Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bed652d6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bed652d6
编写于
11月 24, 2021
作者:
L
Li Min
提交者:
GitHub
11月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry pick 2.2] fix bugs to support bias add none for fused_attention op. (#37411) (#37483)
Add support for bias is none for fused_attention op.
上级
f873d3a1
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
173 addition
and
71 deletion
+173
-71
paddle/fluid/operators/fused/fused_attention_op.cc
paddle/fluid/operators/fused/fused_attention_op.cc
+47
-30
paddle/fluid/operators/fused/fused_attention_op.cu
paddle/fluid/operators/fused/fused_attention_op.cu
+76
-31
python/paddle/fluid/tests/unittests/test_fused_attention_op.py
...n/paddle/fluid/tests/unittests/test_fused_attention_op.py
+47
-10
python/paddle/incubate/nn/functional/fused_transformer.py
python/paddle/incubate/nn/functional/fused_transformer.py
+3
-0
未找到文件。
paddle/fluid/operators/fused/fused_attention_op.cc
浏览文件 @
bed652d6
...
@@ -28,12 +28,8 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
...
@@ -28,12 +28,8 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"QKVW"
),
"Input"
,
"QKVW"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"QKVW"
),
"Input"
,
"QKVW"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"QKVBias"
),
"Input"
,
"QKVBias"
,
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"OutLinearW"
),
"Input"
,
"OutLinearW"
,
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"OutLinearW"
),
"Input"
,
"OutLinearW"
,
"FusedAttentionOp"
);
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"OutLinearBias"
),
"Input"
,
"OutLinearBias"
,
"FusedAttentionOp"
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
true
)
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
true
)
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"LnMean"
),
"Output"
,
"LnMean"
,
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"LnMean"
),
"Output"
,
"LnMean"
,
...
@@ -54,8 +50,10 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
...
@@ -54,8 +50,10 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
// qkv_out: [batch_size, seq_len, 3, num_head, dim_head]
// qkv_out: [batch_size, seq_len, 3, num_head, dim_head]
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"QKVOut"
),
"Output"
,
"QKVOut"
,
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"QKVOut"
),
"Output"
,
"QKVOut"
,
"FusedAttentionOp"
);
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"QKVBiasOut"
),
"Output"
,
"QKVBiasOut"
,
if
(
ctx
->
HasInput
(
"QKVBias"
))
{
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"QKVBiasOut"
),
"Output"
,
"QKVBiasOut"
,
"FusedAttentionOp"
);
}
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"TransposeOut2"
),
"Output"
,
"TransposeOut2"
,
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"TransposeOut2"
),
"Output"
,
"TransposeOut2"
,
"FusedAttentionOp"
);
"FusedAttentionOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"QKOut"
),
"Output"
,
"QKOut"
,
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"QKOut"
),
"Output"
,
"QKOut"
,
...
@@ -107,6 +105,13 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
...
@@ -107,6 +105,13 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
"input qkv_weight = [%s]"
,
"input qkv_weight = [%s]"
,
x_dim
,
y_dim
));
x_dim
,
y_dim
));
PADDLE_ENFORCE_EQ
(
y_dim
[
1
]
*
y_dim
[
2
],
y_dim
[
3
],
platform
::
errors
::
InvalidArgument
(
"The dimensions of qkv_weight must be 4"
"(3, num_head, dim_head, dim_embed),"
"and must satisfy the limitations: "
"(num_head * dim_head == dim_embed)"
));
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
true
)
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
true
)
{
ctx
->
SetOutputDim
(
"LnMean"
,
{
x_dim
[
0
]
*
x_dim
[
1
]});
ctx
->
SetOutputDim
(
"LnMean"
,
{
x_dim
[
0
]
*
x_dim
[
1
]});
ctx
->
SetOutputDim
(
"LnVariance"
,
{
x_dim
[
0
]
*
x_dim
[
1
]});
ctx
->
SetOutputDim
(
"LnVariance"
,
{
x_dim
[
0
]
*
x_dim
[
1
]});
...
@@ -119,8 +124,11 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
...
@@ -119,8 +124,11 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
// [batch_size, seq_len, 3, num_head, head_size]
// [batch_size, seq_len, 3, num_head, head_size]
ctx
->
SetOutputDim
(
"QKVOut"
,
ctx
->
SetOutputDim
(
"QKVOut"
,
{
x_dim
[
0
],
x_dim
[
1
],
y_dim
[
0
],
y_dim
[
1
],
y_dim
[
2
]});
{
x_dim
[
0
],
x_dim
[
1
],
y_dim
[
0
],
y_dim
[
1
],
y_dim
[
2
]});
ctx
->
SetOutputDim
(
"QKVBiasOut"
,
{
x_dim
[
0
],
x_dim
[
1
],
y_dim
[
0
],
y_dim
[
1
],
y_dim
[
2
]});
if
(
ctx
->
HasInput
(
"QKVBias"
))
{
ctx
->
SetOutputDim
(
"QKVBiasOut"
,
{
x_dim
[
0
],
x_dim
[
1
],
y_dim
[
0
],
y_dim
[
1
],
y_dim
[
2
]});
}
// [3, batch_size, num_head, seq_len, head_size]
// [3, batch_size, num_head, seq_len, head_size]
ctx
->
SetOutputDim
(
"TransposeOut2"
,
ctx
->
SetOutputDim
(
"TransposeOut2"
,
{
y_dim
[
0
],
x_dim
[
0
],
y_dim
[
1
],
x_dim
[
1
],
y_dim
[
2
]});
{
y_dim
[
0
],
x_dim
[
0
],
y_dim
[
1
],
x_dim
[
1
],
y_dim
[
2
]});
...
