Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
be2884eb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
be2884eb
编写于
11月 04, 2021
作者:
Z
zhulei
提交者:
GitHub
11月 04, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] Add bilinear_interpolate_v2 (#36971)
上级
4977eb22
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
666 addition
and
38 deletion
+666
-38
paddle/fluid/operators/interpolate_v2_op_npu.cc
paddle/fluid/operators/interpolate_v2_op_npu.cc
+386
-38
python/paddle/fluid/tests/unittests/npu/CMakeLists.txt
python/paddle/fluid/tests/unittests/npu/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/npu/test_bilinear_interp_v2_op_npu.py
...uid/tests/unittests/npu/test_bilinear_interp_v2_op_npu.py
+279
-0
未找到文件。
paddle/fluid/operators/interpolate_v2_op_npu.cc
浏览文件 @
be2884eb
...
...
@@ -20,6 +20,369 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
DataLayout
=
framework
::
DataLayout
;
using
DDim
=
framework
::
DDim
;
using
fp16
=
paddle
::
platform
::
float16
;
template
<
typename
T
>
struct
InterpolateFunction
{
public:
explicit
InterpolateFunction
(
const
framework
::
ExecutionContext
&
ctx
)
:
ctx
(
ctx
)
{
place
=
ctx
.
GetPlace
();
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
t0
.
mutable_data
<
float
>
({
1
},
place
);
t1
.
mutable_data
<
float
>
({
1
},
place
);
tn
.
mutable_data
<
float
>
({
1
},
place
);
FillNpuTensorWithConstant
<
float
>
(
&
t0
,
static_cast
<
float
>
(
0
));
FillNpuTensorWithConstant
<
float
>
(
&
t1
,
static_cast
<
float
>
(
1
));
}
void
Arange
(
int
n
,
Tensor
*
x
)
{
FillNpuTensorWithConstant
<
float
>
(
&
tn
,
static_cast
<
float
>
(
n
));
const
auto
&
runner
=
NpuOpRunner
(
"Range"
,
{
t0
,
tn
,
t1
},
{
*
x
},
{});
runner
.
Run
(
stream
);
}
void
ReduceSum
(
const
Tensor
*
x
,
Tensor
*
y
,
const
std
::
vector
<
int
>&
dim
,
bool
keep_dims
=
true
)
{
const
auto
&
runner
=
NpuOpRunner
(
"ReduceSumD"
,
{
*
x
},
{
*
y
},
{{
"axes"
,
dim
},
{
"keep_dims"
,
keep_dims
}});
runner
.
Run
(
stream
);
}
void
Add
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
z
)
{
const
auto
&
runner
=
NpuOpRunner
(
"AddV2"
,
{
*
x
,
*
y
},
{
*
z
},
{});
runner
.
Run
(
stream
);
}
void
Adds
(
const
Tensor
*
x
,
float
scalar
,
Tensor
*
y
)
{
const
auto
&
runner
=
NpuOpRunner
(
"Adds"
,
{
*
x
},
{
*
y
},
{{
"value"
,
scalar
}});
runner
.
Run
(
stream
);
}
void
Mul
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
z
)
{
const
auto
&
runner
=
NpuOpRunner
(
"Mul"
,
{
*
x
,
*
y
},
{
*
z
},
{});
runner
.
Run
(
stream
);
}
void
Sub
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
z
)
{
const
auto
&
runner
=
NpuOpRunner
(
"Sub"
,
{
*
x
,
*
y
},
{
*
z
},
{});
runner
.
Run
(
stream
);
}
void
Cast
(
const
Tensor
*
x
,
Tensor
*
y
)
{
auto
dst_dtype
=
ConvertToNpuDtype
(
y
->
type
());
const
auto
&
runner
=
NpuOpRunner
(
"Cast"
,
{
*
x
},
{
*
y
},
{{
"dst_type"
,
static_cast
<
int
>
(
dst_dtype
)}});
runner
.
Run
(
stream
);
}
void
Gather
(
const
Tensor
*
x
,
const
Tensor
*
indices
,
const
int
axis
,
Tensor
*
y
)
{
const
auto
&
runner
=
NpuOpRunner
(
"GatherV2D"
,
{
*
x
,
*
indices
},
{
*
y
},
{{
"axis"
,
axis
}});
runner
.
