Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c00d869b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c00d869b
编写于
4月 10, 2022
作者:
B
baoachun
提交者:
GitHub
4月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mkldnn compute_propagate_scales int8 pass (#41592)
上级
a78ca1cf
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
531 addition
and
0 deletion
+531
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/mkldnn/compute_propagate_scales_mkldnn_pass.cc
...amework/ir/mkldnn/compute_propagate_scales_mkldnn_pass.cc
+438
-0
paddle/fluid/framework/ir/mkldnn/compute_propagate_scales_mkldnn_pass.h
...ramework/ir/mkldnn/compute_propagate_scales_mkldnn_pass.h
+92
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
c00d869b
...
@@ -141,6 +141,7 @@ if(WITH_MKLDNN)
...
@@ -141,6 +141,7 @@ if(WITH_MKLDNN)
pass_library
(
multi_gru_fuse_pass inference DIR mkldnn
)
pass_library
(
multi_gru_fuse_pass inference DIR mkldnn
)
pass_library
(
multi_gru_seq_fuse_pass inference DIR mkldnn
)
pass_library
(
multi_gru_seq_fuse_pass inference DIR mkldnn
)
pass_library
(
quant_dequant_mkldnn_pass inference DIR mkldnn
)
pass_library
(
quant_dequant_mkldnn_pass inference DIR mkldnn
)
pass_library
(
compute_propagate_scales_mkldnn_pass inference DIR mkldnn
)
endif
()
endif
()
if
(
WITH_IPU
)
if
(
WITH_IPU
)
...
...
paddle/fluid/framework/ir/mkldnn/compute_propagate_scales_mkldnn_pass.cc
0 → 100644
浏览文件 @
c00d869b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <float.h>
#include <algorithm>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/mkldnn/compute_propagate_scales_mkldnn_pass.h"
#include "paddle/fluid/framework/ir/mkldnn/mkldnn_pass_util.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
ComputePropagateScalesMkldnnPass
::
GetTensorFromVector
(
const
std
::
vector
<
float
>&
data_v
,
Tensor
*
tensor
)
const
{
const
int
size
=
static_cast
<
int
>
(
data_v
.
size
());
auto
*
data
=
tensor
->
mutable_data
<
float
>
({
size
},
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
size
;
i
++
)
{
data
[
i
]
=
data_v
[
i
];
}
}
void
ComputePropagateScalesMkldnnPass
::
GetQuantInfo
(
ir
::
Graph
*
graph
,
StringPairMap
*
var_quant_scales
)
const
{
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
info_map
{};
GetInfoFromTheFirstOp
(
graph
,
"has_quant_info"
,
"var_quant_scales"
,
&
info_map
);
for
(
auto
iter
=
info_map
.
begin
();
iter
!=
info_map
.
end
();
iter
++
)
{
Tensor
tensor
;
GetTensorFromVector
(
iter
->
second
,
&
tensor
);
auto
pair
=
std
::
make_pair
(
false
,
tensor
);
var_quant_scales
->
insert
(
std
::
make_pair
(
iter
->
first
,
pair
));
}
}
std
::
vector
<
float
>
ComputePropagateScalesMkldnnPass
::
GetScales
(
Tensor
*
tensor
,
int
axis
)
const
{
PADDLE_ENFORCE_LT
(
axis
,
2
,
platform
::
errors
::
InvalidArgument
(
"The input axis is required to be less than 2."
));
auto
*
data
=
tensor
->
data
<
float
>
();
const
auto
dims
=
tensor
->
dims
();
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The input tensor's rank is required to be 2."
