Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bc0df48b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bc0df48b
编写于
9月 26, 2021
作者:
N
niuliling123
提交者:
GitHub
9月 26, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[icafe-31094] Add function comments and instructions to the Primitive API (#35743)
上级
372a1a75
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
299 addition
and
201 deletion
+299
-201
paddle/fluid/operators/kernel_primitives/compute_primitives.h
...le/fluid/operators/kernel_primitives/compute_primitives.h
+155
-87
paddle/fluid/operators/kernel_primitives/datamover_primitives.h
.../fluid/operators/kernel_primitives/datamover_primitives.h
+144
-114
未找到文件。
paddle/fluid/operators/kernel_primitives/compute_primitives.h
浏览文件 @
bc0df48b
...
@@ -54,8 +54,8 @@ class MPTypeTrait<platform::float16> {
...
@@ -54,8 +54,8 @@ class MPTypeTrait<platform::float16> {
};
};
/**
/**
* @brief
w
ill be used in BlockYReduce, get the index of reduce_num in shared
* @brief
W
ill be used in BlockYReduce, get the index of reduce_num in shared
* memory
* memory
.
*/
*/
__device__
__forceinline__
int
SharedMemoryIndex
(
int
index
)
{
__device__
__forceinline__
int
SharedMemoryIndex
(
int
index
)
{
return
(
threadIdx
.
y
+
index
)
*
blockDim
.
x
+
threadIdx
.
x
;
return
(
threadIdx
.
y
+
index
)
*
blockDim
.
x
+
threadIdx
.
x
;
...
@@ -83,7 +83,7 @@ __device__ __forceinline__ T WarpReduce(T val, ReduceOp reducer) {
...
@@ -83,7 +83,7 @@ __device__ __forceinline__ T WarpReduce(T val, ReduceOp reducer) {
*/
*/
/**
/**
* @brief BlockXReduce reduce along blockDim.x
* @brief BlockXReduce reduce along blockDim.x
.
*/
*/
template
<
typename
T
,
typename
ReduceOp
>
template
<
typename
T
,
typename
ReduceOp
>
__device__
__forceinline__
T
BlockXReduce
(
T
val
,
ReduceOp
reducer
)
{
__device__
__forceinline__
T
BlockXReduce
(
T
val
,
ReduceOp
reducer
)
{
...
@@ -115,7 +115,7 @@ __device__ __forceinline__ T BlockXReduce(T val, ReduceOp reducer) {
...
@@ -115,7 +115,7 @@ __device__ __forceinline__ T BlockXReduce(T val, ReduceOp reducer) {
}
}
/**
/**
* @brief BlockYReduce reduce along blockDim.y
* @brief BlockYReduce reduce along blockDim.y
.
*/
*/
template
<
typename
T
,
typename
ReduceOp
>
template
<
typename
T
,
typename
ReduceOp
>
__device__
__forceinline__
T
BlockYReduce
(
T
val
,
ReduceOp
reducer
)
{
__device__
__forceinline__
T
BlockYReduce
(
T
val
,
ReduceOp
reducer
)
{
...
@@ -135,24 +135,33 @@ __device__ __forceinline__ T BlockYReduce(T val, ReduceOp reducer) {
...
@@ -135,24 +135,33 @@ __device__ __forceinline__ T BlockYReduce(T val, ReduceOp reducer) {
}
// namespace details
}
// namespace details
/**
/**
* @brief unary function
* @brief Perform unary calculation according to OpFunc. Size of input and
* @param
* output are the same.
* T: data type of in
*
* OutT: data type of out
* @template paraments
* NX: the cols of in
* InT: Data type of in.
* NY: the rows of in
* OutT: Data type of out.
* BlockSize: the config of this device
* NX: The number of data columns loaded by each thread.
* OpFunc: compute functor which have an operator() as following
* NY: The number of data rows loaded by each thread.
* template <typename T, typename OutT>
* BlockSize: Identifies the current device thread index method. For GPU,
* threadIdx.x is used as the thread index, and for xpu, core_id() is used as
* the index. Currently only GPU was supported.
* OpFunc: Compute functor which has an operator() as following:
* template <typename InT, typename OutT>
* struct XxxFunctor {
* struct XxxFunctor {
* HOSTDEVICE OutT operator()(const T& a) const {
* HOSTDEVICE OutT operator()(const
In
T& a) const {
* return ...;
* return ...;
* }
* }
* };
* };
*
* @param:
* out: The register pointer of out, the size is NX * NY.
* in: The register pointer of in, the size is NX * NY.
* compute: Compute function which was declared like OpFunc<InT, OutT>().
