未验证 提交 bd018360 编写于 作者: C caozhou 提交者: GitHub

add some comp op costs (#43114)

上级 010aba33
...@@ -54,6 +54,35 @@ from paddle.distributed.auto_parallel.cost.comp_op_cost import LookupTableV2Grad ...@@ -54,6 +54,35 @@ from paddle.distributed.auto_parallel.cost.comp_op_cost import LookupTableV2Grad
from paddle.distributed.auto_parallel.cost.comp_op_cost import MatmulOpCost from paddle.distributed.auto_parallel.cost.comp_op_cost import MatmulOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import MatmulGradOpCost from paddle.distributed.auto_parallel.cost.comp_op_cost import MatmulGradOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import MatmulV2OpCost from paddle.distributed.auto_parallel.cost.comp_op_cost import MatmulV2OpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import MatmulV2GradOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import MemcpyOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import MulOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import MulGradOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import OneHotOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import ReadFromArrayOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import ReduceSumOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import ReduceSumGradOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import Reshape2OpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import Reshape2GradOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import ReduceMeanOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import ReduceMeanGradOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import SamplingIdOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import ScaleOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import SliceOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import SoftmaxOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import SoftmaxGradOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import SoftmaxWithCrossEntropyOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import SoftmaxWithCrossEntropyGradOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import SplitOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import Squeeze2OpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import SquareOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import SquareGradOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import SumOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import TopKOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import Transpose2OpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import Transpose2GradOpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import Unsqueeze2OpCost
from paddle.distributed.auto_parallel.cost.comp_op_cost import WriteToArrayOpCost
from test_cluster import cluster_json from test_cluster import cluster_json
...@@ -244,6 +273,155 @@ class TestCompOpCost(unittest.TestCase): ...@@ -244,6 +273,155 @@ class TestCompOpCost(unittest.TestCase):
self.assertTrue(op_cost.time >= 0) self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0) self.assertTrue(op_cost.memory >= 0)
op_cost = MatmulV2GradOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = MemcpyOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = MulOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = MulGradOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = OneHotOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = ReadFromArrayOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = ReduceSumOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = ReduceSumGradOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = Reshape2OpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = MatmulV2OpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = Reshape2GradOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = ReduceMeanOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = ReduceMeanGradOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = SamplingIdOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = ScaleOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = SliceOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = SoftmaxOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = SoftmaxGradOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = SoftmaxWithCrossEntropyOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = SoftmaxWithCrossEntropyGradOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = SplitOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = Squeeze2OpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = SquareOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = SquareGradOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = SumOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = TopKOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = Transpose2OpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = Transpose2GradOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = Unsqueeze2OpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
op_cost = WriteToArrayOpCost(cluster=cluster)
self.assertTrue(op_cost.flops >= 0)
self.assertTrue(op_cost.time >= 0)
self.assertTrue(op_cost.memory >= 0)
# Remove unnecessary files # Remove unnecessary files
if os.path.exists(cluster_json_path): if os.path.exists(cluster_json_path):
os.remove(cluster_json_path) os.remove(cluster_json_path)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册