Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bf6ec262
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bf6ec262
编写于
9月 14, 2022
作者:
C
Chenxiao Niu
提交者:
GitHub
9月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add mergedAdam kernel. (#45965)
上级
da33f7b0
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
385 addition
and
0 deletion
+385
-0
paddle/fluid/operators/optimizers/adam_op_mlu.cc
paddle/fluid/operators/optimizers/adam_op_mlu.cc
+222
-0
python/paddle/fluid/tests/unittests/mlu/test_merged_adam_op_mlu.py
...ddle/fluid/tests/unittests/mlu/test_merged_adam_op_mlu.py
+163
-0
未找到文件。
paddle/fluid/operators/optimizers/adam_op_mlu.cc
浏览文件 @
bf6ec262
...
...
@@ -333,6 +333,224 @@ class AdamWMLUKernel : public AdamMLUKernel<T> {
}
};
template
<
typename
T
>
class
MergedAdamMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
// Get inputs and outputs
auto
params
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Param"
);
auto
grads
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Grad"
);
auto
lrs
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
mom1s
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Moment1"
);
auto
mom2s
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Moment2"
);
auto
beta1_pows
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Beta1Pow"
);
auto
beta2_pows
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Beta2Pow"
);
auto
master_params
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"MasterParam"
);
auto
param_outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
mom1_outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Moment1Out"
);
auto
mom2_outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Moment2Out"
);
auto
beta1_pow_outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Beta1PowOut"
);
auto
beta2_pow_outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Beta2PowOut"
);
// Check validation of inputs and outputs
size_t
param_num
=
params
.
size
();
PADDLE_ENFORCE_EQ
(
param_num
,
param_outs
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of Output(ParamOut) must be equal to "
"Input(Param), but got the size of Output(ParamOut) "
"is %d, the size of Input(Param) is %d."
,
param_outs
.
size
(),
param_num
));
bool
skip_update
=
false
;
if
(
ctx
.
HasInput
(
"SkipUpdate"
))
{
auto
*
skip_update_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"SkipUpdate"
);
PADDLE_ENFORCE_EQ
(
skip_update_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(SkipUpdate) size must be 1, but get %d"
,
skip_update_tensor
->
numel
()));
std
::
vector
<
bool
>
skip_update_vec
;
paddle
::
framework
::
TensorToVector
(
*
skip_update_tensor
,
ctx
.
device_context
(),
&
skip_update_vec
);
ctx
.
device_context
().
Wait
();
skip_update
=
skip_update_vec
[
0
];
}
// skip_update=true, just copy input to output, and TensorCopy will call
// mutable_data
if
(
skip_update
)
{
VLOG
(
4
)
<<
"MergedAdam skip update"
;
for
(
size_t
i
=
0
;
i
<
param_num
;
++
i
)
{
framework
::
TensorCopy
(
*
params
[
i
],
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
param_outs
[
i
]);
framework
::
TensorCopy
(
*
mom1s
[
i
],
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
mom1_outs
[
i
]);
framework
::
TensorCopy
(
*
mom2s
[
i
],
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
mom2_outs
[
i
]);
framework
::
TensorCopy
(
*
beta1_pows
[
i
],
beta1_pows
[
i
]
->
place
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
beta1_pow_outs
[
i
]);
framework
::
TensorCopy
(
*
beta2_pows
[
i
],
beta2_pows
[
i
]
->
place
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
beta2_pow_outs
[
i
]);
}
return
;
}
bool
use_global_beta_pow
=
ctx
.
Attr
<
bool
>
(
"use_global_beta_pow"
);
VLOG
(
4
)
<<
"use_global_beta_pow:"
<<
use_global_beta_pow
;
// Get beta1, beta2 and epsilon from attribute.
const
Tensor
*
beta1_tensor
=
nullptr
;
const
Tensor
*
beta2_tensor
=
nullptr
;
const
Tensor
*
epsilon_tensor
=
nullptr
;
Tensor
beta1_tmp
(
experimental
::
DataType
::
FLOAT32
);
Tensor
beta2_tmp
(
experimental
::
DataType
::
FLOAT32
);
Tensor
epsilon_tmp
(
experimental
::
DataType
::
FLOAT32
);
T
beta1
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
T
beta2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
beta1_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
beta2_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
epsilon_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
MLUCnnlTensorDesc
beta1_tmp_desc
(
beta1_tmp
);
MLUCnnlTensorDesc
beta2_tmp_desc
(
beta2_tmp
);
MLUCnnlTensorDesc
epsilon_tmp_desc
(
epsilon_tmp
);
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
beta1
,
beta1_tmp_desc
.
