSizes
<
int
,
1
>
grad_dsize
(
grad
->
numel
());
o
.
device
(
place
)
=
p
-
lr
.
broadcast
(
grad_dsize
)
*
g
;
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录