Run
(
stream
);
}
void
GatherGrad
(
const
Tensor
*
gy
,
const
Tensor
*
indices
,
const
int
axis
,
Tensor
*
gx
)
{
// 1 gy swapaxis: axis & 0
int
len
=
(
gy
->
dims
()).
size
();
std
::
vector
<
int
>
axis_swap
(
len
);
for
(
int
i
=
0
;
i
<
len
;
i
++
)
{
axis_swap
[
i
]
=
i
;
}
axis_swap
[
0
]
=
axis
;
axis_swap
[
axis
]
=
0
;
auto
y_new_shape
=
gy
->
dims
();
auto
yt
=
y_new_shape
[
axis
];
y_new_shape
[
axis
]
=
y_new_shape
[
0
];
y_new_shape
[
0
]
=
yt
;
Tensor
gy_t
;
gy_t
.
mutable_data
<
T
>
(
y_new_shape
,
place
);
Transpose
(
gy
,
&
gy_t
,
axis_swap
);
// 2 scatter
auto
x_new_shape
=
gx
->
dims
();
auto
xt
=
x_new_shape
[
axis
];
x_new_shape
[
axis
]
=
x_new_shape
[
0
];
x_new_shape
[
0
]
=
xt
;
Tensor
gx_zero
,
gx_t
;
gx_zero
.
mutable_data
<
T
>
(
x_new_shape
,
place
);
gx_t
.
mutable_data
<
T
>
(
x_new_shape
,
place
);
FillNpuTensorWithConstant
<
T
>
(
&
gx_zero
,
static_cast
<
T
>
(
0
));
gx_zero
.
Resize
(
x_new_shape
);
Scatter
(
&
gx_zero
,
indices
,
&
gy_t
,
&
gx_t
);
// 3 gx swapaxis: axis, 0
Transpose
(
&
gx_t
,
gx
,
axis_swap
);
}
void
Scatter
(
const
Tensor
*
x
,
const
Tensor
*
index
,
const
Tensor
*
updates
,
Tensor
*
y
)
{
const
auto
&
runner
=
NpuOpRunner
(
"TensorScatterAdd"
,
{
*
x
,
*
index
,
*
updates
},
{
*
y
},
{});
runner
.
Run
(
stream
);
}
void
Transpose
(
const
Tensor
*
x
,
Tensor
*
y
,
const
std
::
vector
<
int
>&
axis
)
{
const
auto
&
runner
=
NpuOpRunner
(
"TransposeD"
,
{
*
x
},
{
*
y
},
{{
"perm"
,
axis
}});
runner
.
Run
(
stream
);
}
void
Muls
(
const
Tensor
*
x
,
float
scalar
,
Tensor
*
y
)
{
const
auto
&
runner
=
NpuOpRunner
(
"Muls"
,
{
*
x
},
{
*
y
},
{{
"value"
,
scalar
}});
runner
.
Run
(
stream
);
}
void
Maximum
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
z
)
{
const
auto
&
runner
=
NpuOpRunner
(
"Maximum"
,
{
*
x
,
*
y
},
{
*
z
},
{});
runner
.
Run
(
stream
);
}
void
Minimum
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
z
)
{
const
auto
&
runner
=
NpuOpRunner
(
"Minimum"
,
{
*
x
,
*
y
},
{
*
z
},
{});
runner
.
Run
(
stream
);
}
void
Floor
(
const
Tensor
*
x
,
Tensor
*
y
)
{
const
auto
&
runner
=
NpuOpRunner
(
"Floor"
,
{
*
x
},
{
*
y
},
{});
runner
.
Run
(
stream
);
}
private:
platform
::
Place
place
;
aclrtStream
stream
;
const
framework
::
ExecutionContext
&
ctx
;
Tensor
t0
;
Tensor
t1
;
Tensor
tn
;
};
template
<
>
void
InterpolateFunction
<
fp16
>::
Arange
(
int
n
,
Tensor
*
x
)
{
Tensor
x_fp32
(
framework
::
proto
::
VarType
::
FP32
);
x_fp32
.
mutable_data
<
float
>
(
x
->
dims
(),
place
);
FillNpuTensorWithConstant
<
float
>
(
&
tn
,
static_cast
<
float
>
(
n
));
const
auto
&
runner
=
NpuOpRunner
(
"Range"
,
{
t0
,
tn
,
t1
},
{
x_fp32
},
{});
runner
.
