未验证 提交 bb84f0e6 编写于 作者: C Chen Weihang 提交者: GitHub

Add new paddle.save/load APIs (#27331)

* init commit of new save/load

* fix failed unittests

* fix save_load_v2 unittest failed

* fix failed unittest & polish doc

* add tests for coverage

* add more tests & move static apis

* fix example code error

* polish emample code

* fix detail example code problem
上级 19a58b3d
...@@ -145,7 +145,7 @@ def load_dygraph(model_path, config=None): ...@@ -145,7 +145,7 @@ def load_dygraph(model_path, config=None):
.. note:: .. note::
Due to some historical reasons, if you load ``state_dict`` from the saved Due to some historical reasons, if you load ``state_dict`` from the saved
result of `paddle.io.save_inference_model`, the structured variable name result of `paddle.static.save_inference_model`, the structured variable name
will cannot be restored. You need to set the argument `use_structured_name=False` will cannot be restored. You need to set the argument `use_structured_name=False`
when using `Layer.set_state_dict` later. when using `Layer.set_state_dict` later.
...@@ -164,13 +164,14 @@ def load_dygraph(model_path, config=None): ...@@ -164,13 +164,14 @@ def load_dygraph(model_path, config=None):
.. code-block:: python .. code-block:: python
import paddle import paddle
import paddle.fluid as fluid
paddle.disable_static() paddle.disable_static()
emb = paddle.nn.Embedding([10, 10]) emb = paddle.nn.Embedding(10, 10)
state_dict = emb.state_dict() state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy") fluid.save_dygraph(state_dict, "paddle_dy")
scheduler = paddle.optimizer.lr_scheduler.NoamLR( scheduler = paddle.optimizer.lr_scheduler.NoamLR(
d_model=0.01, warmup_steps=100, verbose=True) d_model=0.01, warmup_steps=100, verbose=True)
...@@ -178,10 +179,9 @@ def load_dygraph(model_path, config=None): ...@@ -178,10 +179,9 @@ def load_dygraph(model_path, config=None):
learning_rate=scheduler, learning_rate=scheduler,
parameters=emb.parameters()) parameters=emb.parameters())
state_dict = adam.state_dict() state_dict = adam.state_dict()
paddle.save(state_dict, "paddle_dy") fluid.save_dygraph(state_dict, "paddle_dy")
para_state_dict, opti_state_dict = paddle.load("paddle_dy")
para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
''' '''
# deal with argument `model_path` # deal with argument `model_path`
model_prefix = model_path model_prefix = model_path
...@@ -275,7 +275,7 @@ def load_dygraph(model_path, config=None): ...@@ -275,7 +275,7 @@ def load_dygraph(model_path, config=None):
# If users save all parameters as one file, the [ variable.name -> variable ] # If users save all parameters as one file, the [ variable.name -> variable ]
# mapping info will lost, so users need to give variable list, but users build # mapping info will lost, so users need to give variable list, but users build
# variable list in dygraph mode is difficult, we recommend users to use # variable list in dygraph mode is difficult, we recommend users to use
# paddle.io.load_program_state in this case # paddle.static.load_program_state in this case
# Try to load all the files in the directory in VarBase format, # Try to load all the files in the directory in VarBase format,
# the file name is used as the name of VarBase # the file name is used as the name of VarBase
......
...@@ -231,9 +231,7 @@ def declarative(function=None, input_spec=None): ...@@ -231,9 +231,7 @@ def declarative(function=None, input_spec=None):
class SaveLoadConfig(object): class SaveLoadConfig(object):
""" """
The additional configuration options may be used in function The additional configuration options may be used in function
:ref:`api_imperative_jit_save` that save :ref:`api_imperative_TranslatedLayer` ``paddle.jit.save/load`` and ``paddle.load`` .
or used in function :ref:`api_imperative_jit_load` that
load :ref:`api_imperative_TranslatedLayer` .
Examples: Examples:
1. Using ``SaveLoadConfig`` when saving model 1. Using ``SaveLoadConfig`` when saving model
...@@ -319,7 +317,7 @@ class SaveLoadConfig(object): ...@@ -319,7 +317,7 @@ class SaveLoadConfig(object):
@property @property