*/
*/
template
<
typename
T
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
template
<
typename
In
T
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
class
OpFunc
>
class
OpFunc
>
__device__
__forceinline__
void
ElementwiseUnary
(
OutT
*
out
,
const
T
*
in
,
__device__
__forceinline__
void
ElementwiseUnary
(
OutT
*
out
,
const
In
T
*
in
,
OpFunc
compute
)
{
OpFunc
compute
)
{
#pragma unroll
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
idx
++
)
{
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
idx
++
)
{
...
@@ -161,25 +170,35 @@ __device__ __forceinline__ void ElementwiseUnary(OutT* out, const T* in,
...
@@ -161,25 +170,35 @@ __device__ __forceinline__ void ElementwiseUnary(OutT* out, const T* in,
}
}
/**
/**
* @brief binary function, in1 and in2 have same shape
* @brief Binary calculation according to OpFunc. Size of The input and output
* @param
* are the same.
* T: data type of in1, in2
*
* OutT: data type of out
* @template paraments
* NX: the cols of in1, in2
* InT: Data type of in1 and in2.
* NY: the rows of in1, in2
* OutT: Data type of out.
* BlockSize: the config of this device
* NX: The number of data columns loaded by each thread.
* OpFunc: compute functor which have an operator() as following
* NY: The number of data rows loaded by each thread.
* template <typename T, typename OutT>
* BlockSize: Identifies the current device thread index method. For GPU,
* threadIdx.x is used as the thread index, and for xpu, core_id() is used as
* the index. Currently only GPU was supported.
* OpFunc: Compute functor which has an operator() as following:
* template <typename InT, typename OutT>
* struct XxxFunctor {
* struct XxxFunctor {
* HOSTDEVICE OutT operator()(const
T& a, const
T& b) const {
* HOSTDEVICE OutT operator()(const
InT& a, const In
T& b) const {
* return ...;
* return ...;
* }
* }
* };
* };
*
* @param:
* out: The register pointer of out, the size is NX * NY.
* in1: The register pointer of fist input, size is NX * NY.
* in2: The register pointer of second input, size is NX * NY.
* compute: Compute function which was declared like OpFunc<InT, OutT>().
*/
*/
template
<
typename
T
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
template
<
typename
In
T
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
class
OpFunc
>
class
OpFunc
>
__device__
__forceinline__
void
ElementwiseBinary
(
OutT
*
out
,
const
T
*
in1
,
__device__
__forceinline__
void
ElementwiseBinary
(
OutT
*
out
,
const
In
T
*
in1
,
const
T
*
in2
,
const
In
T
*
in2
,
OpFunc
compute
)
{
OpFunc
compute
)
{
#pragma unroll
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
++
idx
)
{
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
++
idx
)
{
...
@@ -188,25 +207,38 @@ __device__ __forceinline__ void ElementwiseBinary(OutT* out, const T* in1,
...
@@ -188,25 +207,38 @@ __device__ __forceinline__ void ElementwiseBinary(OutT* out, const T* in1,
}
}
/**
/**
* @brief ternary function, in1, in2 and in3 have same shape
* @brief Ternary calculation according to OpFunc. Size of input and output
* @param
* are the same.
* T: data type of in1, in2, in3
*
* OutT: data type of out
* @template paraments
* NX: the cols of in1, in2
* InT: Data type of in1 and in2.
* NY: the rows of in1, in2
* OutT: Data type of out.
* BlockSize: the config of this device
* NX: The number of data columns loaded by each thread.
* OpFunc: compute functor which have an operator() as following
* NY: The number of data rows loaded by each thread.
* template <typename T, typename OutT>
* BlockSize: Identifies the current device thread index method. For GPU,
* threadIdx.x is used as the thread index, and for xpu, core_id() is used as
* the index. Currently only GPU was supported.
* OpFunc: Compute functor which has an operator() as following
* template <typename InT, typename OutT>
* struct XxxFunctor {
* struct XxxFunctor {
* HOSTDEVICE OutT operator()(const T& a, const T& b, const T& c) const {
* HOSTDEVICE OutT operator()(const InT& a, const InT& b, const InT& c)
* const {
* return ...;
* return ...;
* }
* }
* };
* };
*
* @param
* out: The register pointer of out, the size is NX * NY.
* in1: The register pointer of fist input, size is NX * NY.
* in2: The register pointer of second input, size is NX * NY.
* in3: The register pointer of third input, size is NX * NY.
* compute: Compute function which was declared like OpFunc<InT, OutT>().