));
const
int
rows
=
dims
.
at
(
0
);
const
int
columns
=
dims
.
at
(
1
);
std
::
vector
<
float
>
scales
;
if
(
axis
==
0
)
{
for
(
int
i
=
0
;
i
<
columns
;
i
++
)
{
float
max_value
=
FLT_MIN
;
for
(
int
j
=
0
;
j
<
rows
;
j
++
)
{
max_value
=
std
::
max
(
max_value
,
std
::
abs
(
data
[
i
+
j
*
columns
]));
}
max_value
=
1.0
/
max_value
;
if
(
std
::
isinf
(
max_value
)
||
std
::
isnan
(
max_value
))
{
max_value
=
0.0
;
}
scales
.
push_back
(
max_value
);
}
}
else
{
for
(
int
i
=
0
;
i
<
rows
;
i
++
)
{
float
max_value
=
FLT_MIN
;
for
(
int
j
=
i
*
columns
;
j
<
(
i
+
1
)
*
columns
;
j
++
)
{
max_value
=
std
::
max
(
max_value
,
std
::
abs
(
data
[
j
]));
}
max_value
=
1.0
/
max_value
;
if
(
std
::
isinf
(
max_value
)
||
std
::
isnan
(
max_value
))
{
max_value
=
0.0
;
}
scales
.
push_back
(
max_value
);
}
}
return
scales
;
}
void
ComputePropagateScalesMkldnnPass
::
ComputeVarScales
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
unordered_set
<
std
::
string
>&
ops
,
const
std
::
string
&
weight_name
,
const
int
axis
,
StringPairMap
*
var_quant_scales
)
const
{
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
auto
*
op_desc
=
op_node
->
Op
();
if
(
ops
.
count
(
op_desc
->
Type
()))
{
auto
var_name
=
op_desc
->
Input
(
weight_name
)[
0
];
auto
*
var
=
scope
->
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"The input persistable var [%s] of [%s] op is not found."
,
var_name
,
op_desc
->
Type
()));
auto
*
weight_tensor
=
var
->
GetMutable
<
LoDTensor
>
();
const
auto
dims
=
weight_tensor
->
dims
();
int
volume
=
1
;
for
(
int
i
=
1
;
i
<
dims
.
size
();
i
++
)
{
volume
*=
dims
[
i
];
}
Tensor
tmp_tensor
;
std
::
vector
<
int64_t
>
reshape_dims
=
{
dims
[
0
],
volume
};
tmp_tensor
.
Resize
(
phi
::
make_ddim
(
reshape_dims
));
auto
*
weight_data
=
weight_tensor
->
data
<
float
>
();
auto
*
tmp_data
=
tmp_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
weight_tensor
->
numel
();
i
++
)
{
tmp_data
[
i
]
=
std
::
abs
(
weight_data
[
i
]);
}
auto
scales_v
=
GetScales
(
&
tmp_tensor
,
axis
);
Tensor
tensor
;
GetTensorFromVector
(
scales_v
,
&
tensor
);
auto
pair
=
std
::
make_pair
(
false
,
tensor
);
var_quant_scales
->
insert
(
std
::
make_pair
(
var_name
,
pair
));
}
}
}
void
ComputePropagateScalesMkldnnPass
::
ComputeSingleGruWeightScales
(
Scope
*
scope
,
const
std
::
string
&
wx_var_name
,
const
std
::
string
&
wh_var_name
,
Tensor
*
tensor
)
const
{
auto
*
wx_var
=
scope
->
FindVar
(
wx_var_name
);
PADDLE_ENFORCE_NOT_NULL
(
wx_var
,
platform
::
errors
::
NotFound
(
"The input persistable var [%s] is not found."
,
wx_var_name
));
auto
*
wh_var
=
scope
->
FindVar
(
wh_var_name
);
PADDLE_ENFORCE_NOT_NULL
(
wh_var
,
platform
::
errors
::
NotFound
(
"The input persistable var [%s] is not found."
