Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bcf0b56f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bcf0b56f
编写于
12月 23, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine iterator
上级
784740d8
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
229 addition
and
161 deletion
+229
-161
paddle/operators/cos_sim_op.h
paddle/operators/cos_sim_op.h
+229
-106
paddle/operators/elementwise_op_function.h
paddle/operators/elementwise_op_function.h
+0
-55
未找到文件。
paddle/operators/cos_sim_op.h
浏览文件 @
bcf0b56f
...
...
@@ -15,7 +15,7 @@
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/elementwise_
add_op
.h"
#include "paddle/operators/elementwise_
op_function
.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -28,27 +28,73 @@ template <typename T, int MajorType = Eigen::RowMajor,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
typename
DeviceContext
>
void
Function_forward
(
T
*
out
,
T
*
x_norm
,
T
*
y_norm
,
ElementIterator
<
T
,
DeviceContext
>&
x
,
ElementIterator
<
T
,
DeviceContext
>&
y
,
int
row
,
int
col
)
{
for
(
int
i
=
0
;
i
<
row
;
++
i
)
{
T
xx
=
0
;
template
<
typename
IT1
,
typename
IT2
,
typename
Callback
>
static
void
ForEachZip
(
IT1
begin1
,
IT1
last1
,
IT2
begin2
,
Callback
callback
)
{
// This method could be implemented in CUDA
for
(;
begin1
<
last1
;
++
begin1
,
++
begin2
)
{
callback
(
*
begin1
,
*
begin2
);
}
}
template
<
typename
T
,
bool
same_row
>
struct
CosSimFunctor
{
CosSimFunctor
(
const
T
*
x
,
const
T
*
y
,
T
*
x_norm
,
T
*
y_norm
,
T
*
z
,
int
cols
)
:
x_norm_
(
x_norm
),
y_norm_
(
y_norm
),
x_
(
x
),
y_
(
y
),
z_
(
z
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
inline
void
operator
()(
T
&
x_norm
,
T
&
y_norm
)
const
{
size_t
x_offset
=
&
x_norm
-
x_norm_
;
size_t
y_offset
=
&
y_norm
-
y_norm_
;
auto
*
x
=
x_
+
cols_
*
x_offset
;
T
xx
=
0
,
xy
=
0
;
T
yy
=
0
;
T
xy
=
0
;
for
(
int
j
=
0
;
j
<
col
;
++
j
)
{
xy
+=
(
*
x
)
*
(
*
y
);
xx
+=
(
*
x
)
*
(
*
x
);
yy
+=
(
*
y
)
*
(
*
y
);
++
y
;
++
x
;
if
(
same_row
)
{
auto
*
y
=
y_
+
cols_
*
y_offset
;
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
xx
+=
x
[
i
]
*
x
[
i
];
yy
+=
y
[
i
]
*
y
[
i
];
xy
+=
x
[
i
]
*
y
[
i
];
}
xx
=
sqrt
(
xx
);
yy
=
sqrt
(
yy
);
x_norm_
[
x_offset
]
=
xx
;
y_norm_
[
y_offset
]
=
yy
;
z_
[
x_offset
]
=
xy
/
(
xx
*
yy
);
}
else
{
auto
*
y
=
y_
;
// if (yy == -1) {
// yy = 0;
// for (size_t i = 0; i < cols_; ++i) {
// yy += y[i] * y[i];
// }
// y_norm[0] = sqrt(yy);
// }
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
xx
+=
x
[
i
]
*
x
[
i
];
yy
+=
y
[
i
]
*
y
[
i
];
// only need
xy
+=
x
[
i
]
*
y
[
i
];
}
xx
=
sqrt
(
xx
);
yy
=
sqrt
(
yy
);
x_norm_
[
x_offset
]
=
xx
;
