未验证 提交 bc543e35 编写于 作者: F Fan Zhang 提交者: GitHub

[NPU] Support npu op expand_v2 and expand_v2_grad (#34764)

* [NPU] Support npu op expand_v2 and expand_v2_grad

* [NPU] Support npu op expand_v2 and expand_v2_grad

* [NPU] Support npu op expand_v2 and expand_v2_grad

* update test_expand_v2_op_npu.py

* update test_expand_v2_op_npu.py

* modify expand_v2_op_npu.cc

* modify expand_v2_op_npu.cc
上级 1c31d9d3
......@@ -36,6 +36,12 @@ inline std::vector<int> get_expand_shape(
TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
shape_data = cpu_shape_tensor.data<int>();
}
#ifdef PADDLE_WITH_ASCEND_CL
if (platform::is_npu_place(shape_tensor->place())) {
TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
shape_data = cpu_shape_tensor.data<int>();
}
#endif
auto vec_shape =
std::vector<int>(shape_data, shape_data + shape_tensor->numel());
return vec_shape;
......@@ -52,7 +58,15 @@ inline std::vector<int> get_expand_shape(
framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_epxand_shape.push_back(*temp.data<int32_t>());
} else {
}
#ifdef PADDLE_WITH_ASCEND_CL
else if (platform::is_npu_place(tensor->place())) { // NOLINT
framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_epxand_shape.push_back(*temp.data<int32_t>());
}
#endif
else { // NOLINT
vec_epxand_shape.push_back(*tensor->data<int32_t>());
}
}
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include "paddle/fluid/operators/expand_v2_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class ExpandV2NPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* X = ctx.Input<framework::Tensor>("X");
auto* Out = ctx.Output<framework::Tensor>("Out");
auto in_dims = X->dims();
auto expand_shape = get_expand_shape(ctx);
auto vec_in_dims = framework::vectorize<int>(in_dims);
auto diff = expand_shape.size() - vec_in_dims.size();
vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
std::vector<int> final_expand_shape(vec_in_dims.size());
for (size_t i = 0; i < vec_in_dims.size(); ++i) {
PADDLE_ENFORCE_NE(expand_shape[i], 0,
platform::errors::InvalidArgument(
"The expanded size cannot be zero."));
if (i < diff) { // expand_shape = [3,4,-1,-1], X = [10,2] -->
// final_expand_shape = [3,4,10,2]
PADDLE_ENFORCE_GT(
expand_shape[i], 0,
platform::errors::InvalidArgument(
"The expanded size (%d) for non-existing dimensions must be "
"positive for expand_v2 op.",
expand_shape[i]));
final_expand_shape[i] = expand_shape[i];
} else if (expand_shape[i] > 0) { // expand_shape = [3,4,10,4], X =
// [10,1] --> final_expand_shape =
// [3,4,10,4]
if (vec_in_dims[i] != 1) {
PADDLE_ENFORCE_EQ(
vec_in_dims[i], expand_shape[i],
platform::errors::InvalidArgument(
"The value (%d) of the non-singleton dimension does not match"
" the corresponding value (%d) in shape for expand_v2 op.",
vec_in_dims[i], expand_shape[i]));
final_expand_shape[i] = expand_shape[i];
} else {
final_expand_shape[i] = expand_shape[i];
}
} else { // expand_shape = [3,4,-1,-1], X = [10,2] --> final_expand_shape
// = [3,4,10,2]
PADDLE_ENFORCE_EQ(
expand_shape[i], -1,
platform::errors::InvalidArgument(
"When the value in shape is negative for expand_v2 op, "
"only -1 is supported, but the value received is %d.",
expand_shape[i]));
final_expand_shape[i] = vec_in_dims[i];
}
}
framework::NPUAttributeMap attr_input = {{"shape", final_expand_shape}};
auto rank = X->dims().size();
PADDLE_ENFORCE_GE(
rank, 1,
platform::errors::InvalidArgument(
"The rank of the input 'X' for expand_v2_npu op must be positive, "
"but the value received is %d.",
rank));
PADDLE_ENFORCE_LE(
rank, MAX_RANK_SUPPORTED,
platform::errors::InvalidArgument(
"The rank of the input 'X' for expand_v2_npu op must be less than "
"or equal to %d, but the value received is %d.",
MAX_RANK_SUPPORTED, rank));
auto shape_size = final_expand_shape.size();
PADDLE_ENFORCE_GE(
shape_size, rank,
platform::errors::InvalidArgument(
"The number (%d) of elements of 'shape' for expand_v2_npu op must "
"be "
"greater than or equal to the rank (%d) of the input 'X'.",
shape_size, rank));
PADDLE_ENFORCE_LE(shape_size, MAX_RANK_SUPPORTED,
platform::errors::InvalidArgument(
"The number (%d) of elements of 'shape' for "
"expand_v2_npu op must be "
"less than or equal to %d.",