@@ -173,11 +181,11 @@ class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -173,11 +181,11 @@ class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
"H. Here, H represents the last dimension of its input tensor."
)
"H. Here, H represents the last dimension of its input tensor."
)
.
AsDispensable
();
.
AsDispensable
();
AddInput
(
"QKVW"
,
"The qkv weight tensor."
);
AddInput
(
"QKVW"
,
"The qkv weight tensor."
);
AddInput
(
"QKVBias"
,
"The qkv bias tensor."
);
AddInput
(
"QKVBias"
,
"The qkv bias tensor."
)
.
AsDispensable
()
;
AddInput
(
"SrcMask"
,
"(optional) The attention mask tensor in fmha."
)
AddInput
(
"SrcMask"
,
"(optional) The attention mask tensor in fmha."
)
.
AsDispensable
();
.
AsDispensable
();
AddInput
(
"OutLinearW"
,
"The out_linear weight tensor."
);
AddInput
(
"OutLinearW"
,
"The out_linear weight tensor."
);
AddInput
(
"OutLinearBias"
,
"The out_linear bias tensor."
);
AddInput
(
"OutLinearBias"
,
"The out_linear bias tensor."
)
.
AsDispensable
()
;
AddInput
(
"Ln2Scale"
,
AddInput
(
"Ln2Scale"
,
"(optional) Scale is a 1-dimensional tensor of size "
"(optional) Scale is a 1-dimensional tensor of size "
"H. Here, H represents the last dimension of its input tensor."
)
"H. Here, H represents the last dimension of its input tensor."
)
...
@@ -379,12 +387,8 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
...
@@ -379,12 +387,8 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"FusedAttentionGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"FusedAttentionGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"QKVW"
),
"Input"
,
"QKVW"
,
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"QKVW"
),
"Input"
,
"QKVW"
,
"FusedAttentionGrad"
);
"FusedAttentionGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"QKVBias"
),
"Input"
,
"QKVBias"
,
"FusedAttentionGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"OutLinearW"
),
"Input"
,
"OutLinearW"
,
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"OutLinearW"
),
"Input"
,
"OutLinearW"
,
"FusedAttentionGrad"
);
"FusedAttentionGrad"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"OutLinearBias"
),
"Input"
,
"OutLinearBias"
,
"FusedAttentionGrad"
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
true
)
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
true
)
{
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"LnScale"
)))
{
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"LnScale"
)))
{
...
@@ -399,14 +403,17 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
...
@@ -399,14 +403,17 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"OutLinearBias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearBias"
),
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearBias"
),
ctx
->
GetInputDim
(
"OutLinearBias"
));
ctx
->
GetInputDim
(
"OutLinearBias"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearW"
),
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearW"
),
ctx
->
GetInputDim
(
"OutLinearW"
));
ctx
->
GetInputDim
(
"OutLinearW"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVW"
),
ctx
->
GetInputDim
(
"QKVW"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVW"
),
ctx
->
GetInputDim
(
"QKVW"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVBias"
),
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"QKVBias"
)))
{
ctx
->
GetInputDim
(
"QKVBias"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVBias"
),
ctx
->
GetInputDim
(
"QKVBias"
));
}
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
true
)
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
true
)
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"LnOut"
),
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"LnOut"
),
...
@@ -434,8 +441,10 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
...
@@ -434,8 +441,10 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
}
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVOut"
),
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVOut"
),
ctx
->
GetInputDim
(
"QKVOut"
));
ctx
->
GetInputDim
(
"QKVOut"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVBiasOut"
),
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"QKVBiasOut"
)))
{
ctx
->
GetInputDim
(
"QKVBiasOut"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVBiasOut"
),
ctx
->
GetInputDim
(
"QKVBiasOut"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearOut"
),
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearOut"
),
ctx
->
GetInputDim
(
"OutLinearOut"
));
ctx
->
GetInputDim
(
"OutLinearOut"
));
}
}
...
@@ -462,7 +471,15 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
...
@@ -462,7 +471,15 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
// inputs x, parameters and their grad.
// inputs x, parameters and their grad.