get
(),
GetBasePtr
(
&
beta1_tmp
));
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
beta2
,
beta2_tmp_desc
.
get
(),
GetBasePtr
(
&
beta2_tmp
));
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
epsilon
,
epsilon_tmp_desc
.
get
(),
GetBasePtr
(
&
epsilon_tmp
));
beta1_tensor
=
&
beta1_tmp
;
beta2_tensor
=
&
beta2_tmp
;
epsilon_tensor
=
&
epsilon_tmp
;
// Loop to compute
for
(
size_t
i
=
0
;
i
<
param_num
;
++
i
)
{
VLOG
(
4
)
<<
"[MergedAdam] loop: "
<<
i
;
param_outs
[
i
]
->
ShareDataWith
(
*
params
[
i
]);
mom1_outs
[
i
]
->
ShareDataWith
(
*
mom1s
[
i
]);
mom2_outs
[
i
]
->
ShareDataWith
(
*
mom2s
[
i
]);
LoDTensor
beta1_pow_tmp
;
LoDTensor
beta2_pow_tmp
;
if
(
beta1_pows
[
i
]
->
place
()
==
platform
::
CPUPlace
())
{
T
beta1
=
*
beta1_pows
[
i
]
->
data
<
T
>
();
beta1_pow_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
MLUCnnlTensorDesc
beta1_pow_tmp_desc
(
beta1_pow_tmp
);
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
beta1
,
beta1_pow_tmp_desc
.
get
(),
GetBasePtr
(
&
beta1_pow_tmp
));
beta1_pows
[
i
]
=
&
beta1_pow_tmp
;
}
if
(
beta2_pows
[
i
]
->
place
()
==
platform
::
CPUPlace
())
{
T
beta2
=
*
beta2_pows
[
i
]
->
data
<
T
>
();
beta2_pow_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
MLUCnnlTensorDesc
beta2_pow_tmp_desc
(
beta2_pow_tmp
);
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
beta2
,
beta2_pow_tmp_desc
.
get
(),
GetBasePtr
(
&
beta2_pow_tmp
));
beta2_pows
[
i
]
=
&
beta2_pow_tmp
;
}
VLOG
(
3
)
<<
"beta1_pow.numel() : "
<<
beta1_pows
[
i
]
->
numel
()
<<
"beta2_pow.numel() : "
<<
beta2_pows
[
i
]
->
numel
();
VLOG
(
3
)
<<
"param.numel(): "
<<
params
[
i
]
->
numel
();
PADDLE_ENFORCE_EQ
(
beta1_pow_outs
[
i
]
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"beta1 pow output size should be 1, but received "
"value is:%d."
,
beta1_pow_outs
[
i
]
->
numel
()));
PADDLE_ENFORCE_EQ
(
beta2_pow_outs
[
i
]
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"beta2 pow output size should be 1, but received "
"value is:%d."
,
beta2_pow_outs
[
i
]
->
numel
()));
MLUCnnlTensorDesc
param_desc
(
*
params
[
i
]);
MLUCnnlTensorDesc
mom1_desc
(
*
mom1s
[
i
]);
MLUCnnlTensorDesc
mom2_desc
(
*
mom2s
[
i
]);
MLUCnnlTensorDesc
grad_desc
(
*
grads
[
i
]);
MLUCnnl
::
ApplyAdam
(
ctx
,
param_desc
.
get
(),
GetBasePtr
(
param_outs
[
i
]),
mom1_desc
.
get
(),
GetBasePtr
(
mom1_outs
[
i
]),
mom2_desc
.
get
(),
GetBasePtr
(
mom2_outs
[
i
]),
grad_desc
.
get
(),
GetBasePtr
(
grads
[
i
]),
GetBasePtr
(
lrs
[
i
]),
GetBasePtr
(
beta1_tensor
),
GetBasePtr
(
beta2_tensor
),
GetBasePtr
(
beta1_pows
[
i
]),
GetBasePtr
(
beta2_pows
[
i
]),
GetBasePtr
(
epsilon_tensor
),
/*use_nesterov*/
false
);
if
(
!