Run
(
stream
);
Cast
(
&
x_fp32
,
x
);
}
void
InterpolateParamCompute
(
const
float
scale_h
,
const
float
scale_w
,
const
bool
align_corners
,
const
int
align_mode
,
const
DataLayout
&
data_layout
,
const
DDim
&
indim
,
const
DDim
&
outdim
,
int
*
axis_h
,
int
*
axis_w
,
int
*
in_h
,
int
*
in_w
,
int
*
out_h
,
int
*
out_w
,
float
*
ratio_h
,
float
*
ratio_w
)
{
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
*
axis_h
=
2
;
*
axis_w
=
3
;
}
else
{
*
axis_h
=
1
;
*
axis_w
=
2
;
}
*
out_h
=
outdim
[
*
axis_h
];
*
out_w
=
outdim
[
*
axis_w
];
*
in_h
=
indim
[
*
axis_h
];
*
in_w
=
indim
[
*
axis_w
];
*
ratio_h
=
0.0
f
;
*
ratio_w
=
0.0
f
;
if
(
*
out_h
>
1
)
{
*
ratio_h
=
align_corners
?
static_cast
<
float
>
(
*
in_h
-
1
)
/
(
*
out_h
-
1
)
:
(
scale_h
>
0
?
1
/
scale_h
:
static_cast
<
float
>
(
*
in_h
)
/
*
out_h
);
}
if
(
*
out_w
>
1
)
{
*
ratio_w
=
align_corners
?
static_cast
<
float
>
(
*
in_w
-
1
)
/
(
*
out_w
-
1
)
:
(
scale_w
>
0
?
1
/
scale_w
:
static_cast
<
float
>
(
*
in_w
)
/
*
out_w
);
}
}
template
<
typename
T
>
void
BilinearParamTensorCompute
(
const
framework
::
ExecutionContext
&
ctx
,
const
DataLayout
&
data_layout
,
int
in_h
,
int
in_w
,
int
out_h
,
int
out_w
,
bool
align_cond
,
float
ratio_h
,
float
ratio_w
,
Tensor
*
h0
,
Tensor
*
h1
,
Tensor
*
w0
,
Tensor
*
w1
,
Tensor
*
coef_h0
,
Tensor
*
coef_h1
,
Tensor
*
coef_w0
,
Tensor
*
coef_w1
)
{
InterpolateFunction
<
T
>
F
(
ctx
);
auto
place
=
ctx
.
GetPlace
();
Tensor
_h0
,
_w0
;
_h0
.
mutable_data
<
T
>
({
out_h
},
place
);
_w0
.
mutable_data
<
T
>
({
out_w
},
place
);
F
.
Arange
(
out_h
,
&
_h0
);
F
.
Arange
(
out_w
,
&
_w0
);
if
(
align_cond
)
{
F
.
Adds
(
&
_h0
,
static_cast
<
float
>
(
0.5
),
&
_h0
);
F
.
Adds
(
&
_w0
,
static_cast
<
float
>
(
0.5
),
&
_w0
);
F
.
Muls
(
&
_h0
,
ratio_h
,
&
_h0
);
F
.
Muls
(
&
_w0
,
ratio_w
,
&
_w0
);
F
.
Adds
(
&
_h0
,
static_cast
<
float
>
(
-
0.5
),
&
_h0
);
F
.
Adds
(
&
_w0
,
static_cast
<
float
>
(
-
0.5
),
&
_w0
);
}
else
{
F
.
Muls
(
&
_h0
,
ratio_h
,
&
_h0
);
F
.
Muls
(
&
_w0
,
ratio_w
,
&
_w0
);
}
Tensor
zero_t
;
Tensor
one_t
;
zero_t
.
mutable_data
<
T
>
({
1
},
place
);
one_t
.
mutable_data
<
T
>
({
1
},
place
);
FillNpuTensorWithConstant
<
T
>
(
&
zero_t
,
static_cast
<
T
>
(
0
));
FillNpuTensorWithConstant
<
T
>
(
&
one_t
,
static_cast
<
T
>
(
1
));
F
.
Maximum
(
&
_h0
,
&
zero_t
,
&
_h0
);
F
.
Maximum
(
&
_w0
,
&
zero_t
,
&
_w0
);
Tensor
_h0_floor
,
_w0_floor
;
_h0_floor
.
mutable_data
<
T
>
({
out_h
},
place
);
_w0_floor
.
mutable_data
<
T
>
({
out_w
},
place
);
F
.
Floor
(
&
_h0
,
&
_h0_floor
);
F
.
Floor
(
&
_w0
,
&
_w0_floor
);
F
.
Cast
(
&
_h0_floor
,
h0
);
F
.
Cast
(
&
_w0_floor
,
w0
);
Tensor
one_int
;
one_int
.
mutable_data
<
int
>
({
1
},
place
);
FillNpuTensorWithConstant
<
int
>
(
&
one_int
,
static_cast
<
int
>
(
1
));
F
.
