Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bd06a828
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bd06a828
编写于
7月 04, 2022
作者:
Z
zhaoying9105
提交者:
GitHub
7月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]: add hard_sigmoid,hard_sigmoid_grad,hard_swish,hard_swish_grad kernel (#44044)
上级
8f8a6848
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
519 addition
and
0 deletion
+519
-0
paddle/fluid/operators/activation_op_mlu.cc
paddle/fluid/operators/activation_op_mlu.cc
+160
-0
python/paddle/fluid/tests/unittests/mlu/test_hard_sigmoid_op_mlu.py
...dle/fluid/tests/unittests/mlu/test_hard_sigmoid_op_mlu.py
+194
-0
python/paddle/fluid/tests/unittests/mlu/test_hard_swish_op_mlu.py
...addle/fluid/tests/unittests/mlu/test_hard_swish_op_mlu.py
+165
-0
未找到文件。
paddle/fluid/operators/activation_op_mlu.cc
浏览文件 @
bd06a828
...
...
@@ -256,6 +256,149 @@ class ExpGradMLUKernel : public framework::OpKernel<T> {
}
};
template
<
typename
T
>
class
HardSwishMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
float
threshold
=
ctx
.
Attr
<
float
>
(
"threshold"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
float
offset
=
ctx
.
Attr
<
float
>
(
"offset"
);
PADDLE_ENFORCE_EQ
(
threshold
,
6.0
f
,
platform
::
errors
::
External
(
"Not support threshold [%f] in MLU"
,
threshold
));
PADDLE_ENFORCE_EQ
(
scale
,
6.0
f
,
platform
::
errors
::
External
(
"Not support scale [%f] in MLU"
,
scale
));
PADDLE_ENFORCE_EQ
(
offset
,
3.0
f
,
platform
::
errors
::
External
(
"Not support offset [%f] in MLU"
,
offset
));
MLUCnnlActivationDesc
act_desc
(
CNNL_ACTIVATION_HARDSWISH
,
1.0
f
/*ceof useless*/
);
MLUCnnlTensorDesc
input_desc
(
*
input
);
MLUCnnlTensorDesc
output_desc
(
*
output
);
MLUCnnl
::
Active
(
ctx
,
act_desc
.
get
(),
input_desc
.
get
(),
GetBasePtr
(
input
),
output_desc
.
get
(),
GetBasePtr
(
output
));
}
};
template
<
typename
T
>
class
HardSwishGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
float
threshold
=
ctx
.
Attr
<
float
>
(
"threshold"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
float
offset
=
ctx
.
Attr
<
float
>
(
"offset"
);
PADDLE_ENFORCE_EQ
(
threshold
,
6.0
f
,
platform
::
errors
::
External
(
"Not support threshold [%f] in MLU"
,
threshold
));
PADDLE_ENFORCE_EQ
(
scale
,
6.0
f
,
platform
::
errors
::
External
(
"Not support scale [%f] in MLU"
,
scale
));
PADDLE_ENFORCE_EQ
(
offset
,
3.0
f
,
platform
::
errors
::
External
(
"Not support offset [%f] in MLU"
,
offset
));
auto
*
out
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
MLUCnnlTensorDesc
dx_desc
(
*
dx
);
MLUCnnlActivationDesc
act_desc
(
CNNL_ACTIVATION_HARDSWISH
,
1.0
f
/*ceof useless*/
);
MLUCnnl
::
ActiveGrad
(
ctx
,
act_desc
.
get
(),
nullptr
,
nullptr
,
nullptr
,
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
dout
),
out_desc
.
get
(),
GetBasePtr
(
out
),
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
};
template
<
typename
T
>
class
HardSigmoidMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
float
slope
=
ctx
.
Attr
<
float
>
(
"slope"
);
float
offset
=
ctx
.
Attr
<
float
>
(
"offset"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlActivationDesc
act_desc
(
CNNL_ACTIVATION_HARDSIGMOID
,
1.0
f
/*ceof useless*/
,
1.0
f
/*sliced_dim useless*/
,
slope
,
offset
);
MLUCnnlTensorDesc
input_desc
(
*
input
);
MLUCnnlTensorDesc
output_desc
(
*
output
);
MLUCnnl
::
Active
(
ctx
,
act_desc
.
get
(),
input_desc
.
get
(),
GetBasePtr
(
input
),
output_desc
.
get
(),
GetBasePtr
(
output
));
}
};
template
<
typename
T
>
class
HardSigmoidGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
float
slope
=
ctx
.
Attr
<
float
>
(
"slope"
);
float
offset
=
ctx
.