*/
*/
template
<
typename
T
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
template
<
typename
In
T
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
class
OpFunc
>
class
OpFunc
>
__device__
__forceinline__
void
ElementwiseTernary
(
OutT
*
out
,
const
T
*
in1
,
__device__
__forceinline__
void
ElementwiseTernary
(
OutT
*
out
,
const
InT
*
in1
,
const
T
*
in2
,
const
T
*
in3
,
const
InT
*
in2
,
const
InT
*
in3
,
OpFunc
compute
)
{
OpFunc
compute
)
{
#pragma unroll
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
++
idx
)
{
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
++
idx
)
{
...
@@ -215,27 +247,36 @@ __device__ __forceinline__ void ElementwiseTernary(OutT* out, const T* in1,
...
@@ -215,27 +247,36 @@ __device__ __forceinline__ void ElementwiseTernary(OutT* out, const T* in1,
}
}
/**
/**
* @brief a general function for elementwise computation, all inputs have
* @brief Multivariate calculation according to OpFunc. Size of input and output
* the same shape.
* are the same.
* @param
*
* T: data type of in1, in2, in3
* @template paraments
* OutT: data type of out
* InT: Data type of in1, in2 and in3.
* NX: the cols of in1, in2
* OutT: Data type of out.
* NY: the rows of in1, in2
* NX: The number of data columns loaded by each thread.
* BlockSize: the config of this device
* NY: The number of data rows loaded by each thread.
* OpFunc: compute functor which have an operator() as following
* BlockSize: Identifies the current device thread index method. For GPU,
* template <typename T, typename OutT>
* threadIdx.x is used as the thread index, and for xpu, core_id() is used as
* the index. Currently only GPU was supported.
* Arity: The size of ins
* OpFunc: Compute functor which has an operator() as following:
* template <typename InT, typename OutT>
* struct XxxFunctor {
* struct XxxFunctor {
* HOSTDEVICE OutT operator()(const T* args) const {
* HOSTDEVICE OutT operator()(const
In
T* args) const {
* return ...;
* return ...;
* }
* }
* };
* };
*
* @param
* out: The register pointer of out, the size is NX * NY.
* ins: An array of pointers consisting of multiple inputs.
* compute: Compute function which was declared like OpFunc<InT, OutT>().
*/
*/
template
<
typename
T
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
int
Arity
,
template
<
typename
In
T
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
int
Arity
,
class
OpFunc
>
class
OpFunc
>
__device__
__forceinline__
void
ElementwiseAny
(
OutT
*
out
,
T
(
*
ins
)[
NX
*
NY
],
__device__
__forceinline__
void
ElementwiseAny
(
OutT
*
out
,
In
T
(
*
ins
)[
NX
*
NY
],
OpFunc
compute
)
{
OpFunc
compute
)
{
T
args
[
Arity
];
In
T
args
[
Arity
];
#pragma unroll
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
++
idx
)
{
for
(
int
idx
=
0
;
idx
<
NX
*
NY
;
++
idx
)
{
#pragma unroll
#pragma unroll
...
@@ -247,20 +288,36 @@ __device__ __forceinline__ void ElementwiseAny(OutT* out, T (*ins)[NX * NY],
...
@@ -247,20 +288,36 @@ __device__ __forceinline__ void ElementwiseAny(OutT* out, T (*ins)[NX * NY],
}
}
/**
/**
* @brief cycle binary function, in1's shape size is [1, NX], in2's shape size
* @brief Binary calculation according to OpFunc. Shape of in1 and in2 are the
* is [NY, NX], out's shape size is [NY, NX]
* different. Shape of in1 is [1, NX], but in2's shape is [NY, NX], the output
* shape is [NY, NX].
*
* @template paraments
* InT: Data type of in1 and in2.
* OutT: Data type of out.
* NX: The number of data columns loaded by each thread.
* NY: The number of data rows loaded by each thread.
* BlockSize: Identifies the current device thread index method. For GPU,
* threadIdx.x is used as the thread index, and for xpu, core_id() is used as
* the index. Currently only GPU was supported.
* OpFunc: Compute functor which has an operator() as following
* template <typename InT, typename OutT>
* struct XxxFunctor {
* HOSTDEVICE OutT operator()(const InT& a, const InT& b) const {
* return ...;
* }
* };
*
* @param
* @param
* T: data type of in1, in2
* out: The register pointer of out, the size is NX * NY.
* OutT: data type of out
* in1: The register pointer of fist input, size is NX * 1.
* NX: the cols of in1, in2
* in2: The register pointer of second input, size is NX * NY.