,
wh_var_name
));
const
auto
*
wx_tensor
=
wx_var
->
GetMutable
<
LoDTensor
>
();
const
auto
*
wh_tensor
=
wh_var
->
GetMutable
<
LoDTensor
>
();
const
int
OC
=
wh_tensor
->
dims
()[
0
];
std
::
vector
<
float
>
scale_ur
(
2
*
OC
);
std
::
vector
<
float
>
scale_o
(
OC
);
for
(
int
row_id
=
0
;
row_id
<
wx_tensor
->
dims
()[
0
];
row_id
++
)
{
for
(
int
col_id
=
0
;
col_id
<
2
*
OC
;
col_id
++
)
{
int
idx
=
(
row_id
*
wx_tensor
->
dims
()[
1
])
+
col_id
;
auto
abs_value
=
std
::
abs
(
wx_tensor
->
data
<
float
>
()[
idx
]);
if
(
row_id
==
0
)
{
scale_ur
[
col_id
]
=
abs_value
;
}
else
{
if
(
abs_value
>
scale_ur
[
col_id
])
scale_ur
[
col_id
]
=
abs_value
;
}
}
}
for
(
int
i
=
0
;
i
<
2
*
OC
*
OC
;
i
++
)
{
int
col_id
=
i
%
(
2
*
OC
);
auto
abs_value
=
std
::
abs
(
wh_tensor
->
data
<
float
>
()[
i
]);
if
(
abs_value
>
scale_ur
[
col_id
])
scale_ur
[
col_id
]
=
abs_value
;
}
for
(
int
row_id
=
0
;
row_id
<
wx_tensor
->
dims
()[
0
];
row_id
++
)
{
for
(
int
col_id
=
2
*
OC
;
col_id
<
wx_tensor
->
dims
()[
1
];
col_id
++
)
{
int
idx
=
(
row_id
*
wx_tensor
->
dims
()[
1
])
+
col_id
;
auto
abs_value
=
std
::
abs
(
wx_tensor
->
data
<
float
>
()[
idx
]);
if
(
row_id
==
0
)
{
scale_o
[
col_id
%
OC
]
=
abs_value
;
}
else
{
if
(
abs_value
>
scale_o
[
col_id
])
scale_o
[
col_id
%
OC
]
=
abs_value
;
}
}
}
for
(
int
i
=
2
*
OC
*
OC
;
i
<
OC
*
wh_tensor
->
dims
()[
1
];
i
++
)
{
int
col_id
=
i
%
OC
;
auto
abs_value
=
std
::
abs
(
wh_tensor
->
data
<
float
>
()[
i
]);
if
(
abs_value
>
scale_o
[
col_id
])
scale_o
[
col_id
]
=
abs_value
;
}
scale_ur
.
insert
(
scale_ur
.
end
(),
scale_o
.
begin
(),
scale_o
.
end
());
transform
(
scale_ur
.
begin
(),
scale_ur
.
end
(),
scale_ur
.
begin
(),
[](
float
c
)
{
return
1
/
c
;
});
GetTensorFromVector
(
scale_ur
,
tensor
);
}
void
ComputePropagateScalesMkldnnPass
::
ComputeGruWeightScales
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
string
&
wx_name
,
const
std
::
string
&
wh_name
,
StringPairMap
*
var_quant_scales
)
const
{
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
auto
*
op_desc
=
op_node
->
Op
();
if
(
op_desc
->
Type
()
==
"fusion_gru"
||
op_desc
->
Type
()
==
"multi_gru"
)
{
auto
wx_var_names
=
op_desc
->
Input
(
wx_name
);
auto
wh_var_names
=
op_desc
->
Input
(
wh_name
);
const
int
wx_names_size
=
static_cast
<
int
>
(
wx_var_names
.
size
());
const
int
wh_names_size
=
static_cast
<
int
>
(
wh_var_names
.
size
());
PADDLE_ENFORCE_EQ
(
wx_names_size
,
wh_names_size
,
platform
::
errors
::
Fatal
(
"Mismatch in number of weights inputs (%d "
"for WeightX vs. %d for WeightH)."