Attr
<
float
>
(
"offset"
);
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlActivationDesc
act_desc
(
CNNL_ACTIVATION_HARDSIGMOID
,
1.0
f
/*ceof useless*/
,
1.0
f
/*sliced_dim useless*/
,
slope
,
offset
);
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
MLUCnnlTensorDesc
dx_desc
(
*
dx
);
MLUCnnl
::
ActiveGrad
(
ctx
,
act_desc
.
get
(),
nullptr
,
nullptr
,
nullptr
,
nullptr
,
dout_desc
.
get
(),
GetBasePtr
(
dout
),
out_desc
.
get
(),
GetBasePtr
(
out
),
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -359,3 +502,20 @@ REGISTER_OP_MLU_KERNEL(exp,
REGISTER_OP_MLU_KERNEL
(
exp_grad
,
ops
::
ExpGradMLUKernel
<
float
>
,
ops
::
ExpGradMLUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
hard_swish
,
ops
::
HardSwishMLUKernel
<
float
>
,
ops
::
HardSwishMLUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
hard_swish_grad
,
ops
::
HardSwishGradMLUKernel
<
float
>
,
ops
::
HardSwishGradMLUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
hard_sigmoid
,
ops
::
HardSigmoidMLUKernel
<
float
>
,
ops
::
HardSigmoidMLUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
hard_sigmoid_grad
,
ops
::
HardSigmoidGradMLUKernel
<
float
>
,
ops
::
HardSigmoidGradMLUKernel
<
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_hard_sigmoid_op_mlu.py
0 → 100644
浏览文件 @
bd06a828
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.nn.functional
as
F
paddle
.
enable_static
()
SEED
=
2021
def
ref_hardsigmoid
(
x
,
slope
=
0.166666666666667
,
offset
=
0.5
):
return
np
.
maximum
(
np
.
minimum
(
x
*
slope
+
offset
,
1.
),
0.
).
astype
(
x
.
dtype
)
class
TestMLUHardSigmoid
(
OpTest
):
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
op_type
=
"hard_sigmoid"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
set_attrs
()
x
=
np
.
random
.
uniform
(
-
5
,
5
,
[
10
,
12
]).
astype
(
self
.
dtype
)
lower_threshold
=
-
self
.
offset
/
self
.
slope
upper_threshold
=
(
1.
-
self
.
offset
)
/
self
.
slope
# Same reason as TestAbs
delta
=
0.005
x
[
np
.
abs
(
x
-
lower_threshold
)
<
delta
]
=
lower_threshold
-
0.02
x
[
np
.
abs
(
x
-
upper_threshold
)
<
delta
]
=
upper_threshold
-
0.02
out
=
ref_hardsigmoid
(
x
,
self
.
slope
,
self
.
offset
)
self
.
attrs
=
{
'slope'
:
self
.
slope
,
'offset'
:
self
.
offset
}
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
set_attrs
(
self
):
self
.
slope
=
0.166666666666667
self
.
offset
=
0.5
class
TestMLUHardSigmoid2
(
TestMLUHardSigmoid
):
def
set_attrs
(
self
):
self
.
slope
=
0.2
self
.
offset
=
0.5
class
TestMLUHardSigmoid3
(
TestMLUHardSigmoid
):
def
set_attrs
(
self
):
self
.
slope
=
0.2
self
.
offset
=
0.4
class
TestMLUHardSigmoidFp16
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
disable_static
()
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
dtype
=
np
.
float32
# float32
self
.
float32_x
=
np
.
random
.
uniform
(
-
5
,
5
,
[
10
,
12
]).
astype
(
np
.
float32
)
paddle
.
set_device
(
'cpu'
)
data
=
paddle
.
to_tensor
(
self
.
float32_x
,
stop_gradient
=
True
)
self
.
float32_y
=
F
.
hardsigmoid
(
data
)
# float16
self
.
float16_x
=
self
.
float32_x
.
astype
(
np
.
float16
)
self
.
float16_y
=
ref_hardsigmoid
(
self
.
float16_x
)
def
test_check_output_and_grad_mlu
(
self
):
# mlu float16
paddle
.
set_device
(
'mlu'
)
data
=
paddle
.
to_tensor
(
self
.
float16_x
,
stop_gradient
=
True
)
mlu_float16_y
=
F
.
hardsigmoid
(
data
)
cpu_diff_1
=
np
.
divide
(
np
.
sum
(
np
.
abs
(
self
.
float32_y
.
numpy
()
-
self
.
float16_y
)),
np
.
sum
(
np
.
abs
(
self
.
float32_y
.