* NY: the rows of in1, in2
* compute: Compute function which was declared like OpFunc<InT, OutT>().
* BlockSize: the config of this device
* OpFunc: compute functor eg: in1 + in2, in1 - in2
*/
*/
template
<
typename
T
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
template
<
typename
In
T
,
typename
OutT
,
int
NX
,
int
NY
,
int
BlockSize
,
class
OpFunc
>
class
OpFunc
>
__device__
__forceinline__
void
CycleBinary
(
OutT
*
out
,
const
T
*
in1
,
__device__
__forceinline__
void
CycleBinary
(
OutT
*
out
,
const
In
T
*
in1
,
const
T
*
in2
,
OpFunc
compute
)
{
const
In
T
*
in2
,
OpFunc
compute
)
{
#pragma unroll
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
;
idx
++
)
{
for
(
int
idx
=
0
;
idx
<
NX
;
idx
++
)
{
#pragma unroll
#pragma unroll
...
@@ -272,26 +329,37 @@ __device__ __forceinline__ void CycleBinary(OutT* out, const T* in1,
...
@@ -272,26 +329,37 @@ __device__ __forceinline__ void CycleBinary(OutT* out, const T* in1,
}
}
/**
/**
* @brief reduce function, in's shape size is [NX, NY].
* @brief The Reduce provides collective methods for computing a parallel
* If ReduceMode == kLocalMode then reduce NX, the shape of out is [NY, 1],
* reduction of items partitioned across a CUDA block and intra thread. When
* if ReduceMode == kGlobalMode then reduce between different threads, the
* ReduceMode == kLocalMode, thread reduce along nx. When ReduceMode ==
* shape of out is [NY, NX]. If reduce_last_dim is false and reduce_num was
* kGlobalMode, use shared memory to reduce between threads.
* split, BlockYReduce will be called. If reduce_last_dim is true and
*
* reduce_num was split, BlockXReduce will be called
* @template paraments
* @typename
* T: The type of data.
* T: data type of in
* NX: The number of data continuously loaded by each thread.
* NX: the cols of in
* NY: The number of data rows loaded by each thread, only NY = 1 was supported.
* NY: the rows of in
* BlockSize: Identifies the current device thread index method. For GPU,
* BlockSize: the config of this device
* threadIdx.x is used as the thread index, and for xpu, core_id() is used as
* OpFunc: reduce functor, eg: CustomSum, CustomMean in reduce_functor_op.h
* the index. Currently only GPU was supported.
* @param:
* ReduceFunctor: Compute functor which has an operator() as following
* reducer: reduce functor, eg: CustomSum<T>()
* template <typename InT>
* reduce_last_dim: if in's last dim need to be reduce then reduce_last_dim =
* struct ReduceFunctor {
* true
* HOSTDEVICE InT operator()(const InT& a, const InT& b) const {
* return ...;
* }
* };
* ReduceMode: Reduce mode, can be kLocalMode, kGlobalMode.
*
* @param
* out: The register pointer of out, the size is NX * NY.
* in: The register pointer of in, the size is NX * NY.
* reducer: Compute function which was declared like ReduceFunctor<InT>().
* reduce_last_dim: if the last dim gets involved in reduction.
*/
*/
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
class
OpFunc
,
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
class
ReduceFunctor
,
details
::
ReduceMode
Mode
>
details
::
ReduceMode
Mode
>
__device__
__forceinline__
void
Reduce
(
T
*
out
,
const
T
*
in
,
OpFunc
reducer
,
__device__
__forceinline__
void
Reduce
(
T
*
out
,
const
T
*
in
,
ReduceFunctor
reducer
,
bool
reduce_last_dim
)
{
bool
reduce_last_dim
)
{
int
block_index
=
blockDim
.
y
;
int
block_index
=
blockDim
.
y
;
...
@@ -302,7 +370,7 @@ __device__ __forceinline__ void Reduce(T* out, const T* in, OpFunc reducer,
...
@@ -302,7 +370,7 @@ __device__ __forceinline__ void Reduce(T* out, const T* in, OpFunc reducer,
if
(
block_reduce_y
)
{
if
(
block_reduce_y
)
{
#pragma unroll
#pragma unroll
for
(
int
i
=
0
;
i
<
NY
*
NX
;
i
++
)
{
// reduce along blockdim.y
for
(
int
i
=
0
;
i
<
NY
*
NX
;
i
++
)
{
// reduce along blockdim.y
out
[
i
]
=
details
::
BlockYReduce
<
T
,
OpFunc
>
(
out
[
i
],
reducer
);
out
[
i
]
=
details
::
BlockYReduce
<
T
,
ReduceFunctor
>
(
out
[
i
],
reducer
);
}
}
}
}
...