shape_size, MAX_RANK_SUPPORTED));
framework::DDim out_dims = framework::make_ddim(final_expand_shape);
Out->Resize(out_dims);
Out->mutable_data<T>(ctx.GetPlace());
const auto& runner = NpuOpRunner("ExpandD", {*X}, {*Out}, attr_input);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};
template <typename DeviceContext, typename T>
class ExpandV2NPUGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
dx->mutable_data<T>(ctx.GetPlace());
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
// case 1: reduce dout dims to dx dims
// For example: [2, 120] --> [120]
auto reduce_ndim = dout->dims().size() - dx->dims().size();
std::vector<int> axes;
for (auto i = 0; i < reduce_ndim; ++i) {
axes.push_back(i);
}
Tensor tmp_dout(dout->type());
Tensor reduced_dout(dx->type());
tmp_dout.ShareDataWith(*dout);
if (axes.size() != 0) {
std::vector<int64_t> reduced_dout_dims;
for (auto i = reduce_ndim; i < dout->dims().size(); ++i) {
reduced_dout_dims.push_back(dout->dims()[i]);
}
tmp_dout.Resize(framework::make_ddim(reduced_dout_dims));
reduced_dout.Resize(framework::make_ddim(reduced_dout_dims));
reduced_dout.mutable_data<T>(ctx.GetPlace());
const auto& runner = NpuOpRunner("ReduceSumD", {*dout}, {reduced_dout},
{{"axes", axes}, {"keep_dims", false}});
runner.Run(stream);
tmp_dout = reduced_dout;
}
// case 2: reduce axis of dout in which dim is 1
// For example: [12, 140] --> [1, 140]
// case 3: copy dout to dx when shape is totally same, and dim in dx != 1
// For example: [2, 10, 5] --> [2, 10, 5]
axes.clear();
for (auto i = 0; i < dx->dims().size(); ++i) {
if (dx->dims()[i] == 1) {
axes.push_back(i);
}
}
if (axes.size() != 0) {
const auto& runner = NpuOpRunner("ReduceSumD", {tmp_dout}, {*dx},
{{"axes", axes}, {"keep_dims", true}});
runner.Run(stream);
} else {
framework::TensorCopySync(tmp_dout, ctx.GetPlace(), dx);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
expand_v2,
ops::ExpandV2NPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ExpandV2NPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>,
ops::ExpandV2NPUKernel<paddle::platform::NPUDeviceContext, int>);
REGISTER_OP_NPU_KERNEL(
expand_v2_grad,
ops::ExpandV2NPUGradKernel<paddle::platform::NPUDeviceContext, float>,
ops::ExpandV2NPUGradKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>,
ops::ExpandV2NPUGradKernel<paddle::platform::NPUDeviceContext, int>);
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import sys
import numpy as np
sys.path.append("..")
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import paddle
paddle.enable_static()
np.random.seed(10)
# CANN Op Support X: float16, float32, int32, int8 ,uint8
# Situation 1: shape is a list(without tensor)
class TestExpandV2NPUOpRank1(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_v2"
self.dtype = np.float32
self.init_data()
self.inputs = {'X': np.random.random(self.ori_shape).astype(self.dtype)}
self.attrs = {'shape': self.shape}
output = np.tile(self.inputs['X'], self.expand_times)
self.outputs = {'Out': output}
def set_npu(self):
self.__class__.use_npu = True
def init_data(self):
self.ori_shape = [100]
self.shape = [100]
self.expand_times = [1]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(self.place, ['X'], 'Out')
class TestExpandV2OpRank2_DimExpanding(TestExpandV2NPUOpRank1):
def init_data(self):
self.ori_shape = [120]
self.shape = [2, 120]
self.expand_times = [2, 1]
class TestExpandV2OpRank2(TestExpandV2NPUOpRank1):
def init_data(self):
self.ori_shape = [1, 140]
self.shape = [12, 140]
self.expand_times = [12, 1]
class TestExpandV2OpRank3_Corner(TestExpandV2NPUOpRank1):
def init_data(self):
self.ori_shape = (2, 10, 5)
self.shape = (2, 10, 5)
self.expand_times = (1, 1, 1)
class TestExpandV2OpRank4(TestExpandV2NPUOpRank1):
def init_data(self):
self.ori_shape = (2, 4, 5, 7)
self.shape = (-1, -1, -1, -1)
self.expand_times = (1, 1, 1, 1)
class TestExpandV2OpRank5(TestExpandV2NPUOpRank1):
def init_data(self):
self.ori_shape = (2, 4, 1, 15)
self.shape = (2, -1, 4, -1)
self.expand_times = (1, 1, 4, 1)
class TestExpandV2OpRank6(TestExpandV2NPUOpRank1):
def init_data(self):
self.ori_shape = (4, 1, 30)
self.shape = (2, -1, 4, 30)
self.expand_times = (2, 1, 4, 1)