numpy
())))
mlu_diff_1
=
np
.
divide
(
np
.
sum
(
np
.
abs
(
self
.
float32_y
.
numpy
()
-
mlu_float16_y
.
numpy
())),
np
.
sum
(
np
.
abs
(
self
.
float32_y
.
numpy
())))
cpu_diff_2
=
np
.
divide
(
np
.
sum
(
np
.
square
(
self
.
float32_y
.
numpy
()
-
self
.
float16_y
)),
np
.
sum
(
np
.
square
(
self
.
float32_y
.
numpy
())))
mlu_diff_2
=
np
.
divide
(
np
.
sum
(
np
.
square
(
self
.
float32_y
.
numpy
()
-
mlu_float16_y
.
numpy
())),
np
.
sum
(
np
.
square
(
self
.
float32_y
.
numpy
())))
assert
mlu_diff_1
<=
cpu_diff_1
assert
mlu_diff_2
<=
cpu_diff_2
class
TestHardsigmoidAPI
(
unittest
.
TestCase
):
# test paddle.nn.Hardsigmoid, paddle.nn.functional.hardsigmoid
def
setUp
(
self
):
self
.
x_np
=
np
.
random
.
uniform
(
-
1
,
1
,
[
10
,
12
]).
astype
(
np
.
float32
)
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
test_static_api
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
static
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out1
=
F
.
hardsigmoid
(
x
)
m
=
paddle
.
nn
.
Hardsigmoid
()
out2
=
m
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
ref_hardsigmoid
(
self
.
x_np
)
for
r
in
res
:
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
r
))
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
F
.
hardsigmoid
(
x
)
m
=
paddle
.
nn
.
Hardsigmoid
()
out2
=
m
(
x
)
out_ref
=
ref_hardsigmoid
(
self
.
x_np
)
for
r
in
[
out1
,
out2
]:
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
r
.
numpy
()))
paddle
.
enable_static
()
def
test_fluid_api
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out
=
fluid
.
layers
.
hard_sigmoid
(
x
)
exe
=
fluid
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out
])
out_ref
=
ref_hardsigmoid
(
self
.
x_np
,
0.2
,
0.5
)
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
res
[
0
]))
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out
=
paddle
.
fluid
.
layers
.
hard_sigmoid
(
x
)
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
out
.
numpy
()))
paddle
.
enable_static
()
def
test_errors
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
F
.
hardsigmoid
,
1
)
# The input dtype must be float16, float32, float64.
x_int32
=
paddle
.
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
F
.
hardsigmoid
,
x_int32
)
# support the input dtype is float16
x_fp16
=
paddle
.
fluid
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float16'
)
F
.
hardsigmoid
(
x_fp16
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_hard_swish_op_mlu.py
0 → 100644
浏览文件 @
bd06a828
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle.nn.functional
as
F
import
paddle.fluid
as
fluid
import
paddle
from
op_test
import
OpTest
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
paddle
.
enable_static
()
SEED
=
2020
def
scalarToType
(
val
,
data_type
):
converted_val
=
np
.
array
([
val
]).
astype
(
data_type
)[
0
]
print
(
"converted_val type: "
,
type
(
converted_val
))
return
converted_val
def
ref_hard_swish_grad
(
x
,
threshold
,
scale
,
offset
,
data_type
):
threshold
=
scalarToType
(
threshold
,
data_type
)
scale
=
scalarToType
(
scale
,
data_type
)
offset
=
scalarToType
(
offset
,
data_type
)
dout
=
np
.
full_like
(
x
,
fill_value
=
1.
/
x
.
size
)
tmp
=
((
x
+
offset
)
<
threshold
).
astype
(
x
.
dtype
)
dx
=
dout
*
(((
x
+
offset
)
>
0
).
astype
(
x
.
dtype
)
*
(
2
*
x
+
offset
)
*
tmp
/
scale
+
1.0
-
tmp
)
return
dx
class
TestHardSwishMLU
(
OpTest
):
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
op_type
=
"hard_swish"
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
init_dtype
()
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
10
,
12
]).
astype
(
self
.
dtype
)
threshold
=
6.0
scale
=
6.0
offset
=
3.0
x
[
np
.
abs
(
x
+
offset
)
<
0.005
]
=
0.02
x
[
np
.
abs
(
x
-
threshold
+
offset
)
<
0.005
]
=
threshold
-
offset
+
0.02
out
=
(
x
*
(
np
.
minimum
(
np
.
maximum
(
x
+
offset
,
0.