y_norm_
[
0
]
=
yy
;
z_
[
x_offset
]
=
xy
/
(
xx
*
yy
);
}
x_norm
[
i
]
=
sqrt
(
xx
);
y_norm
[
i
]
=
sqrt
(
yy
);
out
[
i
]
=
xy
/
(
x_norm
[
i
]
*
y_norm
[
i
]);
}
}
T
*
x_norm_
;
T
*
y_norm_
;
const
T
*
x_
;
const
T
*
y_
;
T
*
z_
;
const
size_t
cols_
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
CosSimKernel
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -68,58 +114,140 @@ class CosSimKernel : public framework::OpKernel<T> {
int
rows_y
=
in_y
->
dims
()[
0
];
int
cols
=
framework
::
product
(
in_x
->
dims
())
/
rows_x
;
auto
x_iter
=
ElementIterator
<
T
,
DeviceContext
>
(
in_x
->
data
<
T
>
(),
rows_x
,
cols
,
rows_x
,
cols
);
auto
y_iter
=
ElementIterator
<
T
,
DeviceContext
>
(
in_y
->
data
<
T
>
(),
rows_y
,
cols
,
rows_x
,
cols
);
Function_forward
(
out_z
->
data
<
T
>
(),
out_x_norm
->
data
<
T
>
(),
out_y_norm
->
data
<
T
>
(),
x_iter
,
y_iter
,
rows_x
,
cols
);
//
// // convert Tensor to Eigen Tensor
//// int rows_x = in_x->dims()[0];
//// int rows_y = in_y->dims()[0];
// auto x = EigenMatrix<T>::Reshape(*in_x, 1);
// auto y = EigenMatrix<T>::Reshape(*in_y, 1);
// auto z = EigenVector<T>::Flatten(*out_z);
// auto x_norm = EigenVector<T>::Flatten(*out_x_norm);
// auto y_norm = EigenVector<T>::Flatten(*out_y_norm);
//
// // compute
// auto& place =
// *context.template device_context<DeviceContext>().eigen_device();
// auto row_along = Eigen::array<int, 1>({{1}});
// x_norm.device(place) = x.square().sum(row_along).sqrt();
// y_norm.device(place) = y.square().sum(row_along).sqrt();
// if (rows_x == rows_y) {
// auto xy = (x * y).sum(Eigen::array<int, 1>({{1}}));
// z.device(place) = xy / x_norm / y_norm;
// } else {
// Eigen::DSizes<int, 2> bcast(rows_x, 1);
// auto xy = (x * y.broadcast(bcast)).sum(row_along);
// z.device(place) = xy / x_norm / y_norm.broadcast(bcast);
// }
if
(
rows_x
==
rows_y
)
{
CosSimFunctor
<
T
,
true
>
functor
(
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
out_x_norm
->
data
<
T
>
(),
out_y_norm
->
data
<
T
>
(),
out_z
->
data
<
T
>
(),
cols
);
ForEachZip
(
out_x_norm
->
data
<
T
>
(),
out_x_norm
->
data
<
T
>
()
+
rows_x
,
out_y_norm
->
data
<
T
>
(),
functor
);
}
else
{
CosSimFunctor
<
T
,
false
>
functor
(
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
out_x_norm
->
data
<
T
>
(),
out_y_norm
->
data
<
T
>
(),
out_z
->
data
<
T
>
(),
cols
);
ForEachZip
(
out_x_norm
->
data
<
T
>
(),
out_x_norm
->
data
<
T
>
()
+
rows_x
,
out_y_norm
->
data
<
T
>
(),
functor
);
}
}
};
template
<
typename
T
,
typename
DeviceContext
>
void
Function_element
(
T
*
result
,
ElementIterator
<
T
,
DeviceContext
>
dz
,
ElementIterator
<
T
,
DeviceContext
>
y
,
ElementIterator
<
T
,