Add
(
h0
,
&
one_int
,
h1
);
F
.
Add
(
w0
,
&
one_int
,
w1
);
Tensor
t_max_h
,
t_max_w
;
t_max_h
.
mutable_data
<
int
>
({
1
},
place
);
t_max_w
.
mutable_data
<
int
>
({
1
},
place
);
FillNpuTensorWithConstant
<
int
>
(
&
t_max_h
,
static_cast
<
int
>
(
in_h
-
1
));
FillNpuTensorWithConstant
<
int
>
(
&
t_max_w
,
static_cast
<
int
>
(
in_w
-
1
));
F
.
Minimum
(
h1
,
&
t_max_h
,
h1
);
F
.
Minimum
(
w1
,
&
t_max_w
,
w1
);
F
.
Sub
(
&
_h0
,
&
_h0_floor
,
coef_h1
);
F
.
Sub
(
&
_w0
,
&
_w0_floor
,
coef_w1
);
F
.
Sub
(
&
one_t
,
coef_h1
,
coef_h0
);
F
.
Sub
(
&
one_t
,
coef_w1
,
coef_w0
);
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
coef_h0
->
Resize
({
out_h
,
1
});
coef_h1
->
Resize
({
out_h
,
1
});
}
else
{
coef_h0
->
Resize
({
out_h
,
1
,
1
});
coef_h1
->
Resize
({
out_h
,
1
,
1
});
coef_w0
->
Resize
({
out_w
,
1
});
coef_w1
->
Resize
({
out_w
,
1
});
}
}
template
<
typename
T
>
void
BilinearFwdNpu
(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
*
input
,
Tensor
*
output
,
const
float
scale_h
,
const
float
scale_w
,
const
bool
align_corners
,
const
int
align_mode
,
const
DataLayout
&
data_layout
)
{
InterpolateFunction
<
T
>
F
(
ctx
);
auto
place
=
ctx
.
GetPlace
();
auto
outdim
=
output
->
dims
();
auto
indim
=
input
->
dims
();
int
axis_h
,
axis_w
;
int
out_h
,
out_w
,
in_h
,
in_w
;
float
ratio_h
,
ratio_w
;
InterpolateParamCompute
(
scale_h
,
scale_w
,
align_corners
,
align_mode
,
data_layout
,
indim
,
outdim
,
&
axis_h
,
&
axis_w
,
&
in_h
,
&
in_w
,
&
out_h
,
&
out_w
,
&
ratio_h
,
&
ratio_w
);
Tensor
h0
,
h1
,
w0
,
w1
;
h0
.
mutable_data
<
int
>
({
out_h
},
place
);
h1
.
mutable_data
<
int
>
({
out_h
},
place
);
w0
.
mutable_data
<
int
>
({
out_w
},
place
);
w1
.
mutable_data
<
int
>
({
out_w
},
place
);
Tensor
coef_h0
,
coef_h1
,
coef_w0
,
coef_w1
;
coef_h0
.
mutable_data
<
T
>
({
out_h
},
place
);
coef_h1
.
mutable_data
<
T
>
({
out_h
},
place
);
coef_w0
.
mutable_data
<
T
>
({
out_w
},
place
);
coef_w1
.
mutable_data
<
T
>
({
out_w
},
place
);
bool
align_cond
=
align_mode
==
0
&&
!
align_corners
;
BilinearParamTensorCompute
<
T
>
(
ctx
,
data_layout
,
in_h
,
in_w
,
out_h
,
out_w
,
align_cond
,
ratio_h
,
ratio_w
,
&
h0
,
&
h1
,
&
w0
,
&
w1
,
&
coef_h0
,
&
coef_h1
,
&
coef_w0
,
&
coef_w1
);
Tensor
input_gather_h0
,
input_gather_h1
;
auto
dim_gather_h
=
indim
;
dim_gather_h
[
axis_h
]
=
out_h
;
input_gather_h0
.
mutable_data
<
T
>
(
dim_gather_h
,
place
);
input_gather_h1
.
mutable_data
<
T
>
(
dim_gather_h
,
place
);
F
.
Gather
(
input
,
&
h0
,
axis_h
,
&
input_gather_h0
);
F
.
Gather
(
input
,
&
h1
,
axis_h
,
&
input_gather_h1
);
F
.
Mul
(
&
input_gather_h0
,
&
coef_h0
,
&
input_gather_h0
);
F
.