),
threshold
)
/
scale
)).
astype
(
self
.
dtype
)
self
.
x_grad
=
ref_hard_swish_grad
(
x
,
threshold
,
scale
,
offset
,
self
.
dtype
)
self
.
set_mlu
()
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'threshold'
:
threshold
,
'scale'
:
scale
,
'offset'
:
offset
}
self
.
outputs
=
{
'Out'
:
out
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
class
TestHardSwishMLUWithCPUFloat16
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
disable_static
()
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
dtype
=
np
.
float32
# float32
self
.
float32_x
=
np
.
random
.
uniform
(
-
6
,
10
,
[
8
,
15
]).
astype
(
np
.
float32
)
paddle
.
set_device
(
'cpu'
)
data
=
paddle
.
to_tensor
(
self
.
float32_x
,
stop_gradient
=
False
)
self
.
float32_y
=
F
.
hardswish
(
data
)
self
.
float32_y
.
sum
().
backward
()
self
.
float32_grad
=
data
.
grad
# float16
self
.
float16_x
=
self
.
float32_x
.
astype
(
np
.
float16
)
threshold
=
6.0
scale
=
6.0
offset
=
3.0
threshold
=
scalarToType
(
threshold
,
np
.
float16
)
scale
=
scalarToType
(
scale
,
np
.
float16
)
offset
=
scalarToType
(
offset
,
np
.
float16
)
self
.
float16_y
=
(
self
.
float16_x
*
(
np
.
minimum
(
np
.
maximum
(
self
.
float16_x
+
offset
,
scalarToType
(
0.
,
np
.
float16
)),
threshold
)
/
scale
)).
astype
(
np
.
float16
)
self
.
float16_grad
=
ref_hard_swish_grad
(
self
.
float16_x
,
threshold
,
scale
,
offset
,
np
.
float16
)
def
test_check_output_and_grad_mlu
(
self
):
# mlu float16
paddle
.
set_device
(
'mlu'
)
data
=
paddle
.
to_tensor
(
self
.
float16_x
,
stop_gradient
=
False
)
mlu_float16_y
=
F
.
hardswish
(
data
)
mlu_float16_y
.
sum
().
backward
()
mlu_float16_grad
=
data
.
grad
cpu_diff_1
=
np
.
divide
(
np
.
sum
(
np
.
abs
(
self
.
float32_y
.
numpy
()
-
self
.
float16_y
)),
np
.
sum
(
np
.
abs
(
self
.
float32_y
.
numpy
())))
mlu_diff_1
=
np
.
divide
(
np
.
sum
(
np
.
abs
(
self
.
float32_y
.
numpy
()
-
mlu_float16_y
.
numpy
())),
np
.
sum
(
np
.
abs
(
self
.
float32_y
.
numpy
())))
cpu_diff_2
=
np
.
divide
(
np
.
sum
(
np
.
square
(
self
.
float32_y
.
numpy
()
-
self
.
float16_y
)),
np
.
sum
(
np
.
square
(
self
.
float32_y
.
numpy
())))
mlu_diff_2
=
np
.
divide
(
np
.
sum
(
np
.
square
(
self
.
float32_y
.
numpy
()
-
mlu_float16_y
.
numpy
())),
np
.
sum
(
np
.
square
(
self
.
float32_y
.
numpy
())))
assert
mlu_diff_1
<=
cpu_diff_1
assert
mlu_diff_2
<=
cpu_diff_2
cpu_diff_1
=
np
.
divide
(
np
.
sum
(
np
.
abs
(
self
.
float32_grad
.
numpy
()
-
self
.
float16_grad
)),
np
.
sum
(
np
.
abs
(
self
.
float32_grad
.
numpy
())))
mlu_diff_1
=
np
.
divide
(
np
.
sum
(
np
.
abs
(
self
.
float32_grad
.
numpy
()
-
mlu_float16_grad
.
numpy
())),
np
.
sum
(
np
.
abs
(
self
.
float32_grad
.
numpy
())))
cpu_diff_2
=
np
.
divide
(
np
.
sum
(
np
.
square
(
self
.
float32_grad
.
numpy
()
-
self
.
float16_grad
)),
np
.
sum
(
np
.
square
(
self
.
float32_grad
.
numpy
())))
mlu_diff_2
=
np
.
divide
(
np
.
sum
(
np
.
square
(
self
.
float32_grad
.
numpy
()
-
mlu_float16_grad
.
numpy
())),
np
.
sum
(
np
.
square
(
self
.
float32_grad
.
numpy
())))
assert
mlu_diff_1
<=
cpu_diff_1
assert
mlu_diff_2
<=
cpu_diff_2
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录