def output_spec(self): def output_spec(self):
""" """
Selects the output targets of the saved model ( :ref:`api_imperative_TranslatedLayer` ). Selects the output targets of the saved model ( ``paddle.jit.TranslatedLayer`` ).
By default, all return variables of original Layer's forward function By default, all return variables of original Layer's forward function
are kept as the output of the saved TranslatedLayer. are kept as the output of the saved TranslatedLayer.
...@@ -531,11 +529,14 @@ class SaveLoadConfig(object): ...@@ -531,11 +529,14 @@ class SaveLoadConfig(object):
def separate_params(self): def separate_params(self):
""" """
Configure whether to save the Layer parameters as separete files. Configure whether to save the Layer parameters as separete files.
(In order to be compatible with the behavior of :ref:`api_fluid_io_save_inference_model` ) (In order to be compatible with the behavior of ``paddle.static.save_inference_model`` )
If True, each parameter will be saved to a file separately, the file name is the parameter name, If True, each parameter will be saved to a file separately, the file name is the parameter name,
and the SaveLoadConfig.params_filename configuration will not take effect. Default False. and the SaveLoadConfig.params_filename configuration will not take effect. Default False.
.. note::
Only used for ``paddle.jit.save`` .
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -569,7 +570,7 @@ class SaveLoadConfig(object): ...@@ -569,7 +570,7 @@ class SaveLoadConfig(object):
adam.clear_grad() adam.clear_grad()
model_path = "simplenet.example.model.separate_params" model_path = "simplenet.example.model.separate_params"
config = paddle.jit.SaveLoadConfig() config = paddle.SaveLoadConfig()
config.separate_params = True config.separate_params = True
# saving with configs.separate_params # saving with configs.separate_params
...@@ -599,12 +600,12 @@ class SaveLoadConfig(object): ...@@ -599,12 +600,12 @@ class SaveLoadConfig(object):
def keep_name_table(self): def keep_name_table(self):
""" """
Configures whether keep ``structured_name -> parameter_name`` dict in loaded state dict. Configures whether keep ``structured_name -> parameter_name`` dict in loaded state dict.
This dict is the debugging information saved when call `paddle.save`. This dict is the debugging information saved when call ``paddle.save`` .
It is generally only used for debugging and does not affect the actual training or inference. It is generally only used for debugging and does not affect the actual training or inference.
By default, it will not be retained in `paddle.load` result. Default: False. By default, it will not be retained in ``paddle.load`` result. Default: False.
.. note:: .. note::
Only used for ``paddle.load``. Only used for ``paddle.load`` .
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -616,11 +617,11 @@ class SaveLoadConfig(object): ...@@ -616,11 +617,11 @@ class SaveLoadConfig(object):
linear = paddle.nn.Linear(5, 1) linear = paddle.nn.Linear(5, 1)
state_dict = linear.state_dict() state_dict = linear.state_dict()
paddle.save(state_dict, "paddle_dy") paddle.save(state_dict, "paddle_dy.pdparams")
configs = paddle.SaveLoadConfig() config = paddle.SaveLoadConfig()
configs.keep_name_table = True config.keep_name_table = True
para_state_dict, _ = paddle.load("paddle_dy", configs) para_state_dict = paddle.load("paddle_dy.pdparams", config)
print(para_state_dict) print(para_state_dict)
# the name_table is 'StructuredToParameterName@@' # the name_table is 'StructuredToParameterName@@'
......
...@@ -970,12 +970,12 @@ class Layer(core.Layer): ...@@ -970,12 +970,12 @@ class Layer(core.Layer):
paddle.disable_static() paddle.disable_static()
emb = paddle.nn.Embedding([10, 10]) emb = paddle.nn.Embedding(10, 10)
state_dict = emb.state_dict() state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy") paddle.save(state_dict, "paddle_dy.pdparams")
para_state_dict, _ = paddle.load("paddle_dy") para_state_dict = paddle.load("paddle_dy.pdparams")
emb.set_state_dict(para_state_dict) emb.set_state_dict(para_state_dict)
......