Mul
(
&
input_gather_h1
,
&
coef_h1
,
&
input_gather_h1
);
Tensor
out_x4
;
out_x4
.
mutable_data
<
T
>
({
4
,
outdim
[
0
],
outdim
[
1
],
outdim
[
2
],
outdim
[
3
]},
place
);
Tensor
input_gather_h0_w0
=
out_x4
.
Slice
(
0
,
1
);
Tensor
input_gather_h0_w1
=
out_x4
.
Slice
(
1
,
2
);
Tensor
input_gather_h1_w0
=
out_x4
.
Slice
(
2
,
3
);
Tensor
input_gather_h1_w1
=
out_x4
.
Slice
(
3
,
4
);
F
.
Gather
(
&
input_gather_h0
,
&
w0
,
axis_w
,
&
input_gather_h0_w0
);
F
.
Gather
(
&
input_gather_h0
,
&
w1
,
axis_w
,
&
input_gather_h0_w1
);
F
.
Gather
(
&
input_gather_h1
,
&
w0
,
axis_w
,
&
input_gather_h1_w0
);
F
.
Gather
(
&
input_gather_h1
,
&
w1
,
axis_w
,
&
input_gather_h1_w1
);
F
.
Mul
(
&
input_gather_h0_w0
,
&
coef_w0
,
&
input_gather_h0_w0
);
F
.
Mul
(
&
input_gather_h0_w1
,
&
coef_w1
,
&
input_gather_h0_w1
);
F
.
Mul
(
&
input_gather_h1_w0
,
&
coef_w0
,
&
input_gather_h1_w0
);
F
.
Mul
(
&
input_gather_h1_w1
,
&
coef_w1
,
&
input_gather_h1_w1
);
F
.
ReduceSum
(
&
out_x4
,
output
,
std
::
vector
<
int
>
{
0
},
false
);
}
template
<
typename
T
>
void
BilinearBwdNpu
(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
*
gout
,
Tensor
*
gin
,
const
float
scale_h
,
const
float
scale_w
,
const
bool
align_corners
,
const
int
align_mode
,
const
DataLayout
&
data_layout
)
{
InterpolateFunction
<
T
>
F
(
ctx
);
auto
place
=
ctx
.
GetPlace
();
auto
outdim
=
gout
->
dims
();
auto
indim
=
gin
->
dims
();
int
axis_h
,
axis_w
;
int
out_h
,
out_w
,
in_h
,
in_w
;
float
ratio_h
,
ratio_w
;
InterpolateParamCompute
(
scale_h
,
scale_w
,
align_corners
,
align_mode
,
data_layout
,
indim
,
outdim
,
&
axis_h
,
&
axis_w
,
&
in_h
,
&
in_w
,
&
out_h
,
&
out_w
,
&
ratio_h
,
&
ratio_w
);
Tensor
h0
,
h1
,
w0
,
w1
;
h0
.
mutable_data
<
int
>
({
out_h
},
place
);
h1
.
mutable_data
<
int
>
({
out_h
},
place
);
w0
.
mutable_data
<
int
>
({
out_w
},
place
);
w1
.
mutable_data
<
int
>
({
out_w
},
place
);
Tensor
coef_h0
,
coef_h1
,
coef_w0
,
coef_w1
;
coef_h0
.
mutable_data
<
T
>
({
out_h
},
place
);
coef_h1
.
mutable_data
<
T
>
({
out_h
},
place
);
coef_w0
.
mutable_data
<
T
>
({
out_w
},
place
);
coef_w1
.
mutable_data
<
T
>
({
out_w
},
place
);
bool
align_cond
=
align_mode
==
0
&&
!
align_corners
;
BilinearParamTensorCompute
<
T
>
(
ctx
,
data_layout
,
in_h
,
in_w
,
out_h
,
out_w
,
align_cond
,
ratio_h
,
ratio_w
,
&
h0
,
&
h1
,
&
w0
,
&
w1
,
&
coef_h0
,
&
coef_h1
,
&
coef_w0
,
&
coef_w1
);
Tensor
gy_w0
,
gy_w1
;
gy_w0
.
mutable_data
<
T
>
(
outdim
,
place
);
gy_w1
.
mutable_data
<
T
>
(
outdim
,
place
);
F
.
Mul
(
gout
,
&
coef_w0
,
&
gy_w0
);
F
.
Mul
(
gout
,
&
coef_w1
,
&
gy_w1
);
auto
dim_gather_h
=
indim
;
dim_gather_h
[
axis_h
]
=
out_h
;
Tensor
g_gather_w0
,
g_gather_w1
;
g_gather_w0
.
mutable_data
<
T
>
(
dim_gather_h
,
place
);
g_gather_w1
.
mutable_data
<
T
>
(
dim_gather_h
,
place
);
w0
.
