Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bef6f2e1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bef6f2e1
编写于
3月 16, 2022
作者:
L
Lijunhui
提交者:
GitHub
3月 16, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[KP] Fix registry and add UT for thresholded_relu & softshrink (#40524)
* init commit * correct namespace
上级
9fc89b34
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
281 addition
and
58 deletion
+281
-58
paddle/fluid/operators/activation_op.kps
paddle/fluid/operators/activation_op.kps
+218
-58
python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
...addle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
+63
-0
未找到文件。
paddle/fluid/operators/activation_op.kps
浏览文件 @
bef6f2e1
...
@@ -15,6 +15,8 @@ limitations under the License. */
...
@@ -15,6 +15,8 @@ limitations under the License. */
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/phi/kernels/funcs/activation_functor.h"
namespace paddle {
namespace paddle {
namespace operators {
namespace operators {
...
@@ -1148,63 +1150,221 @@ REGISTER_OP_CUDA_KERNEL(
...
@@ -1148,63 +1150,221 @@ REGISTER_OP_CUDA_KERNEL(
FOR_EACH_ACTIVATION_CUDA_OP(REGISTER_ACTIVATION_CUDA_KERNEL)
FOR_EACH_ACTIVATION_CUDA_OP(REGISTER_ACTIVATION_CUDA_KERNEL)
#ifdef PADDLE_WITH_XPU_KP
#ifdef PADDLE_WITH_XPU_KP
#define REGISTER_ACTIVATION_XPU_KERNEL(act_type, op_name, functor, \
REGISTER_OP_KERNEL(
grad_functor) \
brelu, KP, plat::XPUPlace,
REGISTER_OP_KERNEL( \
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
act_type, KP, plat::XPUPlace, \
phi::funcs::CudaBReluFunctor<float>>);
ops::ActivationCudaKernel<plat::XPUDeviceContext, ops::functor<float>>); \
REGISTER_OP_KERNEL(
REGISTER_OP_KERNEL(act_type##_grad, KP, plat::XPUPlace, \
brelu_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<plat::XPUDeviceContext, \
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::grad_functor<float>>);
phi::funcs::CudaBReluGradFunctor<float>>);
REGISTER_ACTIVATION_XPU_KERNEL(leaky_relu, LeakyRelu, CudaLeakyReluFunctor,
REGISTER_OP_KERNEL(ceil, KP, plat::XPUPlace,
CudaLeakyReluGradFunctor);
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
REGISTER_ACTIVATION_XPU_KERNEL(sigmoid, Sigmoid, CudaSigmoidFunctor,
ops::CudaCeilFunctor<float>>);
CudaSigmoidGradFunctor);
REGISTER_OP_KERNEL(
REGISTER_ACTIVATION_XPU_KERNEL(exp, Exp, CudaExpFunctor, CudaExpGradFunctor);
ceil_grad, KP, plat::XPUPlace,
REGISTER_ACTIVATION_XPU_KERNEL(log, Log, CudaLogFunctor, CudaLogGradFunctor);
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
REGISTER_ACTIVATION_XPU_KERNEL(reciprocal, Reciprocal, CudaReciprocalFunctor,
ops::CudaZeroGradFunctor<float>>);
CudaReciprocalGradFunctor);
REGISTER_ACTIVATION_XPU_KERNEL(softplus, Softplus, CudaSoftplusFunctor,
REGISTER_OP_KERNEL(celu, KP, plat::XPUPlace,
CudaSoftplusGradFunctor);
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
REGISTER_ACTIVATION_XPU_KERNEL(hard_swish, HardSwish, CudaHardSwishFunctor,
ops::CudaCELUFunctor<float>>);
CudaHardSwishGradFunctor);
REGISTER_OP_KERNEL(
REGISTER_ACTIVATION_XPU_KERNEL(elu, Elu, CudaELUFunctor, CudaELUGradFunctor);
celu_grad, KP, plat::XPUPlace,
REGISTER_ACTIVATION_XPU_KERNEL(celu, Celu, CudaCELUFunctor,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
CudaCELUGradFunctor);
ops::CudaCELUGradFunctor<float>>);
REGISTER_ACTIVATION_XPU_KERNEL(sqrt, Sqrt, CudaSqrtFunctor,
CudaSqrtGradFunctor);
REGISTER_OP_KERNEL(elu, KP, plat::XPUPlace,
REGISTER_ACTIVATION_XPU_KERNEL(square, Square, CudaSquareFunctor,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
CudaSquareGradFunctor);
ops::CudaELUFunctor<float>>);
REGISTER_ACTIVATION_XPU_KERNEL(silu, Silu, CudaSiluFunctor,
REGISTER_OP_KERNEL(
CudaSiluGradFunctor);
elu_grad, KP, plat::XPUPlace,
REGISTER_ACTIVATION_XPU_KERNEL(logsigmoid, LogSigmoid, CudaLogSigmoidFunctor,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
CudaLogSigmoidGradFunctor);
ops::CudaELUGradFunctor<float>>);
REGISTER_ACTIVATION_XPU_KERNEL(softshrink, SoftShrink, CudaSoftShrinkFunctor,
CudaSoftShrinkGradFunctor);
REGISTER_OP_KERNEL(exp, KP, plat::XPUPlace,
REGISTER_ACTIVATION_XPU_KERNEL(ceil, Ceil, CudaCeilFunctor,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