DeviceContext
>
x_norm
,
ElementIterator
<
T
,
DeviceContext
>
y_norm
,
ElementIterator
<
T
,
DeviceContext
>
z
,
ElementIterator
<
T
,
DeviceContext
>
x
,
int
num
,
int
block
)
{
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
result
[
i
%
block
]
+=
(
*
dz
)
*
((
*
y
)
/
((
*
x_norm
)
*
(
*
y_norm
))
-
(
*
z
)
*
(
*
x
)
/
((
*
x_norm
)
*
(
*
x_norm
)));
++
dz
;
++
y
;
++
x_norm
;
++
y_norm
;
++
z
;
++
x
;
template
<
typename
T
>
struct
CosSimGradFunctor
{
CosSimGradFunctor
(
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
T
*
dx
,
int
cols
)
:
x_norm_
(
x_norm
),
y_norm_
(
y_norm
),
x_
(
x
),
y_
(
y
),
z_
(
z
),
dz_
(
dz
),
dx_
(
dx
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
void
operator
()(
const
T
&
x_norm
,
const
T
&
y_norm
)
const
{
size_t
x_offset
=
&
x_norm
-
x_norm_
;
size_t
y_offset
=
&
y_norm
-
y_norm_
;
auto
x_norm_square
=
x_norm_
[
x_offset
]
*
x_norm_
[
x_offset
];
// auto y_norm_square = y_norm_[y_offset] * y_norm_[y_offset];
auto
xy_norm_prod
=
x_norm_
[
x_offset
]
*
y_norm_
[
y_offset
];
auto
dz
=
dz_
[
x_offset
];
auto
*
dx
=
dx_
+
cols_
*
x_offset
;
auto
*
x
=
x_
+
cols_
*
x_offset
;
auto
*
y
=
y_
+
cols_
*
y_offset
;
auto
z
=
z_
[
x_offset
];
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
dx
[
i
]
=
dz
*
(
y
[
i
]
/
xy_norm_prod
-
z
*
x
[
i
]
/
x_norm_square
);
}
}
}
const
T
*
x_norm_
;
const
T
*
y_norm_
;
const
T
*
x_
;
const
T
*
y_
;
const
T
*
z_
;
const
T
*
dz_
;
T
*
dx_
;
const
size_t
cols_
;
};
template
<
typename
T
>
struct
CosSimDxFunctor
{
CosSimDxFunctor
(
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
T
*
dx
,
int
cols
)
:
x_norm_
(
x_norm
),
y_norm_
(
y_norm
),
x_
(
x
),
y_
(
y
),
z_
(
z
),
dz_
(
dz
),
dx_
(
dx
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
void
operator
()(
const
T
&
x_norm
,
const
T
&
y_norm
)
const
{
size_t
x_offset
=
&
x_norm
-
x_norm_
;
auto
x_norm_square
=
x_norm_
[
x_offset
]
*
x_norm_
[
x_offset
];
auto
xy_norm_prod
=
x_norm_
[
x_offset
]
*
y_norm_
[
0
];
auto
dz
=
dz_
[
x_offset
];
auto
z
=
z_
[
x_offset
];
auto
*
dx
=
dx_
+
cols_
*
x_offset
;
auto
*
x
=
x_
+
cols_
*
x_offset
;
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
dx
[
i
]
=
dz
*
(
y_
[
i
]
/
xy_norm_prod
-
z
*
x
[
i
]
/
x_norm_square
);
}
}
const
T
*
x_norm_
;
const
T
*
y_norm_
;
const
T
*
x_
;
const
T
*
y_
;
const
T
*
z_
;
const
T
*
dz_
;
T
*
dx_
;
const
size_t
cols_
;
};
template
<
typename
T
>
struct
CosSimDyFunctor
{
CosSimDyFunctor
(
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
T
*
dy
,
int
cols
)
:
x_norm_
(
x_norm
),
y_norm_
(
y_norm
),
x_
(
x
),
y_
(
y
),
z_
(
z
),
dz_
(
dz
),
dy_
(
dy
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
