未验证 提交 bd03652f 编写于 作者: Q QingshuChen 提交者: GitHub

add prod for kunlun (#49816)

上级 41230dc0
......@@ -422,6 +422,7 @@ XPUOpMap& get_kl2_ops() {
{"prelu", XPUKernelSet({phi::DataType::FLOAT32})},
{"prelu_grad",
XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT16})},
{"prod_raw", XPUKernelSet({phi::DataType::FLOAT32})},
{"range", XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::INT64})},
{"reciprocal", XPUKernelSet({phi::DataType::FLOAT32})},
{"reciprocal_grad",
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
import numpy as np
sys.path.append("..")
from test_sum_op import TestReduceOPTensorAxisBase
import paddle
class TestProdOp(unittest.TestCase):
def setUp(self):
self.input = np.random.random(size=(10, 10, 5)).astype(np.float32)
def run_imperative(self):
input = paddle.to_tensor(self.input)
dy_result = paddle.prod(input)
expected_result = np.prod(self.input)
np.testing.assert_allclose(
dy_result.numpy(), expected_result, rtol=1e-05
)
dy_result = paddle.prod(input, axis=1)
expected_result = np.prod(self.input, axis=1)
np.testing.assert_allclose(
dy_result.numpy(), expected_result, rtol=1e-05
)
dy_result = paddle.prod(input, axis=-1)
expected_result = np.prod(self.input, axis=-1)
np.testing.assert_allclose(
dy_result.numpy(), expected_result, rtol=1e-05
)
dy_result = paddle.prod(input, axis=[0, 1])
expected_result = np.prod(self.input, axis=(0, 1))
np.testing.assert_allclose(
dy_result.numpy(), expected_result, rtol=1e-05, atol=1e-8
)
dy_result = paddle.prod(input, axis=1, keepdim=True)
expected_result = np.prod(self.input, axis=1, keepdims=True)
np.testing.assert_allclose(
dy_result.numpy(), expected_result, rtol=1e-05
)
dy_result = paddle.prod(input, axis=1, dtype='int64')
expected_result = np.prod(self.input, axis=1, dtype=np.int64)
np.testing.assert_allclose(
dy_result.numpy(), expected_result, rtol=1e-05
)
dy_result = paddle.prod(input, axis=1, keepdim=True, dtype='int64')
expected_result = np.prod(
self.input, axis=1, keepdims=True, dtype=np.int64
)
np.testing.assert_allclose(
dy_result.numpy(), expected_result, rtol=1e-05
)
def run_static(self):
input = paddle.fluid.data(
name='input', shape=[10, 10, 5], dtype='float32'
)
result0 = paddle.prod(input)
result1 = paddle.prod(input, axis=1)
result2 = paddle.prod(input, axis=-1)
result3 = paddle.prod(input, axis=[0, 1])
result4 = paddle.prod(input, axis=1, keepdim=True)
result5 = paddle.prod(input, axis=1, dtype='int64')
result6 = paddle.prod(input, axis=1, keepdim=True, dtype='int64')
place = paddle.XPUPlace(0)
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
static_result = exe.run(
feed={"input": self.input},
fetch_list=[
result0,
result1,
result2,
result3,
result4,
result5,
result6,
],
)
expected_result = np.prod(self.input)
np.testing.assert_allclose(
static_result[0], expected_result, rtol=1e-05
)
expected_result = np.prod(self.input, axis=1)
np.testing.assert_allclose(
static_result[1], expected_result, rtol=1e-05
)
expected_result = np.prod(self.input, axis=-1)
np.testing.assert_allclose(
static_result[2], expected_result, rtol=1e-05
)
expected_result = np.prod(self.input, axis=(0, 1))
np.testing.assert_allclose(
static_result[3], expected_result, rtol=1e-05, atol=1e-8
)
expected_result = np.prod(self.input, axis=1, keepdims=True)
np.testing.assert_allclose(
static_result[4], expected_result, rtol=1e-05
)
expected_result = np.prod(self.input, axis=1, dtype=np.int64)
np.testing.assert_allclose(
static_result[5], expected_result, rtol=1e-05
)
expected_result = np.prod(
self.input, axis=1, keepdims=True, dtype=np.int64
)
np.testing.assert_allclose(
static_result[6], expected_result, rtol=1e-05
)
def test_xpu(self):
paddle.disable_static(place=paddle.XPUPlace(0))
self.run_imperative()
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
self.run_static()
class TestProdOpError(unittest.TestCase):
def test_error(self):
with paddle.static.program_guard(
paddle.static.Program(), paddle.static.Program()
):
x = paddle.fluid.data(name='x', shape=[2, 2, 4], dtype='float32')
bool_x = paddle.fluid.data(
name='bool_x', shape=[2, 2, 4], dtype='bool'
)
# The argument x shoule be a Tensor
self.assertRaises(TypeError, paddle.prod, [1])
# The data type of x should be float32, float64, int32, int64
self.assertRaises(TypeError, paddle.prod, bool_x)
# The argument axis's type shoule be int ,list or tuple
self.assertRaises(TypeError, paddle.prod, x, 1.5)
# The argument dtype of prod_op should be float32, float64, int32 or int64.
self.assertRaises(TypeError, paddle.prod, x, 'bool')
class TestProdWithTensorAxis1(TestReduceOPTensorAxisBase):
def init_data(self):
self.pd_api = paddle.prod
self.np_api = np.prod
self.x = paddle.randn([10, 5, 9, 9], dtype='float32')
self.np_axis = np.array([1, 2], dtype='int64')
self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64')
class TestProdWithTensorAxis2(TestReduceOPTensorAxisBase):
def init_data(self):
self.pd_api = paddle.prod
self.np_api = np.prod
self.x = paddle.randn([10, 10, 9, 9], dtype='float32')
self.np_axis = np.array([0, 1, 2], dtype='int64')
self.tensor_axis = [
0,
paddle.to_tensor([1], 'int64'),
paddle.to_tensor([2], 'int64'),
]
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册