CudaZeroGradFunctor);
ops::CudaExpFunctor<float>>);
REGISTER_ACTIVATION_XPU_KERNEL(floor, Floor, CudaFloorFunctor,
REGISTER_OP_KERNEL(
CudaZeroGradFunctor);
exp_grad, KP, plat::XPUPlace,
REGISTER_ACTIVATION_XPU_KERNEL(log1p, Log1p, CudaLog1pFunctor,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
CudaLog1pGradFunctor);
ops::CudaExpGradFunctor<float>>);
REGISTER_ACTIVATION_XPU_KERNEL(brelu, BRelu, CudaBReluFunctor,
CudaBReluGradFunctor);
REGISTER_OP_KERNEL(floor, KP, plat::XPUPlace,
REGISTER_ACTIVATION_XPU_KERNEL(soft_relu, SoftRelu, CudaSoftReluFunctor,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
CudaSoftReluGradFunctor);
ops::CudaFloorFunctor<float>>);
REGISTER_ACTIVATION_XPU_KERNEL(softsign, Softsign, CudaSoftsignFunctor,
REGISTER_OP_KERNEL(
CudaSoftsignGradFunctor);
floor_grad, KP, plat::XPUPlace,
REGISTER_ACTIVATION_XPU_KERNEL(relu6, Relu6, CudaRelu6Functor,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
CudaRelu6GradFunctor);
ops::CudaZeroGradFunctor<float>>);
REGISTER_ACTIVATION_XPU_KERNEL(hard_shrink, HardShrink, CudaHardShrinkFunctor,
CudaHardShrinkGradFunctor);
REGISTER_OP_KERNEL(
REGISTER_ACTIVATION_XPU_KERNEL(hard_sigmoid, HardSigmoid,
hard_shrink, KP, plat::XPUPlace,
CudaHardSigmoidFunctor,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
CudaHardSigmoidGradFunctor);
ops::CudaHardShrinkFunctor<float>>);
REGISTER_ACTIVATION_XPU_KERNEL(swish, Swish, CudaSwishFunctor,
REGISTER_OP_KERNEL(
CudaSwishGradFunctor);
hard_shrink_grad, KP, plat::XPUPlace,
REGISTER_ACTIVATION_XPU_KERNEL(thresholded_relu, ThresholdedRelu,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
CudaThresholdedReluFunctor,
ops::CudaHardShrinkGradFunctor<float>>);
CudaThresholdedReluGradFunctor);
REGISTER_OP_KERNEL(
hard_sigmoid, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaHardSigmoidFunctor<float>>);
REGISTER_OP_KERNEL(
hard_sigmoid_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaHardSigmoidGradFunctor<float>>);
REGISTER_OP_KERNEL(hard_swish, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaHardSwishFunctor<float>>);
REGISTER_OP_KERNEL(
hard_swish_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaHardSwishGradFunctor<float>>);
REGISTER_OP_KERNEL(
leaky_relu, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
phi::funcs::CudaLeakyReluFunctor<float>>);
REGISTER_OP_KERNEL(
leaky_relu_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
phi::funcs::CudaLeakyReluGradFunctor<float>>);
REGISTER_OP_KERNEL(log, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaLogFunctor<float>>);
REGISTER_OP_KERNEL(
log_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaLogGradFunctor<float>>);
REGISTER_OP_KERNEL(log1p, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaLog1pFunctor<float>>);
REGISTER_OP_KERNEL(
log1p_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaLog1pGradFunctor<float>>);
REGISTER_OP_KERNEL(
logsigmoid, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaLogSigmoidFunctor<float>>);
REGISTER_OP_KERNEL(
logsigmoid_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaLogSigmoidGradFunctor<float>>);
REGISTER_OP_KERNEL(
reciprocal, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaReciprocalFunctor<float>>);
REGISTER_OP_KERNEL(
reciprocal_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaReciprocalGradFunctor<float>>);
REGISTER_OP_KERNEL(
relu, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
phi::funcs::CudaReluFunctor<float>>);
REGISTER_OP_KERNEL(
relu_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
phi::funcs::CudaReluGradFunctor<float>>);
REGISTER_OP_KERNEL(relu6, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaRelu6Functor<float>>);
REGISTER_OP_KERNEL(
relu6_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaRelu6GradFunctor<float>>);
REGISTER_OP_KERNEL(sigmoid, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSigmoidFunctor<float>>);
REGISTER_OP_KERNEL(
sigmoid_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSigmoidGradFunctor<float>>);
REGISTER_OP_KERNEL(silu, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSiluFunctor<float>>);
REGISTER_OP_KERNEL(