,
wx_names_size
,
wh_names_size
));
for
(
int
i
=
0
;
i
<
wx_names_size
;
i
++
)
{
auto
wh_var_name
=
wh_var_names
[
i
];
auto
wx_var_name
=
wx_var_names
[
i
];
Tensor
tensor
;
ComputeSingleGruWeightScales
(
scope
,
wx_var_name
,
wh_var_name
,
&
tensor
);
auto
pair
=
std
::
make_pair
(
false
,
tensor
);
var_quant_scales
->
insert
(
std
::
make_pair
(
wx_var_name
,
pair
));
}
}
}
}
void
ComputePropagateScalesMkldnnPass
::
ComputeSingleLstmWeightScales
(
Scope
*
scope
,
const
std
::
string
&
wx_var_name
,
const
std
::
string
&
wh_var_name
,
Tensor
*
tensor
)
const
{
auto
*
wx_var
=
scope
->
FindVar
(
wx_var_name
);
PADDLE_ENFORCE_NOT_NULL
(
wx_var
,
platform
::
errors
::
NotFound
(
"The input persistable var [%s] is not found."
,
wx_var_name
));
auto
*
wh_var
=
scope
->
FindVar
(
wh_var_name
);
PADDLE_ENFORCE_NOT_NULL
(
wh_var
,
platform
::
errors
::
NotFound
(
"The input persistable var [%s] is not found."
,
wh_var_name
));
const
auto
*
wx_tensor
=
wx_var
->
GetMutable
<
LoDTensor
>
();
const
auto
*
wh_tensor
=
wh_var
->
GetMutable
<
LoDTensor
>
();
std
::
vector
<
float
>
scale
(
wx_tensor
->
dims
()[
1
]);
for
(
int
row_id
=
0
;
row_id
<
wx_tensor
->
dims
()[
0
];
row_id
++
)
{
for
(
int
col_id
=
0
;
col_id
<
wx_tensor
->
dims
()[
1
];
col_id
++
)
{
int
idx
=
(
row_id
*
wx_tensor
->
dims
()[
1
])
+
col_id
;
auto
abs_value
=
std
::
abs
(
wx_tensor
->
data
<
float
>
()[
idx
]);
if
(
row_id
==
0
)
{
scale
[
col_id
]
=
abs_value
;
}
else
{
if
(
abs_value
>
scale
[
col_id
])
scale
[
col_id
]
=
abs_value
;
}
}
}
for
(
int
row_id
=
0
;
row_id
<
wh_tensor
->
dims
()[
0
];
row_id
++
)
{
for
(
int
col_id
=
0
;
col_id
<
wh_tensor
->
dims
()[
1
];
col_id
++
)
{
int
idx
=
(
row_id
*
wh_tensor
->
dims
()[
1
])
+
col_id
;
auto
abs_value
=
std
::
abs
(
wh_tensor
->
data
<
float
>
()[
idx
]);
if
(
abs_value
>
scale
[
col_id
])
scale
[
col_id
]
=
abs_value
;
}
}
transform
(
scale
.
begin
(),
scale
.
end
(),
scale
.
begin
(),
[](
float
c
)
{
return
1
/
c
;
});
GetTensorFromVector
(
scale
,
tensor
);
}
void
ComputePropagateScalesMkldnnPass
::
ComputeLstmWeightScales
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
string
&
wx_name
,
const
std
::
string
&
wh_name
,
StringPairMap
*
var_quant_scales
)
const
{
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
auto
*
op_desc
=
op_node
->
Op
();
if
(
op_desc
->
Type
()
==
"fusion_lstm"
)
{
auto
wx_var_names
=
op_desc
->
Input
(
wx_name
);
auto
wh_var_names
=
op_desc
->
Input
(
wh_name
);
const
int
wx_names_size
=
static_cast
<
int
>
(
wx_var_names
.
size
());
const
int
wh_names_size
=
static_cast
<
int
>
(
wh_var_names
.
size
());
PADDLE_ENFORCE_EQ
(
wx_names_size
,
wh_names_size
,
platform
::
errors
::
Fatal
(
"Mismatch in number of weights inputs (%d "
"for WeightX vs. %d for WeightH)."