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"QKVW"
,
this
->
Input
(
"QKVW"
));
op
->
SetInput
(
"QKVW"
,
this
->
Input
(
"QKVW"
));
op
->
SetInput
(
"QKVBias"
,
this
->
Input
(
"QKVBias"
));
if
(
this
->
HasInput
(
"QKVBias"
))
{
op
->
SetInput
(
"QKVBias"
,
this
->
Input
(
"QKVBias"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"QKVBias"
),
this
->
InputGrad
(
"QKVBias"
));
op
->
SetInput
(
"QKVBiasOut"
,
this
->
Output
(
"QKVBiasOut"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"QKVBiasOut"
),
this
->
OutputGrad
(
"QKVBiasOut"
));
}
if
(
this
->
HasInput
(
"SrcMask"
))
{
if
(
this
->
HasInput
(
"SrcMask"
))
{
op
->
SetInput
(
"SrcMask"
,
this
->
Input
(
"SrcMask"
));
op
->
SetInput
(
"SrcMask"
,
this
->
Input
(
"SrcMask"
));
...
@@ -472,7 +489,11 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
...
@@ -472,7 +489,11 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
}
}
op
->
SetInput
(
"OutLinearW"
,
this
->
Input
(
"OutLinearW"
));
op
->
SetInput
(
"OutLinearW"
,
this
->
Input
(
"OutLinearW"
));
op
->
SetInput
(
"OutLinearBias"
,
this
->
Input
(
"OutLinearBias"
));
if
(
this
->
HasInput
(
"OutLinearBias"
))
{
op
->
SetInput
(
"OutLinearBias"
,
this
->
Input
(
"OutLinearBias"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"OutLinearBias"
),
this
->
InputGrad
(
"OutLinearBias"
));
}
op
->
SetAttrMap
(
this
->
Attrs
());
op
->
SetAttrMap
(
this
->
Attrs
());
bool
is_pre_layer_norm
=
bool
is_pre_layer_norm
=
...
@@ -503,10 +524,7 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
...
@@ -503,10 +524,7 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"QKVW"
),
this
->
InputGrad
(
"QKVW"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"QKVW"
),
this
->
InputGrad
(
"QKVW"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"QKVBias"
),
this
->
InputGrad
(
"QKVBias"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"OutLinearBias"
),
this
->
InputGrad
(
"OutLinearBias"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"OutLinearW"
),
op
->
SetOutput
(
framework
::
GradVarName
(
"OutLinearW"
),
this
->
InputGrad
(
"OutLinearW"
));
this
->
InputGrad
(
"OutLinearW"
));
...
@@ -528,7 +546,7 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
...
@@ -528,7 +546,7 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
this
->
Output
(
"BiasDropoutResidualOut"
));
this
->
Output
(
"BiasDropoutResidualOut"
));
}
}
op
->
SetInput
(
"QKVOut"
,
this
->
Output
(
"QKVOut"
));
op
->
SetInput
(
"QKVOut"
,
this
->
Output
(
"QKVOut"
));
op
->
SetInput
(
"QKVBiasOut"
,
this
->
Output
(
"QKVBiasOut"
));
op
->
SetInput
(
"TransposeOut2"
,
this
->
Output
(
"TransposeOut2"
));
op
->
SetInput
(
"TransposeOut2"
,
this
->
Output
(
"TransposeOut2"
));
op
->
SetInput
(
"QKOut"
,
this
->
Output
(
"QKOut"
));
op
->
SetInput
(
"QKOut"
,
this
->
Output
(
"QKOut"
));
op
->
SetInput
(
"QKTVOut"
,
this
->
Output
(
"QKTVOut"
));
op
->
SetInput
(
"QKTVOut"
,
this
->
Output
(
"QKTVOut"
));
...
@@ -553,8 +571,7 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
...
@@ -553,8 +571,7 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
}
}
op
->
SetOutput
(
framework
::
GradVarName
(
"QKVOut"
),
this
->
OutputGrad
(
"QKVOut"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"QKVOut"
),
this
->
OutputGrad
(
"QKVOut"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"QKVBiasOut"
),
this
->
OutputGrad
(
"QKVBiasOut"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"QKTVOut"
),
op
->
SetOutput
(
framework
::
GradVarName
(
"QKTVOut"
),
this
->
OutputGrad
(
"QKTVOut"
));
this
->
OutputGrad
(
"QKTVOut"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"TransposeOut2"
),
op
->
SetOutput
(
framework
::
GradVarName
(
"TransposeOut2"
),
...
...
paddle/fluid/operators/fused/fused_attention_op.cu
浏览文件 @
bed652d6
...
@@ -96,9 +96,11 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
...