silu_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSiluGradFunctor<float>>);
REGISTER_OP_KERNEL(soft_relu, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSoftReluFunctor<float>>);
REGISTER_OP_KERNEL(
soft_relu_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSoftReluGradFunctor<float>>);
REGISTER_OP_KERNEL(softplus, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSoftplusFunctor<float>>);
REGISTER_OP_KERNEL(
softplus_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSoftplusGradFunctor<float>>);
REGISTER_OP_KERNEL(
softshrink, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSoftShrinkFunctor<float>>);
REGISTER_OP_KERNEL(
softshrink_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSoftShrinkGradFunctor<float>>);
REGISTER_OP_KERNEL(softsign, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSoftsignFunctor<float>>);
REGISTER_OP_KERNEL(
softsign_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSoftsignGradFunctor<float>>);
REGISTER_OP_KERNEL(sqrt, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSqrtFunctor<float>>);
REGISTER_OP_KERNEL(
sqrt_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSqrtGradFunctor<float>>);
REGISTER_OP_KERNEL(square, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSquareFunctor<float>>);
REGISTER_OP_KERNEL(
square_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSquareGradFunctor<float>>);
REGISTER_OP_KERNEL(swish, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSwishFunctor<float>>);
REGISTER_OP_KERNEL(
swish_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaSwishGradFunctor<float>>);
REGISTER_OP_KERNEL(
thresholded_relu, KP, plat::XPUPlace,
ops::ActivationCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaThresholdedReluFunctor<float>>);
REGISTER_OP_KERNEL(
thresholded_relu_grad, KP, plat::XPUPlace,
ops::ActivationGradCudaKernel<paddle::platform::XPUDeviceContext,
ops::CudaThresholdedReluGradFunctor<float>>);
#endif // PADDLE_WITH_XPU_KP
#endif // PADDLE_WITH_XPU_KP
python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
浏览文件 @
bef6f2e1
...
@@ -849,6 +849,38 @@ def ref_softsign(x):
...
@@ -849,6 +849,38 @@ def ref_softsign(x):
return
out
return
out
class
XPUTestSoftshrinkOP
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'softshrink'
self
.
use_dynamic_create_class
=
False
class
XPUTestSoftshrink
(
TestActivationOPBase
):
def
set_case
(
self
):
self
.
op_type
=
"softshrink"
self
.
dtype
=
self
.
in_type
threshold
=
0.5
np
.
random
.
seed
(
1023
)
x
=
np
.
random
.
uniform
(
0.25
,
10
,
[
10
,
12
]).
astype
(
self
.
dtype
)
out
=
ref_softshrink
(
x
,
threshold
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'use_xpu'
:
True
}
support_types
=
get_xpu_op_support_types
(
'softshrink'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestSoftshrinkOP
,
stype
)
def
ref_softshrink
(
x
,
threshold
=
0.5
):
out
=
np
.
copy
(
x
)
out
=
(
out
<
-
threshold
)
*
(
out
+
threshold
)
+
(
out
>
threshold
)
*
(
out
-
threshold
)
return
out
class
XPUTestSwishOP
(
XPUOpTestWrapper
):
class
XPUTestSwishOP
(
XPUOpTestWrapper
):
def
__init__
(
self
):
def
__init__
(
self
):
self
.
op_name
=
'swish'
self
.
op_name
=
'swish'
...
@@ -879,5 +911,36 @@ def ref_swish(x):
...
@@ -879,5 +911,36 @@ def ref_swish(x):
return
out
return
out
class
XPUTestThresholdedReluOP
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'thresholded_relu'
self
.
use_dynamic_create_class
=
False
class
XPUTestThresholdedRelu
(
TestActivationOPBase
):
def
set_case
(
self
):
self
.
op_type
=
"thresholded_relu"
self
.
dtype
=
self
.
in_type
threshold
=
1.0
np
.
random
.
seed
(
1024
)
x
=
np
.
random
.
uniform
(
-
20
,
20
,
[
10
,
12
]).
astype
(
self
.
dtype
)
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
out
=
ref_thresholded_relu
(
x
,
threshold
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'use_xpu'
:
True
}
support_types
=
get_xpu_op_support_types
(
'thresholded_relu'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestThresholdedReluOP
,
stype
)
def
ref_thresholded_relu
(
x
,
threshold
=
1.0
):
out
=
(
x
>
threshold
)
*
x
return
out
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录