,
wx_names_size
,
wh_names_size
));
for
(
int
i
=
0
;
i
<
wx_names_size
;
i
++
)
{
auto
wh_var_name
=
wh_var_names
[
i
];
auto
wx_var_name
=
wx_var_names
[
i
];
Tensor
tensor
;
ComputeSingleLstmWeightScales
(
scope
,
wx_var_name
,
wh_var_name
,
&
tensor
);
auto
pair
=
std
::
make_pair
(
false
,
tensor
);
var_quant_scales
->
insert
(
std
::
make_pair
(
wx_var_name
,
pair
));
}
}
}
}
void
ComputePropagateScalesMkldnnPass
::
ComputeWeightScales
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
StringPairMap
*
var_quant_scales
)
const
{
ComputeVarScales
(
graph
,
scope
,
{
"conv2d"
,
"depthwise_conv2d"
},
"Filter"
,
1
,
var_quant_scales
);
ComputeVarScales
(
graph
,
scope
,
{
"fc"
},
"W"
,
0
,
var_quant_scales
);
ComputeVarScales
(
graph
,
scope
,
{
"fusion_gru"
,
"multi_gru"
},
"WeightH"
,
0
,
var_quant_scales
);
ComputeVarScales
(
graph
,
scope
,
{
"fusion_lstm"
},
"WeightH"
,
0
,
var_quant_scales
);
ComputeGruWeightScales
(
graph
,
scope
,
"WeightX"
,
"WeightH"
,
var_quant_scales
);
ComputeLstmWeightScales
(
graph
,
scope
,
"WeightX"
,
"WeightH"
,
var_quant_scales
);
}
void
ComputePropagateScalesMkldnnPass
::
UpdateScaleOpInScale
(
Node
*
op_node
,
const
std
::
string
&
input_name
,
const
std
::
string
&
output_name
,
StringPairMap
*
var_quant_scales
)
const
{
auto
iter
=
var_quant_scales
->
find
(
output_name
);
if
(
iter
!=
var_quant_scales
->
end
())
{
auto
pair
=
iter
->
second
;
const
auto
tensor
=
pair
.
second
;
const
auto
scale
=
BOOST_GET_CONST
(
float
,
op_node
->
Op
()
->
GetAttr
(
"scale"
));
Tensor
tmp_tensor
;
tmp_tensor
.
Resize
(
tensor
.
dims
());
auto
*
data
=
tmp_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
tensor
.
numel
();
i
++
)
{
data
[
i
]
=
data
[
i
]
*
scale
;
}
auto
new_pair
=
std
::
make_pair
(
pair
.
first
,
tmp_tensor
);
var_quant_scales
->
insert
(
std
::
make_pair
(
input_name
,
new_pair
));
}
}
std
::
unordered_set
<
std
::
string
>
ComputePropagateScalesMkldnnPass
::
UpdateScales
(
ir
::
Graph
*
graph
,
StringPairMap
*
var_quant_scales
,
const
std
::
unordered_set
<
std
::
string
>&
scale_immutable_ops
)
const
{
std
::
unordered_set
<
std
::
string
>
waiting_for_scale
{};
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
const
auto
op_name
=
op_node
->
Name
();
if
(
scale_immutable_ops
.
count
(
op_name
))
{
std
::
string
input_name
;
if
(
op_name
==
"slice"
)
{
input_name
=
op_node
->
Op
()
->
Input
(
"Input"
)[
0
];
}
else
{
input_name
=
op_node
->
Op
()
->
Input
(
"X"
)[
0
];
}
const
std
::
string
output_name
=
op_node
->
Op
()
->
Output
(
"Out"
)[
0
];
auto
in_iter
=
var_quant_scales
->
find
(
input_name
);
auto
out_iter
=
var_quant_scales
->
find
(
output_name
);
if
(
in_iter
==
var_quant_scales
->
end
()
&&
out_iter
==
var_quant_scales
->
end
())
{
waiting_for_scale
.