@@ -310,7 +378,7 @@ __device__ __forceinline__ void Reduce(T* out, const T* in, OpFunc reducer,
...
@@ -310,7 +378,7 @@ __device__ __forceinline__ void Reduce(T* out, const T* in, OpFunc reducer,
if
(
reduce_last_dim
)
{
if
(
reduce_last_dim
)
{
#pragma unroll
#pragma unroll
for
(
int
i
=
0
;
i
<
NY
*
NX
;
i
++
)
{
// reduce along blockDim.x
for
(
int
i
=
0
;
i
<
NY
*
NX
;
i
++
)
{
// reduce along blockDim.x
out
[
i
]
=
details
::
BlockXReduce
<
T
,
OpFunc
>
(
out
[
i
],
reducer
);
out
[
i
]
=
details
::
BlockXReduce
<
T
,
ReduceFunctor
>
(
out
[
i
],
reducer
);
}
}
}
}
}
else
{
// else kLocalMode
}
else
{
// else kLocalMode
...
...
paddle/fluid/operators/kernel_primitives/datamover_primitives.h
浏览文件 @
bc0df48b
...
@@ -32,7 +32,13 @@ template <typename T, int VecSize>
...
@@ -32,7 +32,13 @@ template <typename T, int VecSize>
struct
alignas
(
sizeof
(
T
)
*
VecSize
)
VectorType
{
struct
alignas
(
sizeof
(
T
)
*
VecSize
)
VectorType
{
T
val
[
VecSize
];
T
val
[
VecSize
];
};
};
/**
* Fast division : Replace division in CUDA with multiplication to improve
* kernel performance.
* 1. Complete the division calculation on the CPU, and record the calculation
* results by using the divider and shift_val.
* 2. Set the divisor on the GPU through Div() to complete the calculation.
*/
struct
FastDivMod
{
struct
FastDivMod
{
// 1st value represents the result of input number divides by recorded divisor
// 1st value represents the result of input number divides by recorded divisor
// 2nd value represents the result of input number modulo by recorded divisor
// 2nd value represents the result of input number modulo by recorded divisor
...
@@ -71,6 +77,11 @@ struct FastDivMod {
...
@@ -71,6 +77,11 @@ struct FastDivMod {
uint32_t
multiplier
;
uint32_t
multiplier
;
};
};
/**
* Configuration of broadcast. Calculate the input data index according to the
* index of the output data. if input or output shape is [dim0, dim1] then dims
* must be [dim1, dim0].
*/
template
<
int
kDims
>
template
<
int
kDims
>
struct
BroadcastConfig
{
struct
BroadcastConfig
{
FastDivMod
divmoders
[
kDims
];
FastDivMod
divmoders
[
kDims
];
...
@@ -107,65 +118,31 @@ struct BroadcastConfig {
...
@@ -107,65 +118,31 @@ struct BroadcastConfig {
}
// namespace details
}
// namespace details
/**
/**
* @brief load data from src to dst, src can be 1D data or 2D data. Note that
* @brief Read 2D data from global memory to registers according to Tx type, and
* you can use this function when you are sure that the data will not cross the
* store it as Ty type.
* boundary.
*
* @typename:
* @template paraments
* Tx: data type of src
* Tx: The type of data stored in the global memory.
* Ty: data type of dstt
* Ty: The type of data that needs to be stored in registers.
* NX: the cols of src, dst
* NX: The number of data columns loaded by each thread.
* NY: the rows of src, dst
* NY: The number of data rows loaded by each thread.
* BlockSize: the config of this device
* BlockSize: Identifies the current device thread index method. For GPU,
* @param:
* threadIdx.x is used as the thread index, and for xpu, core_id() is used as
* stride_nx: the stride of cols
* the index. Currently only GPU was supported.
* stride_ny: the stride of rows
* IsBoundary: Indicates whether to perform block access storage out-of-bounds
*/
* judgment. When the number of data processed by the block is less than
* NX x NY x blockDim, boundary judgment is required to avoid memory access
template
<
typename
Tx
,
typename
Ty
,
int
NX
,
int
NY
,
int
BlockSize
>
* crossing the boundary.