use_global_beta_pow
)
{
beta1_pow_outs
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
beta2_pow_outs
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
beta1_desc
(
*
beta1_tensor
);
MLUCnnlOpTensorDesc
mul_op_desc
(
CNNL_OP_TENSOR_MUL
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
mul_op_desc
.
get
(),
beta1_desc
.
get
(),
GetBasePtr
(
beta1_pows
[
i
]),
beta1_desc
.
get
(),
GetBasePtr
(
beta1_tensor
),
beta1_desc
.
get
(),
GetBasePtr
(
beta1_pow_outs
[
i
]),
ToCnnlDataType
<
T
>
());
MLUCnnl
::
OpTensor
(
ctx
,
mul_op_desc
.
get
(),
beta1_desc
.
get
(),
GetBasePtr
(
beta2_pows
[
i
]),
beta1_desc
.
get
(),
GetBasePtr
(
beta2_tensor
),
beta1_desc
.
get
(),
GetBasePtr
(
beta2_pow_outs
[
i
]),
ToCnnlDataType
<
T
>
());
}
}
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -346,3 +564,7 @@ REGISTER_OP_MLU_KERNEL(adam,
REGISTER_OP_MLU_KERNEL
(
adamw
,
ops
::
AdamWMLUKernel
<
float
>
,
ops
::
AdamWMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
merged_adam
,
ops
::
MergedAdamMLUKernel
<
float
>
,
ops
::
MergedAdamMLUKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_merged_adam_op_mlu.py
0 → 100644
浏览文件 @
bf6ec262
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
'..'
)
import
unittest
import
paddle
import
numpy
as
np
from
paddle
import
_C_ops
,
_legacy_C_ops
from
paddle.fluid.framework
import
in_dygraph_mode
def
run_adam_op
(
params
,
grads
,
lrs
,
moment1s
,
moment2s
,
beta1_pows
,
beta2_pows
,
master_params
,
epsilon
,
beta1
,
beta2
,
place
,
multi_precision
=
False
,
use_merged
=
False
):
assert
len
(
params
)
==
len
(
grads
)
assert
len
(
params
)
==
len
(
lrs
)
assert
len
(
params
)
==
len
(
moment1s
)
assert
len
(
params
)
==
len
(
moment2s
)
assert
len
(
params
)
==
len
(
beta1_pows
)
assert
len
(
params
)
==
len
(
beta1_pows
)
assert
len
(
params
)
==
len
(
master_params
)
paddle
.
disable_static
()
# paddle.set_device(place)
param_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
p
)
for
p
in
params
]
grad_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
g
)
for
g
in
grads
]
lr_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
l
)
for
l
in
lrs
]
moment1_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
m
)
for
m
in
moment1s
]
moment2_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
m
)
for
m
in
moment2s
]
beta1_pow_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
b
)
for
b
in
beta1_pows
]
beta2_pow_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
b
)
for
b
in
beta2_pows
]
master_param_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
m_p
)
for
m_p
in
master_params
]
if
not
use_merged
:
for
i
in
range
(
len
(
param_vars
)):
_
,
_
,
_
,
_
,
_
,
_
=
_legacy_C_ops
.
adam
(
param_vars
[
i
],
grad_vars
[
i
],
lr_vars
[
i
],
moment1_vars
[
i
],
moment2_vars
[
i
],
beta1_pow_vars
[
i
],
beta2_pow_vars
[
i
],
master_param_vars
[
i
],
param_vars
[
i
],
moment1_vars
[
i
],
moment2_vars
[
i
],
beta1_pow_vars
[
i
],
beta2_pow_vars
[
i
],
master_param_vars
[
i
],
'epsilon'
,
epsilon
,
'beta1'
,
beta1
,
'beta2'
,
beta2
,
'multi_precision'
,
multi_precision
)
else
:
if
in_dygraph_mode
():
_
,
_
,
_
,
_
,
_
,
_
=
_C_ops
.
merged_adam_
(
param_vars
,
grad_vars
,
lr_vars
,
moment1_vars
,
moment2_vars
,
beta1_pow_vars
,
beta2_pow_vars
,
master_param_vars
,
beta1
,
beta2
,
epsilon
,
multi_precision
,
False
)
else
:
_
,
_
,
_
,
_
,
_
,
_
=
_legacy_C_ops
.
