Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bf6e7cba
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
bf6e7cba
编写于
11月 13, 2020
作者:
Z
Zhou Wei
提交者:
GitHub
11月 13, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
updata 2.0 API english doc (#28525)
* make Numpy version is below 1.19.3 * fix 2.0 doc
上级
7b1619e6
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
77 addition
and
72 deletion
+77
-72
paddle/fluid/operators/unique_op.cu
paddle/fluid/operators/unique_op.cu
+1
-1
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+7
-15
python/paddle/framework/__init__.py
python/paddle/framework/__init__.py
+1
-5
python/paddle/framework/io.py
python/paddle/framework/io.py
+0
-4
python/paddle/optimizer/lr.py
python/paddle/optimizer/lr.py
+68
-47
未找到文件。
paddle/fluid/operators/unique_op.cu
浏览文件 @
bf6e7cba
...
...
@@ -177,7 +177,7 @@ static void UniqueFlattendCUDATensor(const framework::ExecutionContext& context,
thrust
::
sort_by_key
(
thrust
::
device
,
in_data_hat
,
in_data_hat
+
num_input
,
sorted_indices_data
);
// 1. Calculate op result: 'out'
:
// 1. Calculate op result: 'out'
Tensor
range
;
range
.
Resize
(
framework
::
make_ddim
({
num_input
+
1
}));
auto
range_data_ptr
=
range
.
mutable_data
<
IndexT
>
(
context
.
GetPlace
());
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
bf6e7cba
...
...
@@ -685,8 +685,6 @@ void BindImperative(py::module *m_ptr) {
.. code-block:: python
import paddle
paddle.disable_static()
linear = Linear(32, 64)
data = paddle.uniform(shape=[30, 10, 32], -1, 1)
x = linear(data)
...
...
@@ -704,19 +702,13 @@ void BindImperative(py::module *m_ptr) {
.. code-block:: python
import paddle
paddle.disable_static()
inputs = []
for _ in range(10):
tmp = paddle.ones([2, 2])
tmp.stop_gradient=False
inputs.append(tmp)
ret = paddle.sums(inputs2)
loss = paddle.sum(ret)
loss.backward()
print("Before clear_gradient {}".format(loss.grad))
loss.clear_gradient()
print("After clear_gradient {}".format(loss.grad))
input = paddle.uniform([10, 2])
linear = paddle.nn.Linear(2, 3)
out = linear(input)
out.backward()
print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
linear.weight.clear_gradient()
print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC"
)
.
def
(
"clone"
,
[](
std
::
shared_ptr
<
imperative
::
VarBase
>
&
self
)
{
...
...
python/paddle/framework/__init__.py
浏览文件 @
bf6e7cba
...
...
@@ -18,10 +18,7 @@ __all__ = [
'get_default_dtype'
,
'set_default_dtype'
]
__all__
+=
[
'grad'
,
'LayerList'
,
'load'
,
'save'
,
'to_variable'
,
'no_grad'
,
'DataParallel'
]
__all__
+=
[
'grad'
,
'LayerList'
,
'load'
,
'save'
,
'no_grad'
,
'DataParallel'
]
from
.
import
random
from
.random
import
seed
...
...
@@ -39,7 +36,6 @@ from ..fluid.core import VarBase #DEFINE_ALIAS
from
paddle.fluid
import
core
#DEFINE_ALIAS
from
..fluid.dygraph.base
import
no_grad_
as
no_grad
#DEFINE_ALIAS
from
..fluid.dygraph.base
import
to_variable
#DEFINE_ALIAS
from
..fluid.dygraph.base
import
grad
#DEFINE_ALIAS
from
.io
import
save
from
.io
import
load
...
...
python/paddle/framework/io.py
浏览文件 @
bf6e7cba
...
...
@@ -225,8 +225,6 @@ def save(obj, path):
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding(10, 10)
layer_state_dict = emb.state_dict()
paddle.save(layer_state_dict, "emb.pdparams")
...
...
@@ -318,8 +316,6 @@ def load(path, **configs):
.. code-block:: python
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding(10, 10)
layer_state_dict = emb.state_dict()
...
...
python/paddle/optimizer/lr.py
浏览文件 @
bf6e7cba
...
...
@@ -226,14 +226,15 @@ class NoamDecay(LRScheduler):
scheduler = paddle.optimizer.lr.NoamDecay(d_model=0.01, warmup_steps=100, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
...
...
@@ -251,7 +252,7 @@ class NoamDecay(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
@@ -259,7 +260,8 @@ class NoamDecay(LRScheduler):
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
"""
...
...