insert
(
input_name
);
waiting_for_scale
.
insert
(
output_name
);
}
else
if
(
in_iter
!=
var_quant_scales
->
end
())
{
out_iter
->
second
=
in_iter
->
second
;
}
else
if
(
out_iter
!=
var_quant_scales
->
end
())
{
in_iter
->
second
=
out_iter
->
second
;
}
}
else
if
(
op_name
==
"scale"
)
{
const
std
::
string
output_name
=
op_node
->
Op
()
->
Output
(
"Out"
)[
0
];
auto
out_iter
=
var_quant_scales
->
find
(
output_name
);
if
(
out_iter
!=
var_quant_scales
->
end
())
{
const
std
::
string
input_name
=
op_node
->
Op
()
->
Input
(
"X"
)[
0
];
UpdateScaleOpInScale
(
op_node
,
input_name
,
output_name
,
var_quant_scales
);
}
}
}
return
waiting_for_scale
;
}
void
ComputePropagateScalesMkldnnPass
::
PropagateScales
(
ir
::
Graph
*
graph
,
StringPairMap
*
var_quant_scales
,
const
std
::
unordered_set
<
std
::
string
>&
scale_immutable_ops
)
const
{
auto
waiting_for_scale
=
UpdateScales
(
graph
,
var_quant_scales
,
scale_immutable_ops
);
std
::
unordered_set
<
std
::
string
>
waiting_for_scale_prev
{};
while
(
waiting_for_scale
.
size
()
!=
0
&&
waiting_for_scale
!=
waiting_for_scale_prev
)
{
waiting_for_scale_prev
.
clear
();
waiting_for_scale_prev
.
insert
(
waiting_for_scale
.
begin
(),
waiting_for_scale
.
end
());
waiting_for_scale
=
UpdateScales
(
graph
,
var_quant_scales
,
scale_immutable_ops
);
}
}
void
ComputePropagateScalesMkldnnPass
::
ConvertStringPairMap
(
const
StringPairMap
&
var_quant_scales
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>*
info_map
)
const
{
for
(
auto
iter
=
var_quant_scales
.
begin
();
iter
!=
var_quant_scales
.
end
();
iter
++
)
{
auto
*
data
=
iter
->
second
.
second
.
data
<
float
>
();
std
::
vector
<
float
>
data_v
;
for
(
int
i
=
0
;
i
<
iter
->
second
.
second
.
numel
();
i
++
)
{
data_v
.
push_back
(
data
[
i
]);
}
info_map
->
insert
(
std
::
make_pair
(
iter
->
first
,
data_v
));
}
}
void
ComputePropagateScalesMkldnnPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
VLOG
(
3
)
<<
"Convert paddle model to mkldnn quantized model."
;
const
std
::
string
pattern_name
=
"compute_propagate_scales_mkldnn_pass"
;
FusePassBase
::
Init
(
pattern_name
,
graph
);
const
std
::
unordered_set
<
std
::
string
>
scale_immutable_ops
=
{
"transpose2"
,
"reshape2"
,
"pool2d"
,
"slice"
,
"nearest_interp"
,
"nearest_interp_v2"
};
StringPairMap
var_quant_scales
{};
auto
*
scope
=
param_scope
();
GetQuantInfo
(
graph
,
&
var_quant_scales
);
ComputeWeightScales
(
graph
,
scope
,
&
var_quant_scales
);
PropagateScales
(
graph
,
&
var_quant_scales
,
scale_immutable_ops
);
// save var_quant_scales in the first op's attr
// for cpu_quantize_pass
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
info_map
;
ConvertStringPairMap
(
var_quant_scales
,
&
info_map
);
SaveInfoInTheFirstOp
(
graph
,
"has_quant_info"
,
"var_quant_scales"
,
info_map
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
compute_propagate_scales_mkldnn_pass
,
paddle
::
framework
::
ir
::
ComputePropagateScalesMkldnnPass
);
REGISTER_PASS_CAPABILITY
(
compute_propagate_scales_mkldnn_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
LE
(
"conv2d"
,
1
)
.