merged_adam
(
param_vars
,
grad_vars
,
lr_vars
,
moment1_vars
,
moment2_vars
,
beta1_pow_vars
,
beta2_pow_vars
,
master_param_vars
,
param_vars
,
moment1_vars
,
moment2_vars
,
beta1_pow_vars
,
beta2_pow_vars
,
master_param_vars
,
'epsilon'
,
epsilon
,
'beta1'
,
beta1
,
'beta2'
,
beta2
,
'multi_precision'
,
multi_precision
)
outputs
=
{
'ParamOut'
:
param_vars
,
'Moment1Out'
:
moment1_vars
,
'Moment2Out'
:
moment2_vars
,
'Beta1PowOut'
:
beta1_pow_vars
,
'Beta2PowOut'
:
beta2_pow_vars
,
'MasterParamOut'
:
master_param_vars
}
return
outputs
class
TestMergedAdam
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
disable_static
()
self
.
shapes
=
[[
3
,
4
],
[
2
,
7
],
[
5
,
6
],
[
7
,
8
]]
self
.
seed
=
10
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
gen_rand_data
(
self
,
shapes
,
dtype
):
return
[
np
.
random
.
random
(
s
).
astype
(
dtype
)
for
s
in
shapes
]
def
prepare_data
(
self
,
shapes
,
multi_precision
,
seed
,
place
):
np
.
random
.
seed
(
seed
)
mp_dtype
=
np
.
float32
# dtype = np.float16 if multi_precision and place == 'mlu' else np.float32
dtype
=
np
.
float32
params
=
self
.
gen_rand_data
(
shapes
,
dtype
)
grads
=
self
.
gen_rand_data
(
shapes
,
dtype
)
lrs
=
self
.
gen_rand_data
([[
1
],
[
1
],
[
1
],
[
1
]],
mp_dtype
)
moment1s
=
self
.
gen_rand_data
(
shapes
,
mp_dtype
)
moment2s
=
self
.
gen_rand_data
(
shapes
,
mp_dtype
)
beta1_pows
=
self
.
gen_rand_data
([[
1
],
[
1
],
[
1
],
[
1
]],
mp_dtype
)
beta2_pows
=
self
.
gen_rand_data
([[
1
],
[
1
],
[
1
],
[
1
]],
mp_dtype
)
master_params
=
[
p
.
astype
(
mp_dtype
)
for
p
in
params
]
return
params
,
grads
,
lrs
,
moment1s
,
moment2s
,
beta1_pows
,
beta2_pows
,
master_params
def
check_with_place
(
self
,
place
,
multi_precision
):
params
,
grads
,
lrs
,
moment1s
,
moment2s
,
beta1_pows
,
beta2_pows
,
master_params
=
self
.
prepare_data
(
self
.
shapes
,
multi_precision
,
self
.
seed
,
place
)
def
run_op
(
use_merged
):
return
run_adam_op
(
params
=
params
,
grads
=
grads
,
lrs
=
lrs
,
moment1s
=
moment1s
,
moment2s
=
moment2s
,
beta1_pows
=
beta1_pows
,
beta2_pows
=
beta2_pows
,
master_params
=
master_params
,
epsilon
=
0.9
,
beta1
=
0.9
,
beta2
=
0.99
,
place
=
place
,
multi_precision
=
multi_precision
,
use_merged
=
use_merged
)
outs1
=
run_op
(
True
)
outs2
=
run_op
(
False
)
self
.
assertEqual
(
len
(
outs1
),
len
(
outs2
))
for
key
in
outs1
.
keys
():
value1
=
outs1
[
key
]
value2
=
outs2
[
key
]
for
i
in
range
(
len
(
value1
)):
if
place
==
'mlu'
:
np
.
testing
.
assert_array_equal
(
value1
[
i
],
value2
[
i
])
else
:
np
.
testing
.
assert_allclose
(
value1
[
i
],
value2
[
i
],
rtol
=
1e-05
,
atol
=
1e-07
)
def
test_main
(
self
):
for
multi_precision
in
[
False
,
True
]:
self
.
check_with_place
(
self
.
place
,
multi_precision
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录