__device__
__forceinline__
void
ReadData
(
Ty
*
dst
,
const
Tx
*
__restrict__
src
,
*
int
stride_nx
,
int
stride_ny
)
{
int
thread_offset
=
threadIdx
.
x
*
NX
;
if
(
NY
==
1
&&
NX
==
1
)
{
dst
[
0
]
=
static_cast
<
Ty
>
(
src
[
thread_offset
]);
}
else
if
(
NX
==
1
)
{
#pragma unroll
for
(
int
idy
=
0
;
idy
<
NY
;
++
idy
)
{
dst
[
idy
]
=
static_cast
<
Ty
>
(
src
[
thread_offset
+
idy
*
stride_ny
]);
}
}
else
if
(
NY
==
1
)
{
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
;
++
idx
)
{
dst
[
idx
]
=
static_cast
<
Ty
>
(
src
[
thread_offset
+
idx
*
stride_nx
]);
}
}
else
{
#pragma unroll
for
(
int
idx
=
0
;
idx
<
NX
;
++
idx
)
{
#pragma unroll
for
(
int
idy
=
0
;
idy
<
NY
;
++
idy
)
{
dst
[
idy
*
NX
+
idx
]
=
static_cast
<
Ty
>
(
src
[
thread_offset
+
idx
*
stride_nx
+
idy
*
stride_ny
]);
}
}
}
}
/**
* @brief load data from src to dst with stride, src can be 1D data or 2D data.
* When boundary judgment is required, you need to set a to true, and a is false
* by default.
* @typename:
* Tx: data type of src
* Ty: data type of dstt
* NX: the cols of src, dst
* NY: the rows of src, dst
* BlockSize: the config of this device
* IsBoundary: whether to make boundary judgment
* @param:
* @param:
* size_nx: number of columns to be processed by the current block
* dst: The register pointer of the thread, the size is NX * NY.
* size_ny: number of rows to be processed by the current block
* src: Data pointer of the current block.
* stride_nx: the stride of cols
* size_nx: The current block needs to load size_nx columns of data, this
* stride_ny: the stride of rows
* parameter will be used when IsBoundary = true.
* size_ny: The current block needs to load size_ny rows of data. This parameter
* will be used when IsBoundary = true.
* stride_nx: The stride of cols.
* stride_ny: The stride of rows.
*/
*/
template
<
typename
Tx
,
typename
Ty
,
int
NX
,
int
NY
,
int
BlockSize
,
template
<
typename
Tx
,
typename
Ty
,
int
NX
,
int
NY
,
int
BlockSize
,
bool
IsBoundary
=
false
>
bool
IsBoundary
=
false
>
...
@@ -226,6 +203,17 @@ __device__ __forceinline__ void ReadData(Ty* dst, const Tx* __restrict__ src,
...
@@ -226,6 +203,17 @@ __device__ __forceinline__ void ReadData(Ty* dst, const Tx* __restrict__ src,
}
}
}
}
/**
* @brief Initialize register with init_data.
*
* @template paraments
* T: Data type of register.
* NX: Number of data to initialize.
*
* @param:
* dst: The register pointer of the thread, the size is NX.
* init_data: Initial value.
*/
template
<
typename
T
,
int
NX
>
template
<
typename
T
,
int
NX
>
__device__
__forceinline__
void
Init
(
T
*
dst
,
T
init_data
)
{
__device__
__forceinline__
void
Init
(
T
*
dst
,
T
init_data
)
{
#pragma unroll
#pragma unroll
...
@@ -234,18 +222,27 @@ __device__ __forceinline__ void Init(T* dst, T init_data) {
...
@@ -234,18 +222,27 @@ __device__ __forceinline__ void Init(T* dst, T init_data) {
}
}
}
}
/** @brief: ReadData
/**
* @brief load data from src to dst, src can be 1D data, you should set NY = 1.
* @brief Read 2D data from global memory to registers. When IsBoundary = true
* When boundary judgment is required, you need to set a to true, and a is false
* and (NX % 4 == 0 or Nx % 2 == 0), vectorized load data will be used to
* by default.
* improve memory access efficiency.
* @typename:
*
* T : the data type of src
* @template paraments
* NX: the cols of src, dst
* T: Data type of src and dst.
* NY: in this function NY only can be 1
* NX: The number of data continuously loaded by each thread.
* BlockSize: the config of this device
* NY: The number of data rows loaded by each thread, only NY = 1 was supported.
* IsBoundary: whether to make boundary judgment
* BlockSize: Identifies the current device thread index method. For GPU,
* threadIdx.x is used as the thread index, and for xpu, core_id() is used as
* the index. Currently only GPU was supported.
* IsBoundary: Whether to make an out-of-bounds judgment on access to memory.
* When the number of data processed by this block is less than
* NX x NY x blockDim, boundary judgment is required to avoid memory access
* crossing the boundary.