Resize
({
out_w
,
1
});
w1
.
Resize
({
out_w
,
1
});
F
.
GatherGrad
(
&
gy_w0
,
&
w0
,
axis_w
,
&
g_gather_w0
);
F
.
GatherGrad
(
&
gy_w1
,
&
w1
,
axis_w
,
&
g_gather_w1
);
F
.
Add
(
&
g_gather_w0
,
&
g_gather_w1
,
&
g_gather_w0
);
F
.
Mul
(
&
g_gather_w0
,
&
coef_h1
,
&
g_gather_w1
);
F
.
Mul
(
&
g_gather_w0
,
&
coef_h0
,
&
g_gather_w0
);
Tensor
gx_0
,
gx_1
;
gx_0
.
mutable_data
<
T
>
(
indim
,
place
);
gx_1
.
mutable_data
<
T
>
(
indim
,
place
);
h0
.
Resize
({
out_h
,
1
});
h1
.
Resize
({
out_h
,
1
});
F
.
GatherGrad
(
&
g_gather_w0
,
&
h0
,
axis_h
,
&
gx_0
);
F
.
GatherGrad
(
&
g_gather_w1
,
&
h1
,
axis_h
,
&
gx_1
);
F
.
Add
(
&
gx_0
,
&
gx_1
,
gin
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
InterpolateV2NPUKernel
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -39,19 +402,6 @@ class InterpolateV2NPUKernel : public framework::OpKernel<T> {
int
n
,
c
,
in_d
,
in_h
,
in_w
;
ExtractNCDWH
(
input_dims
,
data_layout
,
&
n
,
&
c
,
&
in_d
,
&
in_h
,
&
in_w
);
PADDLE_ENFORCE_EQ
(
input
->
layout
(),
data_layout
,
platform
::
errors
::
InvalidArgument
(
"Interpolate OP's input tensor layout should equal to attr "
"data_layout, but got tensor layout <%s>, attr layout <%s>"
,
framework
::
DataLayoutToString
(
input
->
layout
()),
data_layout_str
));
PADDLE_ENFORCE_EQ
(
output
->
layout
(),
data_layout
,
platform
::
errors
::
InvalidArgument
(
"Interpolate OP's output tensor layout should equal to attr "
"data_layout, but got tensor layout <%s>, attr layout <%s>"
,
framework
::
DataLayoutToString
(
output
->
layout
()),
data_layout_str
));
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
...
...
@@ -156,17 +506,22 @@ class InterpolateV2NPUKernel : public framework::OpKernel<T> {
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
NpuOpRunner
runner
;
// To-do(qili93): need to support bilineare, try ResizeD
// Add bilineare by zhulei
if
(
"nearest"
==
interp_method
)
{
NpuOpRunner
runner
;
runner
.
SetType
(
"ResizeNearestNeighborV2"
)
.
AddInput
(
*
input
)
.
AddInput
(
std
::
vector
<
int32_t
>
{
out_h
,
out_w
})
.
AddOutput
(
*
output
)
.
AddAttr
(
"align_corners"
,
align_corners
)
.
AddAttr
(
"half_pixel_centers"
,
false
);
runner
.
Run
(
stream
);
}
else
if
(
"bilinear"
==
interp_method
)
{
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
BilinearFwdNpu
<
T
>
(
ctx
,
input
,
output
,
scale_h
,
scale_w
,
align_corners
,
align_mode
,
data_layout
);
}
runner
.
Run
(
stream
);
}
};
...
...
@@ -184,27 +539,6 @@ class InterpolateV2NPUGradKernel : public framework::OpKernel<T> {
int
n
,
c
,
in_d
,
in_h
,
in_w
;
ExtractNCDWH
(
input
->
dims
(),
data_layout
,
&
n
,
&
c
,
&
in_d
,
&
in_h
,
&
in_w
);
PADDLE_ENFORCE_EQ
(
input
->
layout
(),
data_layout
,
platform
::
errors
::
InvalidArgument
(
"Interpolate OP's input tensor layout should equal to attr "
"data_layout, but got tensor layout <%s>, attr layout <%s>"
,
framework
::
DataLayoutToString
(
input
->
layout
()),
data_layout_str
));
PADDLE_ENFORCE_EQ
(
output_grad
->
layout
(),
data_layout
,
platform
::
errors
::
InvalidArgument
(
"Interpolate OP's output_grad tensor layout should "
"equal to attr data_layout, but got tensor layout is "
"<%s>, and attr layout is <%s>"
,
framework
::
DataLayoutToString
(
output_grad
->
layout
()),
data_layout_str
));
PADDLE_ENFORCE_EQ
(
input_grad
->
layout
(),
data_layout
,
platform
::
errors
::
InvalidArgument
(
"Interpolate OP's input_grad tensor layout should "
"equal to attr data_layout, but got tensor layout is "
"<%s>, and attr layout is <%s>"
,
framework
::
DataLayoutToString
(
input_grad
->
layout
()),
data_layout_str
));
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
...