void
operator
()(
const
T
&
x_norm
,
const
T
&
y_norm
)
const
{
size_t
x_offset
=
&
x_norm
-
x_norm_
;
auto
y_norm_square
=
y_norm_
[
0
]
*
y_norm_
[
0
];
auto
xy_norm_prod
=
x_norm_
[
x_offset
]
*
y_norm_
[
0
];
auto
dz
=
dz_
[
x_offset
];
auto
z
=
z_
[
x_offset
];
auto
*
x
=
x_
+
cols_
*
x_offset
;
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
dy_
[
i
]
+=
dz
*
(
x
[
i
]
/
xy_norm_prod
-
z
*
y_
[
i
]
/
y_norm_square
);
}
}
const
T
*
x_norm_
;
const
T
*
y_norm_
;
const
T
*
x_
;
const
T
*
y_
;
const
T
*
z_
;
const
T
*
dz_
;
T
*
dy_
;
const
size_t
cols_
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
CosSimGradKernel
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -140,45 +268,40 @@ class CosSimGradKernel : public framework::OpKernel<T> {
int
rows_y
=
in_y
->
dims
()[
0
];
int
cols
=
framework
::
product
(
in_x
->
dims
())
/
rows_x
;
//////////////////////////////
// ##
auto
x_iter
=
ElementIterator
<
T
,
DeviceContext
>
(
in_x
->
data
<
T
>
(),
rows_x
,
cols
,
rows_x
,
cols
);
auto
y_iter
=
ElementIterator
<
T
,
DeviceContext
>
(
in_y
->
data
<
T
>
(),
rows_y
,
cols
,
rows_x
,
cols
);
auto
z_iter
=
ElementIterator
<
T
,
DeviceContext
>
(
in_z
->
data
<
T
>
(),
rows_x
,
1
,
rows_x
,
cols
);
auto
dz_iter
=
ElementIterator
<
T
,
DeviceContext
>
(
in_grad_z
->
data
<
T
>
(),
rows_x
,
1
,
rows_x
,
cols
);
auto
x_norm_iter
=
ElementIterator
<
T
,
DeviceContext
>
(
in_x_norm
->
data
<
T
>
(),
rows_x
,
1
,
rows_x
,
cols
);
auto
y_norm_iter
=
ElementIterator
<
T
,
DeviceContext
>
(
in_y_norm
->
data
<
T
>
(),
rows_y
,
1
,
rows_x
,
cols
);
// ##
//////////////////////////////
// compute dx
if
(
out_grad_x
)
{
out_grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
//////////////////////////////
// ##
Function_element
(
out_grad_x
->
data
<
T
>
(),
dz_iter
,
y_iter
,
x_norm_iter
,
y_norm_iter
,
z_iter
,
x_iter
,
rows_x
*
cols
,
rows_x
*
cols
);
// ##
//////////////////////////////
}
// compute dy
if
(
out_grad_y
)
{
out_grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
//////////////////////////////
// ##
Function_element
(
out_grad_y
->
data
<
T
>
(),
dz_iter
,
x_iter
,
y_norm_iter
,
x_norm_iter
,
z_iter
,
y_iter
,
rows_x
*
cols
,
rows_y
*
cols
);
// ##
//////////////////////////////
if
(
rows_x
==
rows_y
)
{
if
(
out_grad_x
)
{
CosSimGradFunctor
<
T
>
functor
(
in_x_norm
->
data
<
T
>
(),
in_y_norm
->
data
<
T
>
(),
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
in_z
->
data
<
T
>
(),
in_grad_z
->
data
<
T
>
(),
out_grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
cols
);
ForEachZip
(
in_x_norm
->
data
<
T
>
(),
in_x_norm
->
data
<
T
>
()
+
rows_x
,
in_y_norm
->
data
<
T
>
(),