@@ -322,14 +324,15 @@ class PiecewiseDecay(LRScheduler):
scheduler = paddle.optimizer.lr.PiecewiseDecay(boundaries=[3, 6, 9], values=[0.1, 0.2, 0.3, 0.4], verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
...
...
@@ -347,7 +350,7 @@ class PiecewiseDecay(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
@@ -355,7 +358,8 @@ class PiecewiseDecay(LRScheduler):
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
"""
def
__init__
(
self
,
boundaries
,
values
,
last_epoch
=-
1
,
verbose
=
False
):
...
...
@@ -403,14 +407,15 @@ class NaturalExpDecay(LRScheduler):
scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
...
...
@@ -428,7 +433,7 @@ class NaturalExpDecay(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
@@ -436,7 +441,8 @@ class NaturalExpDecay(LRScheduler):
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
"""
def
__init__
(
self
,
learning_rate
,
gamma
,
last_epoch
=-
1
,
verbose
=
False
):
...
...
@@ -481,14 +487,15 @@ class InverseTimeDecay(LRScheduler):
scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
...
...
@@ -506,7 +513,7 @@ class InverseTimeDecay(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
@@ -514,7 +521,8 @@ class InverseTimeDecay(LRScheduler):
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
"""
...
...
@@ -576,14 +584,15 @@ class PolynomialDecay(LRScheduler):
scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
...
...
@@ -601,7 +610,7 @@ class PolynomialDecay(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
@@ -609,7 +618,8 @@ class PolynomialDecay(LRScheduler):
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
"""
def
__init__
(
self
,
...
...
@@ -691,14 +701,15 @@ class LinearWarmup(LRScheduler):
learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
...
...
@@ -717,7 +728,7 @@ class LinearWarmup(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
@@ -725,7 +736,8 @@ class LinearWarmup(LRScheduler):
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
"""
def
__init__
(
self
,
...
...
@@ -814,14 +826,15 @@ class ExponentialDecay(LRScheduler):
scheduler = paddle.optimizer.lr.ExponentialDecay(learning_rate=0.5, gamma=0.9, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
...
...
@@ -839,7 +852,7 @@ class ExponentialDecay(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
@@ -847,7 +860,8 @@ class ExponentialDecay(LRScheduler):
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
"""
def
__init__
(
self
,
learning_rate
,
gamma
,
last_epoch
=-
1
,
verbose
=
False
):
...
...
@@ -901,14 +915,15 @@ class MultiStepDecay(LRScheduler):
scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
...
...
@@ -926,7 +941,7 @@ class MultiStepDecay(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
@@ -934,7 +949,8 @@ class MultiStepDecay(LRScheduler):
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
"""
def
__init__
(
self
,
...
...
@@ -1008,14 +1024,15 @@ class StepDecay(LRScheduler):
scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=5, gamma=0.8, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
...
...
@@ -1033,7 +1050,7 @@ class StepDecay(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
@@ -1041,7 +1058,8 @@ class StepDecay(LRScheduler):
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
"""
def
__init__
(
self
,
...
...
@@ -1102,14 +1120,15 @@ class LambdaDecay(LRScheduler):
scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
...
...
@@ -1127,7 +1146,7 @@ class LambdaDecay(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
@@ -1135,7 +1154,8 @@ class LambdaDecay(LRScheduler):
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
"""
...
...
@@ -1200,14 +1220,15 @@ class ReduceOnPlateau(LRScheduler):
scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step(loss)
scheduler.step(loss) # If you update learning rate each step
# scheduler.step(loss) # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
...
...
@@ -1225,7 +1246,7 @@ class ReduceOnPlateau(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
@@ -1233,7 +1254,8 @@ class ReduceOnPlateau(LRScheduler):
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step(out[0])
scheduler.step(out[0]) # If you update learning rate each step
# scheduler.step(out[0]) # If you update learning rate each epoch
"""
...
...
@@ -1268,7 +1290,6 @@ class ReduceOnPlateau(LRScheduler):
"The type of 'learning_rate' in 'ReduceOnPlateau' must be 'float', but received %s."
%
type
(
learning_rate
))
self
.
verbose
=
verbose
self
.
patience
=
patience
self
.
threshold
=
threshold
self
.
threshold_mode
=
threshold_mode
...
...
@@ -1406,7 +1427,7 @@ class CosineAnnealingDecay(LRScheduler):
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.5, T_max=10, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
...
...
@@ -1431,7 +1452,7 @@ class CosineAnnealingDecay(LRScheduler):
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(
2
):
for batch_id in range(
5
):
out = exe.run(
main_prog,
feed={
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录