...
@@ -301,17 +635,21 @@ class InterpolateV2NPUGradKernel : public framework::OpKernel<T> {
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
NpuOpRunner
runner
;
// To-do(qili93): need to support bilineare, try ResizeGradD
if
(
"nearest"
==
interp_method
)
{
NpuOpRunner
runner
;
runner
.
SetType
(
"ResizeNearestNeighborV2Grad"
)
.
AddInput
(
*
output_grad
)
.
AddInput
(
std
::
vector
<
int32_t
>
{
in_h
,
in_w
})
.
AddOutput
(
*
input_grad
)
.
AddAttr
(
"align_corners"
,
align_corners
)
.
AddAttr
(
"half_pixel_centers"
,
false
);
runner
.
Run
(
stream
);
}
else
if
(
"bilinear"
==
interp_method
)
{
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
BilinearBwdNpu
<
T
>
(
ctx
,
output_grad
,
input_grad
,
scale_h
,
scale_w
,
align_corners
,
align_mode
,
data_layout
);
}
runner
.
Run
(
stream
);
}
};
...
...
@@ -330,3 +668,13 @@ REGISTER_OP_NPU_KERNEL(
nearest_interp_v2_grad
,
ops
::
InterpolateV2NPUGradKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
InterpolateV2NPUGradKernel
<
plat
::
NPUDeviceContext
,
plat
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
bilinear_interp_v2
,
ops
::
InterpolateV2NPUKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
InterpolateV2NPUKernel
<
plat
::
NPUDeviceContext
,
plat
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
bilinear_interp_v2_grad
,
ops
::
InterpolateV2NPUGradKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
InterpolateV2NPUGradKernel
<
plat
::
NPUDeviceContext
,
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/CMakeLists.txt
浏览文件 @
be2884eb
...
...
@@ -17,6 +17,7 @@ if (WITH_ASCEND_CL)
# Note: the following test cases has running time more than 120s
set_tests_properties
(
test_nearest_interp_op_npu PROPERTIES TIMEOUT 200
)
set_tests_properties
(
test_nearest_interp_v2_op_npu PROPERTIES TIMEOUT 200
)
set_tests_properties
(
test_bilinear_interp_v2_op_npu PROPERTIES TIMEOUT 200
)
set_tests_properties
(
test_stack_op_npu PROPERTIES TIMEOUT 300
)
set_tests_properties
(
test_conv2d_transpose_op_npu PROPERTIES TIMEOUT 200
)
set_tests_properties
(
test_conv2d_op_npu PROPERTIES TIMEOUT 300
)
...
...
python/paddle/fluid/tests/unittests/npu/test_bilinear_interp_v2_op_npu.py
0 → 100644
浏览文件 @
be2884eb
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.nn.functional
import
interpolate
import
paddle
from
test_bilinear_interp_v2_op
import
bilinear_interp_np
paddle
.
enable_static
()
class
TestBilinearInterpOp
(
OpTest
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
setUp
(
self
):
self
.
set_npu
()
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
data_layout
=
'NCHW'
self
.
init_test_case
()
self
.
op_type
=
"bilinear_interp_v2"
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
self
.
dtype
)
if
self
.
data_layout
==
"NCHW"
:
in_h
=
self
.
input_shape
[
2
]
in_w
=
self
.
input_shape
[
3
]
else
:
in_h
=
self
.
input_shape
[
1
]
in_w
=
self
.
input_shape
[
2
]
scale_h
=
0
scale_w
=
0
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0.
:
scale_h
=
scale_w
=
float
(
self
.
scale
)
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
scale_w
=
scale_h
=
self
.
scale
[
0
]
elif
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
>
1
:
scale_w
=
self
.
scale
[
1
]
scale_h
=
self
.
scale
[
0
]
out_h
=
int
(
in_h
*
scale_h
)
out_w
=
int
(
in_w
*
scale_w
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
bilinear_interp_np
(
input_np
,
out_h
,
out_w
,
scale_w
,
scale_h
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
align_mode
,
self
.
data_layout
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
'align_mode'
:
self
.
align_mode
,
'data_layout'
:
self
.
data_layout
}
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0.