@@ -96,9 +96,11 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
auto
*
x_data
=
input_x
->
data
<
T
>
();
auto
*
x_data
=
input_x
->
data
<
T
>
();
auto
*
qkv_weight_data
=
qkv_weight
->
data
<
T
>
();
auto
*
qkv_weight_data
=
qkv_weight
->
data
<
T
>
();
auto
*
qkv_bias_data
=
qkv_bias
->
data
<
T
>
();
auto
*
qkv_bias_data
=
(
qkv_bias
==
nullptr
)
?
nullptr
:
qkv_bias
->
data
<
T
>
();
auto
*
qkv_out_data
=
qkv_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
qkv_out_data
=
qkv_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
qkv_bias_out_data
=
qkv_bias_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
qkv_bias_out_data
=
(
qkv_bias
==
nullptr
)
?
nullptr
:
qkv_bias_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// get data ptr for FMHA.
// get data ptr for FMHA.
auto
*
transpose_out_2_data
=
auto
*
transpose_out_2_data
=
...
@@ -117,7 +119,8 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
...
@@ -117,7 +119,8 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
// get data ptr for out_linear.
// get data ptr for out_linear.
auto
*
out_linear_weight_data
=
out_linear_weight
->
data
<
T
>
();
auto
*
out_linear_weight_data
=
out_linear_weight
->
data
<
T
>
();
auto
*
out_linear_bias_data
=
out_linear_bias
->
data
<
T
>
();
auto
*
out_linear_bias_data
=
(
out_linear_bias
==
nullptr
)
?
nullptr
:
out_linear_bias
->
data
<
T
>
();
auto
*
out_linear_out_data
=
out_linear_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
out_linear_out_data
=
out_linear_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// get data ptr for bias+dropout+residual+layernorm
// get data ptr for bias+dropout+residual+layernorm
...
@@ -139,9 +142,15 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
...
@@ -139,9 +142,15 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
auto
layer_norm_compute
=
AttnLayerNorm
<
T
>
(
ctx
.
cuda_device_context
(),
auto
layer_norm_compute
=
AttnLayerNorm
<
T
>
(
ctx
.
cuda_device_context
(),
epsilon
,
bsz_seq
,
dim_embed
);
epsilon
,
bsz_seq
,
dim_embed
);
bool
compute_bias
=
true
;
if
(
qkv_bias
==
nullptr
)
{
compute_bias
=
false
;
}
// (transA, transB, compute_bias) = (false, true, true)
// (transA, transB, compute_bias) = (false, true, true)
auto
qkv_compute
=
AttnMatMul
<
T
>
(
ctx
.
cuda_device_context
(),
false
,
true
,
auto
qkv_compute
=
bsz_seq
,
output_size
,
input_size
,
true
);
AttnMatMul
<
T
>
(
ctx
.
cuda_device_context
(),
false
,
true
,
bsz_seq
,
output_size
,
input_size
,
compute_bias
);
AttnDropoutParam
attn_dropout_param
(
AttnDropoutParam
attn_dropout_param
(
is_test_1
,
dropout_implementation_1
,
attn_dropout_rate
,
is_test_1
,
dropout_implementation_1
,
attn_dropout_rate
,
...
@@ -176,10 +185,17 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
...
@@ -176,10 +185,17 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
qkv_compute
.
ComputeForward
(
qkv_weight
,
input_x
,
qkv_bias
,
qkv_out
,
qkv_compute
.
ComputeForward
(
qkv_weight
,
input_x
,
qkv_bias
,
qkv_out
,
qkv_bias_out
);
qkv_bias_out
);
}
}
fmha_ref_compute
.
ComputeForward
(
*
qkv_bias_out
,
src_mask
,
transpose_out_2
,
if
(
qkv_bias
==
nullptr
)
{
qk_out
,
src_mask_out
,
softmax_out
,
fmha_ref_compute
.
ComputeForward
(
*
qkv_out
,
src_mask
,
transpose_out_2
,
attn_dropout_mask_out
,
attn_dropout_out
,
qk_out
,
src_mask_out
,
softmax_out
,
qktv_out
,
fmha_out
);
attn_dropout_mask_out
,
attn_dropout_out
,
qktv_out
,
fmha_out
);
}
else
{
fmha_ref_compute
.
ComputeForward
(
*
qkv_bias_out
,
src_mask
,
transpose_out_2
,
qk_out
,
src_mask_out
,
softmax_out
,
attn_dropout_mask_out
,
attn_dropout_out
,
qktv_out
,
fmha_out
);
}
// fmha_out: [batch_size, seq_len, num_head, head_dim]
// fmha_out: [batch_size, seq_len, num_head, head_dim]
// weight: [embed_dim, embed_dim]
// weight: [embed_dim, embed_dim]
...
@@ -249,9 +265,10 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
...
@@ -249,9 +265,10 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
auto
*
out_linear_bias
=
ctx
.
Input
<
Tensor
>
(
"OutLinearBias"
);
auto
*
out_linear_bias
=
ctx
.