*
* @param:
* @param:
* num: number of columns to be processed by the current block
* dst: The register pointer of the thread, the size is NX * NY.
* src: Data pointer of the current block.
* size: The current block needs to load size data continuously.
*/
*/
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
bool
IsBoundary
=
false
>
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
ReadData
(
T
*
dst
,
const
T
*
__restrict__
src
,
__device__
__forceinline__
void
ReadData
(
T
*
dst
,
const
T
*
__restrict__
src
,
...
@@ -279,28 +276,38 @@ __device__ __forceinline__ void ReadData(T* dst, const T* __restrict__ src,
...
@@ -279,28 +276,38 @@ __device__ __forceinline__ void ReadData(T* dst, const T* __restrict__ src,
}
}
/**
/**
* @brief: read data for broadcast
* @brief Read 2D data from global memory to registers for broadcast.
* @typename:
*
* T : the data type of src
* @template paraments
* NX: the cols of src, dst
* T: The type of data stored in the global memory.
* NY: in this function NY only can be 1
* NX: The number of data columns loaded by each thread.
* BlockSize: the config of this device
* NY: The number of data rows loaded by each thread.
* ShapeSize: the shape size of out. eg in[1, 35], out[32, 35] then shape size
* BlockSize: Identifies the current device thread index method. For GPU,
* is 2
* threadIdx.x is used as the thread index, and for xpu, core_id() is used as
* IsBoundary: whether to make boundary judgment
* the index. Currently only GPU was supported.
* Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
* IsBoundary: Indicates whether to perform block access storage out-of-bounds
* judgment. When the number of data processed by the block is less than
* NX x NY x blockDim, boundary judgment is required to avoid memory access
* crossing the boundary.
*
* @param:
* @param:
* block_offset: data offset of this block, blockDim.x * blockIdx.x * NX;
* dst: The register pointer of the thread, the size is NX * NY.
* config: get the global index in src, attention config was declared in host;
* src: Raw input data pointer of kernel.
* total_num_output: total num of output
* block_offset: Data offset of this block, blockDim.x * blockIdx.x * NX;
* stride_nx: the stride of cols
* config: Calculation configuration of broadcast. It is used to calculate the
* stride_ny: the stride of rows
* coordinate mapping relationship between output data and input data. Please
* refer to the sample code for specific usage.
* total_num_output: Total number of original output.
* stride_nx: The stride of cols.
* stride_ny: The stride of rows.
*/
*/
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
int
ShapeSize
,
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
int
Rank
,
bool
IsBoundary
=
false
>
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
ReadDataBc
(
__device__
__forceinline__
void
ReadDataBc
(
T
*
dst
,
const
T
*
__restrict__
src
,
uint32_t
block_offset
,
T
*
dst
,
const
T
*
__restrict__
src
,
uint32_t
block_offset
,
details
::
BroadcastConfig
<
ShapeSize
>
config
,
int
total_num_output
,
details
::
BroadcastConfig
<
Rank
>
config
,
int
total_num_output
,
int
stride_nx
,
int
stride_n
x
,
int
stride_n
y
)
{
int
stride_ny
)
{
uint32_t
thread_offset
=
block_offset
+
threadIdx
.
x
*
NX
;
uint32_t
thread_offset
=
block_offset
+
threadIdx
.
x
*
NX
;
uint32_t
index_src
=
0
;
uint32_t
index_src
=
0
;
...
@@ -316,7 +323,7 @@ __device__ __forceinline__ void ReadDataBc(
...
@@ -316,7 +323,7 @@ __device__ __forceinline__ void ReadDataBc(
}
}
}
}
#pragma unroll
#pragma unroll
for
(
int
i
=
0
;
i
<
ShapeSize
;
++
i
)
{
for
(
int
i
=
0
;
i
<
Rank
;
++
i
)
{
auto
fast_divmoder
=
config
.
divmoders
[
i
].
Divmod
(
index_output
);
auto
fast_divmoder
=
config
.
divmoders
[
i
].
Divmod
(
index_output
);
index_output
=
fast_divmoder
.
val
[
0
];
index_output
=
fast_divmoder
.
val
[
0
];
index_src
+=
fast_divmoder
.
val
[
1
]
*
config
.
strides
[
i
];
index_src
+=
fast_divmoder
.
val
[
1
]
*
config
.
strides
[
i
];
...
@@ -327,27 +334,41 @@ __device__ __forceinline__ void ReadDataBc(
...
@@ -327,27 +334,41 @@ __device__ __forceinline__ void ReadDataBc(
}
}
/**
/**
* @brief: read data for broadcast
* @brief Read 2D data from global memory to registers for reduce.