:
self
.
scale
=
[
self
.
scale
]
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
self
.
scale
=
[
self
.
scale
[
0
],
self
.
scale
[
0
]]
self
.
attrs
[
'scale'
]
=
self
.
scale
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
self
.
atol
)
def
test_check_grad
(
self
):
self
.
__class__
.
exist_check_grad
=
True
if
self
.
dtype
==
'float16'
:
return
self
.
max_relative_error
=
0.005
inputs_to_check
=
[
'X'
]
output_names
=
[
'Out'
]
no_grad_set
=
set
()
cpu_place
=
fluid
.
CPUPlace
()
cpu_grads
=
self
.
_get_gradient
(
inputs_to_check
,
cpu_place
,
output_names
,
no_grad_set
)
npu_grads
=
self
.
_get_gradient
(
inputs_to_check
,
self
.
place
,
output_names
,
no_grad_set
)
self
.
_assert_is_close
(
cpu_grads
,
npu_grads
,
inputs_to_check
,
self
.
max_relative_error
,
"Gradient Check between places"
)
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
2
,
3
,
5
,
7
]
self
.
out_h
=
60
self
.
out_w
=
25
self
.
scale
=
1.5
self
.
align_corners
=
False
self
.
align_mode
=
1
self
.
dtype
=
'float32'
self
.
atol
=
1e-5
class
TestBilinearInterpCaseFP16
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpCaseFP16
,
self
).
init_test_case
()
self
.
dtype
=
'float16'
self
.
atol
=
1e-2
class
TestBilinearInterpCase1
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpCase1
,
self
).
init_test_case
()
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
class
TestBilinearInterpCase2
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpCase2
,
self
).
init_test_case
()
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
class
TestBilinearInterpCase3
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpCase3
,
self
).
init_test_case
()
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
class
TestBilinearInterpCase4
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpCase4
,
self
).
init_test_case
()
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
class
TestBilinearInterpCase5
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpCase5
,
self
).
init_test_case
()
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
class
TestBilinearInterpCase6
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpCase6
,
self
).
init_test_case
()
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
65
,
33
]).
astype
(
"int32"
)
class
TestBilinearInterpCase7
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpCase7
,
self
).
init_test_case
()
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
[
2.0
,
0.5
]
class
TestBilinearInterpSame
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpSame
,
self
).
init_test_case
()
self
.
input_shape
=
[
2
,
3
,
32
,
64
]
self
.
out_h
=
32
self
.
out_w
=
64
self
.
scale
=
0.
class
TestBilinearInterpActualShape
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpActualShape
,
self
).
init_test_case
()
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
class
TestBilinearInterpDataLayout
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpDataLayout
,
self
).
init_test_case
()
self
.
input_shape
=
[
2
,
5
,
5
,
3
]
self
.
out_h
=
2
self
.
out_w
=
2
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
data_layout
=
"NHWC"
class
TestBilinearInterpOtherMethod1
(
TestBilinearInterpOp
):
def
set_align_mode
(
self
):
self
.
align_corners
=
False
self
.
align_mode
=
1
class
TestBilinearInterpWithMethod2
(
TestBilinearInterpOp
):
def
set_align_mode
(
self
):
self
.
align_corners
=
False
self
.
align_mode
=
0
class
TestBilinearInterpWithMethod3
(
TestBilinearInterpOp
):
def
set_align_mode
(
self
):
self
.
align_corners
=
True
self
.
align_mode
=
0
class
TestBilinearInterpScale1
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpScale1
,
self
).
init_test_case
()
self
.
input_shape
=
[
2
,
3
,
5
,
7
]
self
.
out_h
=
60
self
.
out_w
=
25
self
.
scale
=
2.
class
TestBilinearInterpScale2
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpScale2
,
self
).
init_test_case
()
self
.
input_shape
=
[
2
,
3
,
5
,
7
]
self
.
out_h
=
60
self
.
out_w
=
25
self
.
scale
=
1.
class
TestBilinearInterpZero
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
super
(
TestBilinearInterpZero
,
self
).
init_test_case
()
self
.
input_shape
=
[
2
,
3
,
5
,
7
]
self
.
out_h
=
60
self
.
out_w
=
25
self
.
scale
=
0.2
self
.
align_mode
=
0
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录