EQ
(
"fc"
,
0
)
.
LE
(
"conv2d_transpose"
,
2
)
.
EQ
(
"fake_quantize_abs_max"
,
0
)
.
EQ
(
"fake_quantize_range_abs_max"
,
0
)
.
EQ
(
"fake_quantize_moving_average_abs_max"
,
0
)
.
LE
(
"fake_channel_wise_quantize_abs_max"
,
1
)
.
EQ
(
"fake_dequantize_max_abs"
,
0
));
paddle/fluid/framework/ir/mkldnn/compute_propagate_scales_mkldnn_pass.h
0 → 100644
浏览文件 @
c00d869b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
using
StringPairMap
=
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
bool
,
Tensor
>>
;
class
ComputePropagateScalesMkldnnPass
:
public
FusePassBase
{
public:
ComputePropagateScalesMkldnnPass
()
=
default
;
virtual
~
ComputePropagateScalesMkldnnPass
()
{}
#ifdef PADDLE_WITH_TESTING
friend
class
ComputePropagateScalesMkldnnPassTest
;
#endif
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
void
GetTensorFromVector
(
const
std
::
vector
<
float
>&
data_v
,
Tensor
*
tensor
)
const
;
void
GetQuantInfo
(
ir
::
Graph
*
graph
,
StringPairMap
*
var_quant_scales
)
const
;
std
::
vector
<
float
>
GetScales
(
Tensor
*
tensor
,
int
axis
)
const
;
void
ComputeVarScales
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
unordered_set
<
std
::
string
>&
ops
,
const
std
::
string
&
weight_name
,
const
int
axis
,
StringPairMap
*
var_quant_scales
)
const
;
void
ComputeSingleGruWeightScales
(
Scope
*
scope
,
const
std
::
string
&
wx_var_name
,
const
std
::
string
&
wh_var_name
,
Tensor
*
tensor
)
const
;
void
ComputeGruWeightScales
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
string
&
wx_name
,
const
std
::
string
&
wh_name
,
StringPairMap
*
var_quant_scales
)
const
;
void
ComputeSingleLstmWeightScales
(
Scope
*
scope
,
const
std
::
string
&
wx_var_name
,
const
std
::
string
&
wh_var_name
,
Tensor
*
tensor
)
const
;
void
ComputeLstmWeightScales
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
string
&
wx_name
,
const
std
::
string
&
wh_name
,
StringPairMap
*
var_quant_scales
)
const
;
void
ComputeWeightScales
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
StringPairMap
*
var_quant_scales
)
const
;
void
UpdateScaleOpInScale
(
Node
*
op_node
,
const
std
::
string
&
input_name
,
const
std
::
string
&
output_name
,
StringPairMap
*
var_quant_scales
)
const
;
std
::
unordered_set
<
std
::
string
>
UpdateScales
(
ir
::
Graph
*
graph
,
StringPairMap
*
var_quant_scales
,
const
std
::
unordered_set
<
std
::
string
>&
scale_immutable_ops
)
const
;
void
PropagateScales
(
ir
::
Graph
*
graph
,
StringPairMap
*
var_quant_scales
,
const
std
::
unordered_set
<
std
::
string
>&
scale_immutable_ops
)
const
;
void
ConvertStringPairMap
(
const
StringPairMap
&
var_quant_scales
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>*
info_map
)
const
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录