...@@ -610,13 +610,13 @@ class DataParallel(layers.Layer): ...@@ -610,13 +610,13 @@ class DataParallel(layers.Layer):
paddle.disable_static() paddle.disable_static()
emb = paddle.nn.Embedding([10, 10]) emb = paddle.nn.Embedding(10, 10)
emb = fluid.dygraph.DataParallel(emb, strategy) emb = fluid.dygraph.DataParallel(emb, strategy)
state_dict = emb.state_dict() state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy") paddle.save(state_dict, "paddle_dy.pdparams")
para_state_dict, _ = paddle.load("paddle_dy") para_state_dict = paddle.load("paddle_dy.pdparams")
emb.set_state_dict(para_state_dict) emb.set_state_dict(para_state_dict)
......
...@@ -183,22 +183,24 @@ class Optimizer(object): ...@@ -183,22 +183,24 @@ class Optimizer(object):
.. code-block:: python .. code-block:: python
import paddle import paddle
import paddle.fluid as fluid
paddle.disable_static() paddle.disable_static()
emb = paddle.nn.Embedding([10, 10]) emb = paddle.nn.Embedding(10, 10)
state_dict = emb.state_dict() state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy") fluid.save_dygraph(state_dict, "paddle_dy")
adam = paddle.optimizer.Adam(learning_rate=fluid.layers.noam_decay( 100, 10000), scheduler = paddle.optimizer.lr_scheduler.NoamLR(
parameter_list=emb.parameters()) d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
state_dict = adam.state_dict() state_dict = adam.state_dict()
fluid.save_dygraph(state_dict, "paddle_dy")
para_state_dict, opti_state_dict = paddle.load("paddle_dy") para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
adam.set_state_dict(opti_state_dict)
''' '''
from paddle.optimizer.lr_scheduler import _LRScheduler from paddle.optimizer.lr_scheduler import _LRScheduler
if isinstance(self._learning_rate, _LRScheduler): if isinstance(self._learning_rate, _LRScheduler):
......
...@@ -292,7 +292,7 @@ class TestDygraphPtbRnn(unittest.TestCase): ...@@ -292,7 +292,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
np_t = v.numpy() np_t = v.numpy()
self.model_base[k] = np_t self.model_base[k] = np_t
paddle.save(self.state_dict, "./test_dy") fluid.save_dygraph(self.state_dict, "./test_dy")
def testLoadAndSetVarBase(self): def testLoadAndSetVarBase(self):
seed = 90 seed = 90
...@@ -373,7 +373,7 @@ class TestDygraphPtbRnn(unittest.TestCase): ...@@ -373,7 +373,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
if isinstance(adam._learning_rate, LearningRateDecay): if isinstance(adam._learning_rate, LearningRateDecay):
adam._learning_rate.step_num = 0 adam._learning_rate.step_num = 0
para_state_dict, opti_state_dict = paddle.load("./test_dy") para_state_dict, opti_state_dict = fluid.load_dygraph("./test_dy")
adam.set_state_dict(opti_state_dict) adam.set_state_dict(opti_state_dict)
opti_dict = adam.state_dict() opti_dict = adam.state_dict()
...@@ -898,31 +898,31 @@ class TestDygraphPtbRnn(unittest.TestCase): ...@@ -898,31 +898,31 @@ class TestDygraphPtbRnn(unittest.TestCase):
with fluid.dygraph.guard(): with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10]) emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict() state_dict = emb.state_dict()
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy')) fluid.save_dygraph(state_dict, os.path.join('saved_dy', 'emb_dy'))
para_state_dict, opti_state_dict = paddle.load( para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy')) os.path.join('saved_dy', 'emb_dy'))
self.assertTrue(opti_state_dict == None) self.assertTrue(opti_state_dict == None)
para_state_dict, opti_state_dict = paddle.load( para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy.pdparams')) os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict, opti_state_dict = paddle.load( para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy.pdopt')) os.path.join('saved_dy', 'emb_dy.pdopt'))
def test_load_compatible_with_keep_name_table(self): def test_load_compatible_with_keep_name_table(self):
with fluid.dygraph.guard(): with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10]) emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict() state_dict = emb.state_dict()
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy')) fluid.save_dygraph(state_dict, os.path.join('saved_dy', 'emb_dy'))