* @typename:
*
* T : the data type of src
* @template paraments
* NX: the cols of src, dst
* T: The type of data stored in the global memory.
* NY: in this function NY only can be 1
* NX: The number of data columns loaded by each thread.
* BlockSize: the config of this device
* NY: The number of data rows loaded by each thread.
* ShapeSize: the shape size of out. eg in[1, 35], out[32, 35] then shape size
* BlockSize: Identifies the current device thread index method. For GPU,
* is 2
* threadIdx.x is used as the thread index, and for xpu, core_id() is used as
* IndexCal: get the global index in src, attention config was declared in host;
* the index. Currently only GPU was supported.
* IsBoundary: whether to make boundary judgment
* Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
* IsBoundary: Indicates whether to perform block access storage out-of-bounds
* judgment. When the number of data processed by the block is less than
* NX x NY x blockDim, boundary judgment is required to avoid memory access
* crossing the boundary.
*
* @param:
* @param:
* dst: The register pointer of the thread, the size is NX * NY.
* src: Raw input data pointer of kernel.
* block_offset: Data offset of this block, blockDim.x * blockIdx.x * NX;
* index_cal: Calculation configuration of Reduce. It is used to calculate the
* coordinate mapping relationship between output data and input data. Please
* refer to the sample code for specific usage.
* block_offset: data offset of this block, blockDim.x * blockIdx.x * NX;
* block_offset: data offset of this block, blockDim.x * blockIdx.x * NX;
* index_cal: get the global index in src, attention config was declared in
* index_cal: get the global index in src, attention config was declared in
* host;
* host;
* size_nx: number of columns to be processed by the current block
* size_nx: The current block needs to load size_nx columns of data, this
* size_ny: number of rows to be processed by the current block
* parameter will be used when IsBoundary = true.
* stride_nx: the stride of cols
* size_ny: The current block needs to load size_ny rows of data. This parameter
* stride_ny: the stride of rows
* will be used when IsBoundary = true.
* reduce_last_dim: according to the block split set threadIdx
* stride_nx: The stride of cols.
* stride_ny: The stride of rows.
* reduce_last_dim: Used to indicate whether the dimension of reduce contains
* the lowest dimension.
*/
*/
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
int
ShapeSize
,
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
int
Rank
,
typename
IndexCal
,
bool
IsBoundary
=
false
>
typename
IndexCal
,
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
ReadDataReduce
(
__device__
__forceinline__
void
ReadDataReduce
(
T
*
dst
,
const
T
*
__restrict__
src
,
int
block_offset
,
T
*
dst
,
const
T
*
__restrict__
src
,
int
block_offset
,
...
@@ -397,17 +418,26 @@ __device__ __forceinline__ void ReadDataReduce(
...
@@ -397,17 +418,26 @@ __device__ __forceinline__ void ReadDataReduce(
}
}
/**
/**
* @brief store data from src to dst, src can be 1D data, you should set NY = 1.
* @brief Write 2D data from registers to global memory. When IsBoundary = true
* When boundary judgment is required, you need to set a to true, and a is false
* and (NX % 4 == 0 or Nx % 2 == 0), the data will be vectorized to improve the
* by default.
* data loading efficiency
* @typename:
*
* T : the data type of src
* @template paraments
* NX: the cols of src, dst
* T: The type of data.
* NY: in this function NY only can be 1
* NX: The number of data continuously loaded by each thread.
* BlockSize: the config of this device
* NY: The number of data rows loaded by each thread, only NY = 1 was supported.
* IsBoundary: whether to make boundary judgment
* BlockSize: Identifies the current device thread index method. For GPU,
* threadIdx.x is used as the thread index, and for xpu, core_id() is used as
* the index. Currently only GPU was supported.
* IsBoundary: Indicates whether to perform block access storage out-of-bounds
* judgment. When the number of data processed by the block is less than
* NX x NY x blockDim, boundary judgment is required to avoid memory access
* crossing the boundary.
*
* @param:
* @param:
* num: number of columns to be processed by the current block
* dst: Data pointer of the current block.
* src: The register pointer of the thread, the size is NX * NY.
* size: The current block needs to load size data continuously.
*/
*/
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
bool
IsBoundary
=
false
>
template
<
typename
T
,
int
NX
,
int
NY
,
int
BlockSize
,
bool
IsBoundary
=
false
>
__device__
__forceinline__
void
WriteData
(
T
*
dst
,
T
*
__restrict__
src
,
__device__
__forceinline__
void
WriteData
(
T
*
dst
,
T
*
__restrict__
src
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录