functor
);
}
if
(
out_grad_y
)
{
CosSimGradFunctor
<
T
>
functor
(
in_y_norm
->
data
<
T
>
(),
in_x_norm
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
in_x
->
data
<
T
>
(),
in_z
->
data
<
T
>
(),
in_grad_z
->
data
<
T
>
(),
out_grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
cols
);
ForEachZip
(
in_y_norm
->
data
<
T
>
(),
in_y_norm
->
data
<
T
>
()
+
rows_x
,
in_x_norm
->
data
<
T
>
(),
functor
);
}
}
else
{
if
(
out_grad_x
)
{
CosSimDxFunctor
<
T
>
functor
(
in_x_norm
->
data
<
T
>
(),
in_y_norm
->
data
<
T
>
(),
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
in_z
->
data
<
T
>
(),
in_grad_z
->
data
<
T
>
(),
out_grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
cols
);
ForEachZip
(
in_x_norm
->
data
<
T
>
(),
in_x_norm
->
data
<
T
>
()
+
rows_x
,
in_y_norm
->
data
<
T
>
(),
functor
);
}
if
(
out_grad_y
)
{
CosSimDyFunctor
<
T
>
functor
(
in_x_norm
->
data
<
T
>
(),
in_y_norm
->
data
<
T
>
(),
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
in_z
->
data
<
T
>
(),
in_grad_z
->
data
<
T
>
(),
out_grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
cols
);
ForEachZip
(
in_x_norm
->
data
<
T
>
(),
in_x_norm
->
data
<
T
>
()
+
rows_x
,
in_y_norm
->
data
<
T
>
(),
functor
);
}
}
}
};
...
...
paddle/operators/elementwise_op_function.h
浏览文件 @
bcf0b56f
...
...
@@ -131,61 +131,6 @@ class MidWiseTransformIterator<T, platform::CPUDeviceContext> {
int
post_
;
};
template
<
typename
T
,
typename
Place
>
class
ElementIterator
;
// Fixed(zcd) : Only support 2D
template
<
typename
T
>
class
ElementIterator
<
T
,
platform
::
CPUDeviceContext
>
{
public:
ElementIterator
(
const
T
*
ptr
,
int
t_m
,
int
t_n
,
int
m
,
int
n
)
:
ptr_
(
ptr
),
index_
(
0
),
i_
(
0
),
j_
(
0
),
t_m_
(
t_m
),
t_n_
(
t_n
),
m_
(
m
),
n_
(
n
)
{}
ElementIterator
<
T
,
platform
::
CPUDeviceContext
>&
operator
++
()
{
++
j_
;
if
((
j_
==
n_
))
{
j_
=
0
;
++
i_
;
}
int
t_i
=
(
t_m_
==
1
)
?
0
:
i_
;
int
t_j
=
(
t_n_
==
1
)
?
0
:
j_
;
index_
=
t_i
*
t_n_
+
t_j
;
return
*
this
;
}
bool
operator
==
(
const
ElementIterator
<
T
,
platform
::
CPUDeviceContext
>&
rhs
)
const
{
return
(
ptr_
+
index_
)
==
&
(
*
rhs
);
}
bool
operator
!=
(
const
ElementIterator
<
T
,
platform
::
CPUDeviceContext
>&
rhs
)
const
{
return
(
ptr_
+
index_
)
!=
&
(
*
rhs
);
}
const
T
&
operator
*
()
{
return
ptr_
[
index_
];
}
private:
// t_m_ == m_ || t_n_ == n_ || (t_m_ == 1 && t_m_ == 1)
const
T
*
ptr_
;
int
index_
;
int
i_
;
int
j_
;
int64_t
t_m_
;
int64_t
t_n_
;
int64_t
m_
;
int64_t
n_
;
};
#ifdef __NVCC__
template
<
typename
T
>
class
RowwiseTransformIterator
<
T
,
platform
::
CUDADeviceContext
>
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录