Input
<
Tensor
>
(
"OutLinearBias"
);
auto
*
src_mask_data
=
(
src_mask
==
nullptr
?
nullptr
:
src_mask
->
data
<
T
>
());
auto
*
src_mask_data
=
(
src_mask
==
nullptr
?
nullptr
:
src_mask
->
data
<
T
>
());
auto
*
qkv_weight_data
=
qkv_weight
->
data
<
T
>
();
auto
*
qkv_weight_data
=
qkv_weight
->
data
<
T
>
();
auto
*
qkv_bias_data
=
qkv_bias
->
data
<
T
>
();
auto
*
qkv_bias_data
=
(
qkv_bias
==
nullptr
)
?
nullptr
:
qkv_bias
->
data
<
T
>
();
auto
*
out_linear_weight_data
=
out_linear_weight
->
data
<
T
>
();
auto
*
out_linear_weight_data
=
out_linear_weight
->
data
<
T
>
();
auto
*
out_linear_bias_data
=
out_linear_bias
->
data
<
T
>
();
auto
*
out_linear_bias_data
=
(
out_linear_bias
==
nullptr
)
?
nullptr
:
out_linear_bias
->
data
<
T
>
();
// fw output
// fw output
auto
*
fmha_out
=
ctx
.
Input
<
Tensor
>
(
"FMHAOut"
);
auto
*
fmha_out
=
ctx
.
Input
<
Tensor
>
(
"FMHAOut"
);
...
@@ -299,8 +316,15 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
...
@@ -299,8 +316,15 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
auto
*
d_bias_dropout_residual_out
=
auto
*
d_bias_dropout_residual_out
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BiasDropoutResidualOut"
));
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BiasDropoutResidualOut"
));
auto
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_qkv_out_data
=
d_qkv_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// when qkv_bias is not nullptr, d_qkv_out is equals to d_qkv_bias_out, the
auto
*
d_qkv_bias_out_data
=
d_qkv_bias_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// space can be reused.
auto
*
d_qkv_out_data
=
(
d_qkv_bias_out
!=
nullptr
)
?
nullptr
:
d_qkv_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_qkv_bias_out_data
=
(
d_qkv_bias_out
==
nullptr
)
?
nullptr
:
d_qkv_bias_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_qktv_out_data
=
d_qktv_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_qktv_out_data
=
d_qktv_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_transpose_out_2_data
=
auto
*
d_transpose_out_2_data
=
d_transpose_out_2
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_transpose_out_2
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
@@ -326,11 +350,15 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
...
@@ -326,11 +350,15 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
auto
*
d_ln_2_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Ln2Bias"
));
auto
*
d_ln_2_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Ln2Bias"
));
auto
*
d_qkv_weight_data
=
d_qkv_weight
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_qkv_weight_data
=
d_qkv_weight
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_qkv_bias_data
=
d_qkv_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_qkv_bias_data
=
(
d_qkv_bias
==
nullptr
)
?
nullptr
:
d_qkv_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_out_linear_weight_data
=
auto
*
d_out_linear_weight_data
=
d_out_linear_weight
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_out_linear_weight
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
d_out_linear_bias_data
=
auto
*
d_out_linear_bias_data
=
d_out_linear_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
(
d_out_linear_bias
==
nullptr
)
?
nullptr
:
d_out_linear_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
input_x_dims
=
input_x
->
dims
();
const
auto
input_x_dims
=
input_x
->
dims
();
const
auto
qkv_w_dims
=
qkv_weight
->
dims
();
const
auto
qkv_w_dims
=
qkv_weight
->
dims
();
...
@@ -352,12 +380,15 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
...
@@ -352,12 +380,15 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
bool
transA
=
false
;
bool
transA
=
false
;
bool
transB
=
true
;
bool
transB
=
true
;
bool
compute_bias
=
true
;
bool
compute_qkv_bias
=
true
;
if
(
qkv_bias
==
nullptr
)
{
compute_qkv_bias
=
false
;
}
auto
layer_norm_compute
=
AttnLayerNorm
<
T
>
(
ctx
.
cuda_device_context
(),
auto
layer_norm_compute
=
AttnLayerNorm
<
T
>
(
ctx
.
cuda_device_context
(),
epsilon
,
bsz_seq
,
dim_embed
);
epsilon
,
bsz_seq
,
dim_embed
);
auto
qkv_compute
=
auto
qkv_compute
=
AttnMatMul
<
T
>
(
ctx
.
cuda_device_context
(),
transA
,
transB
,
bsz_seq
,
AttnMatMul
<
T
>
(
ctx
.
cuda_device_context
(),
transA
,
transB
,
bsz_seq
,
output_size
,
input_size
,
compute_bias
);
output_size
,
input_size
,
compute_
qkv_
bias
);
AttnDropoutParam
attn_dropout_param
(
AttnDropoutParam
attn_dropout_param
(
is_test_1
,
dropout_implementation_1
,
attn_dropout_prob
,
is_test_1
,
dropout_implementation_1
,
attn_dropout_prob
,
is_upscale_in_train_1
,
is_fix_seed_1
,
seed_val_1
,
seed_1
);
is_upscale_in_train_1
,
is_fix_seed_1
,
seed_val_1
,
seed_1
);
...