# Situation 2: shape is a list(with tensor)
class TestExpandV2OpNPURank1_tensor_attr(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_v2"
self.init_data()
self.dtype = np.float32
expand_shapes_tensor = []
for index, ele in enumerate(self.expand_shape):
expand_shapes_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {
'X': np.random.random(self.ori_shape).astype(self.dtype),
'expand_shapes_tensor': expand_shapes_tensor,
}
self.attrs = {"shape": self.infer_expand_shape}
output = np.tile(self.inputs['X'], self.expand_times)
self.outputs = {'Out': output}
def set_npu(self):
self.__class__.use_npu = True
def init_data(self):
self.ori_shape = [100]
self.expand_times = [1]
self.expand_shape = [100]
self.infer_expand_shape = [-1]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(self.place, ['X'], 'Out')
class TestExpandV2OpRank2_Corner_tensor_attr(
TestExpandV2OpNPURank1_tensor_attr):
def init_data(self):
self.ori_shape = [12, 14]
self.expand_times = [1, 1]
self.expand_shape = [12, 14]
self.infer_expand_shape = [12, -1]
# Situation 3: shape is a tensor
class TestExpandV2NPUOpRank1_tensor(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_v2"
self.init_data()
self.dtype = np.float32
self.inputs = {
'X': np.random.random(self.ori_shape).astype(self.dtype),
'Shape': np.array(self.expand_shape).astype("int32"),
}
self.attrs = {}
output = np.tile(self.inputs['X'], self.expand_times)
self.outputs = {'Out': output}
def set_npu(self):
self.__class__.use_npu = True
def init_data(self):
self.ori_shape = [100]
self.expand_times = [2, 1]
self.expand_shape = [2, 100]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(self.place, ['X'], 'Out')
# Situation 4: input x is float16
# skip grad check for float16
class TestExpandV2OpFloat(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_v2"
self.dtype = np.float16
self.ori_shape = (2, 4, 20)
self.inputs = {'X': np.random.random(self.ori_shape).astype(self.dtype)}
self.attrs = {'shape': [2, 4, 20]}
output = np.tile(self.inputs['X'], (1, 1, 1))
self.outputs = {'Out': output}
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True
def test_check_output(self):
self.check_output_with_place(self.place)
# Situation 5: input x is int32
# skip grad check for int32
class TestExpandV2OpInteger(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "expand_v2"
self.inputs = {
'X': np.random.randint(
10, size=(2, 4, 20)).astype("int32")
}
self.attrs = {'shape': [2, 4, 20]}
output = np.tile(self.inputs['X'], (1, 1, 1))
self.outputs = {'Out': output}
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True
def test_check_output(self):
self.check_output_with_place(self.place)
class TestExpandV2Error(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
x1 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], paddle.NPUPlace(0))
shape = [2, 2]
self.assertRaises(TypeError, paddle.tensor.expand, x1, shape)
x2 = fluid.layers.data(name='x2', shape=[2], dtype="uint8")
self.assertRaises(TypeError, paddle.tensor.expand, x2, shape)
x3 = fluid.layers.data(name='x3', shape=[2], dtype="bool")
x3.stop_gradient = False
self.assertRaises(ValueError, paddle.tensor.expand, x3, shape)
# Test python API
class TestExpandV2API(unittest.TestCase):
def test_static(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = np.random.random([12, 14]).astype("float32")
x = fluid.layers.data(
name='x',
shape=[12, 14],
append_batch_size=False,
dtype="float32")
positive_2 = fluid.layers.fill_constant([1], "int32", 12)
expand_shape = fluid.layers.data(
name="expand_shape",
shape=[2],
append_batch_size=False,
dtype="int32")
out_1 = paddle.expand(x, shape=[12, 14])
out_2 = paddle.expand(x, shape=[positive_2, 14])
out_3 = paddle.expand(x, shape=expand_shape)
g0 = fluid.backward.calc_gradient(out_2, x)
exe = fluid.Executor(place=paddle.NPUPlace(0))
res_1, res_2, res_3 = exe.run(fluid.default_main_program(),
feed={
"x": input,
"expand_shape":
np.array([12, 14]).astype("int32")
},
fetch_list=[out_1, out_2, out_3])
assert np.array_equal(res_1, np.tile(input, (1, 1)))
assert np.array_equal(res_2, np.tile(input, (1, 1)))
assert np.array_equal(res_3, np.tile(input, (1, 1)))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册