@@ -367,7 +398,7 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
...
@@ -367,7 +398,7 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
output_size
=
hidden_size
;
output_size
=
hidden_size
;
transA
=
false
;
transA
=
false
;
transB
=
false
;
transB
=
false
;
compute_bias
=
false
;
bool
compute_bias
=
false
;
auto
out_linear_compute
=
auto
out_linear_compute
=
AttnMatMul
<
T
>
(
ctx
.
cuda_device_context
(),
transA
,
transB
,
bsz_seq
,
AttnMatMul
<
T
>
(
ctx
.
cuda_device_context
(),
transA
,
transB
,
bsz_seq
,
output_size
,
input_size
,
compute_bias
);
output_size
,
input_size
,
compute_bias
);
...
@@ -405,14 +436,19 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
...
@@ -405,14 +436,19 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
d_out_linear_out
,
d_fmha_out
,
d_out_linear_out
,
d_fmha_out
,
d_out_linear_weight
,
nullptr
);
d_out_linear_weight
,
nullptr
);
fmha_ref_compute
.
ComputeBackward
(
if
(
qkv_bias
!=
nullptr
)
{
*
transpose_out_2
,
src_mask
,
*
softmax_out
,
*
attn_dropout_mask_out
,
fmha_ref_compute
.
ComputeBackward
(
*
attn_dropout_out
,
*
qk_out
,
*
src_mask_out
,
*
d_fmha_out
,
d_qktv_out
,
*
transpose_out_2
,
src_mask
,
*
softmax_out
,
*
attn_dropout_mask_out
,
d_attn_dropout_out
,
d_softmax_out
,
d_src_mask_out
,
d_qk_out
,
*
attn_dropout_out
,
*
qk_out
,
*
src_mask_out
,
*
d_fmha_out
,
d_qktv_out
,
d_transpose_out_2
,
nullptr
,
d_qkv_bias_out
);
d_attn_dropout_out
,
d_softmax_out
,
d_src_mask_out
,
d_qk_out
,
cudaMemcpyAsync
(
d_qkv_out_data
,
d_qkv_bias_out_data
,
d_transpose_out_2
,
nullptr
,
d_qkv_bias_out
);
bsz_seq
*
3
*
num_head
*
dim_head
*
sizeof
(
T
),
}
else
{
cudaMemcpyDeviceToDevice
);
fmha_ref_compute
.
ComputeBackward
(
*
transpose_out_2
,
src_mask
,
*
softmax_out
,
*
attn_dropout_mask_out
,
*
attn_dropout_out
,
*
qk_out
,
*
src_mask_out
,
*
d_fmha_out
,
d_qktv_out
,
d_attn_dropout_out
,
d_softmax_out
,
d_src_mask_out
,
d_qk_out
,
d_transpose_out_2
,
nullptr
,
d_qkv_out
);
}
if
(
pre_layer_norm
)
{
if
(
pre_layer_norm
)
{
auto
*
ln_mean
=
ctx
.
Input
<
Tensor
>
(
"LnMean"
);
auto
*
ln_mean
=
ctx
.
Input
<
Tensor
>
(
"LnMean"
);
...
@@ -432,15 +468,24 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
...
@@ -432,15 +468,24 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
auto
*
d_ln_bias_data
=
auto
*
d_ln_bias_data
=
(
d_ln_bias
==
nullptr
?
nullptr
(
d_ln_bias
==
nullptr
?
nullptr
:
d_ln_bias
->
mutable_data
<
U
>
(
ctx
.
GetPlace
()));
:
d_ln_bias
->
mutable_data
<
U
>
(
ctx
.
GetPlace
()));
if
(
qkv_bias
!=
nullptr
)
{
qkv_compute
.
ComputeBackward
(
ln_out
,
qkv_weight
,
d_qkv_bias_out
,
d_ln_out
,
qkv_compute
.
ComputeBackward
(
ln_out
,
qkv_weight
,
d_qkv_bias_out
,
d_qkv_weight
,
d_qkv_bias
);
d_ln_out
,
d_qkv_weight
,
d_qkv_bias
);
}
else
{
qkv_compute
.
ComputeBackward
(
ln_out
,
qkv_weight
,
d_qkv_out
,
d_ln_out
,
d_qkv_weight
,
d_qkv_bias
);
}
layer_norm_compute
.
ComputeBackward
(
x_data
,
d_ln_out_data
,
ln_scale_data
,
layer_norm_compute
.
ComputeBackward
(
x_data
,
d_ln_out_data
,
ln_scale_data
,
ln_mean_data
,
ln_var_data
,
d_x_data
,
ln_mean_data
,
ln_var_data
,
d_x_data
,
d_ln_scale_data
,
d_ln_bias_data
);
d_ln_scale_data
,
d_ln_bias_data
);
}
else
{
}
else
{
qkv_compute
.
ComputeBackward
(
input_x
,
qkv_weight
,
d_qkv_bias_out
,
d_x
,
if
(
qkv_bias
!=
nullptr
)
{
d_qkv_weight
,
d_qkv_bias
);
qkv_compute
.
ComputeBackward
(
input_x
,
qkv_weight
,
d_qkv_bias_out
,
d_x
,
d_qkv_weight
,
d_qkv_bias
);
}
else
{
qkv_compute
.
ComputeBackward
(
input_x
,
qkv_weight
,
d_qkv_out
,
d_x
,
d_qkv_weight
,
d_qkv_bias
);
}
}
}
// gradient accumulation
// gradient accumulation
std
::
vector
<
const
Tensor
*>
ins
;
std
::
vector
<
const
Tensor
*>
ins
;
...
...
python/paddle/fluid/tests/unittests/test_fused_attention_op.py
浏览文件 @
bed652d6
...
@@ -168,17 +168,29 @@ class TestFusedAttentionOp(OpTest):
...
@@ -168,17 +168,29 @@ class TestFusedAttentionOp(OpTest):
paddle
.
disable_static
(
place
=
paddle
.
CUDAPlace
(
0
))
paddle
.
disable_static
(
place
=
paddle
.
CUDAPlace
(
0
))
q_proj_weight
=
paddle
.
to_tensor
(
q_proj_weight
=
paddle
.
to_tensor
(
self
.
q_proj
.
weight
,
stop_gradient
=
False
)
self
.
q_proj
.
weight
,
stop_gradient
=
False
)
q_proj_bias
=
paddle
.
to_tensor
(
self
.
q_proj
.
bias
,
stop_gradient
=
False
)
k_proj_weight
=
paddle
.
to_tensor
(
k_proj_weight
=
paddle
.
to_tensor
(
self
.
k_proj
.
weight
,
stop_gradient
=
False
)
self
.
k_proj
.
weight
,
stop_gradient
=
False
)
k_proj_bias
=
paddle
.
to_tensor
(
self
.
k_proj
.
bias
,
stop_gradient
=
False
)
v_proj_weight
=
paddle
.
to_tensor
(
v_proj_weight
=
paddle
.
to_tensor
(
self
.
v_proj
.
weight
,
stop_gradient
=
False
)
self
.
v_proj
.
weight
,
stop_gradient
=
False
)
v_proj_bias
=
paddle
.
to_tensor
(
self
.
v_proj
.
bias
,
stop_gradient
=
False
)
out_linear_weight
=
paddle
.
to_tensor
(
out_linear_weight
=
paddle
.
to_tensor
(
self
.
out_proj
.
weight
,
stop_gradient
=
False
)
self
.
out_proj
.
weight
,
stop_gradient
=
False
)
out_linear_bias
=
paddle
.
to_tensor
(
self
.
out_proj
.
bias
,
stop_gradient
=
False
)
if
self
.
bias_attr
is
False
:
qkv_bias_tensor
=
None
out_linear_bias
=
None
else
:
q_proj_bias
=
paddle
.
to_tensor
(
self
.
q_proj
.
bias
,
stop_gradient
=
False
)
k_proj_bias
=
paddle
.
to_tensor
(
self
.
k_proj
.
bias
,
stop_gradient
=
False
)
v_proj_bias
=
paddle
.
to_tensor
(
self
.
v_proj
.
bias
,
stop_gradient
=
False
)
qkv_bias
=
np
.
concatenate
(
(
q_proj_bias
.
numpy
(),
k_proj_bias
.
numpy
(),
v_proj_bias
.
numpy
()))
qkv_bias
=
qkv_bias
.
reshape
((
3
,
self
.
num_heads
,
self
.
head_dim
))
qkv_bias_tensor
=
paddle
.
to_tensor
(
qkv_bias
,
stop_gradient
=
False
)
out_linear_bias
=
paddle
.
to_tensor
(
self
.
out_proj
.
bias
,
stop_gradient
=
False
)
ln1_scale
=
paddle
.
to_tensor
(
self
.
norm1
.
weight
,
stop_gradient
=
False
)
ln1_scale
=
paddle
.
to_tensor
(
self
.
norm1
.
weight
,
stop_gradient
=
False
)
ln1_bias
=
paddle
.
to_tensor
(
self
.
norm1
.
bias
,
stop_gradient
=
False
)
ln1_bias
=
paddle
.
to_tensor
(
self
.
norm1
.
bias
,
stop_gradient
=
False
)
...
@@ -193,17 +205,12 @@ class TestFusedAttentionOp(OpTest):
...
@@ -193,17 +205,12 @@ class TestFusedAttentionOp(OpTest):
qkv_weight
=
qkv_weight
.
reshape
(
qkv_weight
=
qkv_weight
.
reshape
(
(
3
,
self
.
num_heads
,
self
.
head_dim
,
self
.
embed_dim
))
(
3
,
self
.
num_heads
,
self
.
head_dim
,
self
.
embed_dim
))
qkv_bias
=
np
.
concatenate
(
(
q_proj_bias
.
numpy
(),
k_proj_bias
.
numpy
(),
v_proj_bias
.
numpy
()))
qkv_bias
=
qkv_bias
.
reshape
((
3
,
self
.
num_heads
,
self
.
head_dim
))
x
=
paddle
.
to_tensor
(
self
.
query
,
stop_gradient
=
False
)
x
=
paddle
.
to_tensor
(
self
.
query
,
stop_gradient
=
False
)
if
self
.
has_attn_mask
:
if
self
.
has_attn_mask
:
attn_mask
=
paddle
.
to_tensor
(
self
.
attn_mask
,
stop_gradient
=
False
)
attn_mask
=
paddle
.
to_tensor
(
self
.
attn_mask
,
stop_gradient
=
False
)
else
:
else
:
attn_mask
=
None
attn_mask
=
None
qkv_weight_tensor
=
paddle
.
to_tensor
(
qkv_weight
,
stop_gradient
=
False
)
qkv_weight_tensor
=
paddle
.
to_tensor
(
qkv_weight
,
stop_gradient
=
False
)
qkv_bias_tensor
=
paddle
.
to_tensor
(
qkv_bias
,
stop_gradient
=
False
)
epsilon
=
1e-05
epsilon
=
1e-05
ln2_epsilon
=
1e-05
ln2_epsilon
=
1e-05
...
@@ -227,6 +234,36 @@ class TestFusedAttentionOp(OpTest):
...
@@ -227,6 +234,36 @@ class TestFusedAttentionOp(OpTest):
x_grad_ref
,
x_grad
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-4
)
x_grad_ref
,
x_grad
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-4
)
class
TestFusedAttentionOpBiasIsNone
(
TestFusedAttentionOp
):
def
config
(
self
):
self
.
x_type
=
np
.
float32
self
.
attn_mask_type
=
np
.
float64
self
.
pre_layer_norm
=
False
self
.
has_attn_mask
=
True
self
.
training
=
True
self
.
batch_size
=
8
self
.
query_length
=
128
self
.
head_dim
=
64
self
.
num_heads
=
16
self
.
embed_dim
=
self
.
head_dim
*
self
.
num_heads
self
.
dropout_prob
=
0.0
self
.
attn_dropout_prob
=
0.0
self
.
weight_attr
=
None
self
.
bias_attr
=
False
self
.
kdim
,
self
.
vdim
=
self
.
embed_dim
,
self
.
embed_dim
self
.
key_length
,
self
.
value_length
=
self
.
query_length
,
self
.
query_length
def
test_fused_attention_op
(
self
):
final_out_ref
,
x_grad_ref
=
self
.
GetBaselineOut
()
final_out
,
x_grad
=
self
.
GetFusedAttentionOut
()
np
.
testing
.
assert_allclose
(
final_out_ref
,
final_out
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-4
)
np
.
testing
.
assert_allclose
(
x_grad_ref
,
x_grad
.
numpy
(),
rtol
=
1e-5
,
atol
=
1e-4
)
class
TestFusedAttentionOpPreLn
(
TestFusedAttentionOp
):
class
TestFusedAttentionOpPreLn
(
TestFusedAttentionOp
):
def
config
(
self
):
def
config
(
self
):
self
.
x_type
=
np
.
float32
self
.
x_type
=
np
.
float32
...
...
python/paddle/incubate/nn/functional/fused_transformer.py
浏览文件 @
bed652d6
...
@@ -356,6 +356,9 @@ def fused_multi_head_attention(x,
...
@@ -356,6 +356,9 @@ def fused_multi_head_attention(x,
0
]
==
3
,
"The shape of qkv_weight should be [3, num_head, head_dim, embed_dim]."
0
]
==
3
,
"The shape of qkv_weight should be [3, num_head, head_dim, embed_dim]."
assert
qkv_weight
.
shape
[
3
]
==
x
.
shape
[
assert
qkv_weight
.
shape
[
3
]
==
x
.
shape
[
2
],
"The 3rd dim of qkv_weight and 2nd dim of x should be the same, i.e., embed_dim."
2
],
"The 3rd dim of qkv_weight and 2nd dim of x should be the same, i.e., embed_dim."
assert
qkv_weight
.
shape
[
1
]
*
qkv_weight
.
shape
[
2
]
==
qkv_weight
.
shape
[
3
],
"embed_dim must be divisible by num_heads."
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
final_out
=
_C_ops
.
fused_attention
(
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
final_out
=
_C_ops
.
fused_attention
(
x
,
pre_ln_scale
,
pre_ln_bias
,
qkv_weight
,
qkv_bias
,
attn_mask
,
x
,
pre_ln_scale
,
pre_ln_bias
,
qkv_weight
,
qkv_bias
,
attn_mask
,
linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
,
'pre_layer_norm'
,
linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
,
'pre_layer_norm'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录