para_state_dict, opti_state_dict = paddle.load( para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy'), True) os.path.join('saved_dy', 'emb_dy'), True)
self.assertTrue(para_state_dict != None) self.assertTrue(para_state_dict != None)
self.assertTrue(opti_state_dict == None) self.assertTrue(opti_state_dict == None)
para_state_dict, opti_state_dict = paddle.load( para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy'), keep_name_table=True) os.path.join('saved_dy', 'emb_dy'), keep_name_table=True)
self.assertTrue(para_state_dict != None) self.assertTrue(para_state_dict != None)
self.assertTrue(opti_state_dict == None) self.assertTrue(opti_state_dict == None)
......
...@@ -285,7 +285,7 @@ class TestDygraphPtbRnn(unittest.TestCase): ...@@ -285,7 +285,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
else: else:
self.base_opti[k] = v self.base_opti[k] = v
fluid.save_dygraph(self.opti_dict, "./test_dy_v2") paddle.save(self.opti_dict, "./test_dy_v2.pdopt")
self.state_dict = ptb_model.state_dict() self.state_dict = ptb_model.state_dict()
...@@ -294,7 +294,7 @@ class TestDygraphPtbRnn(unittest.TestCase): ...@@ -294,7 +294,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
np_t = v.numpy() np_t = v.numpy()
self.model_base[k] = np_t self.model_base[k] = np_t
paddle.save(self.state_dict, "./test_dy_v2") paddle.save(self.state_dict, "./test_dy_v2.pdparams")
def testLoadAndSetVarBase(self): def testLoadAndSetVarBase(self):
self.setUp() self.setUp()
...@@ -374,7 +374,8 @@ class TestDygraphPtbRnn(unittest.TestCase): ...@@ -374,7 +374,8 @@ class TestDygraphPtbRnn(unittest.TestCase):
self.assertTrue(np.sum(np.abs(v.numpy())) == 0) self.assertTrue(np.sum(np.abs(v.numpy())) == 0)
para_state_dict, opti_state_dict = paddle.load("./test_dy_v2") para_state_dict = paddle.load("./test_dy_v2.pdparams")
opti_state_dict = paddle.load("./test_dy_v2.pdopt")
adam.set_state_dict(opti_state_dict) adam.set_state_dict(opti_state_dict)
opti_dict = adam.state_dict() opti_dict = adam.state_dict()
...@@ -905,26 +906,19 @@ class TestDygraphPtbRnn(unittest.TestCase): ...@@ -905,26 +906,19 @@ class TestDygraphPtbRnn(unittest.TestCase):
with fluid.dygraph.guard(): with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10]) emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict() state_dict = emb.state_dict()
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy')) paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict, opti_state_dict = paddle.load( para_state_dict = paddle.load(
os.path.join('saved_dy', 'emb_dy'))
self.assertTrue(opti_state_dict == None)
para_state_dict, opti_state_dict = paddle.load(
os.path.join('saved_dy', 'emb_dy.pdparams')) os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict, opti_state_dict = paddle.load(
os.path.join('saved_dy', 'emb_dy.pdopt'))
def test_no_state_in_input_dict(self): def test_no_state_in_input_dict(self):
with fluid.dygraph.guard(): with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10]) emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict() state_dict = emb.state_dict()
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy')) paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict, _ = paddle.load(os.path.join('saved_dy', 'emb_dy')) para_state_dict = paddle.load(
os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict.pop('weight') para_state_dict.pop('weight')
emb.set_state_dict(para_state_dict) emb.set_state_dict(para_state_dict)
...@@ -933,9 +927,10 @@ class TestDygraphPtbRnn(unittest.TestCase): ...@@ -933,9 +927,10 @@ class TestDygraphPtbRnn(unittest.TestCase):
with fluid.dygraph.guard(): with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10]) emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict() state_dict = emb.state_dict()
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy')) paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict, _ = paddle.load(os.path.join('saved_dy', 'emb_dy')) para_state_dict = paddle.load(
os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict['weight'] = np.expand_dims( para_state_dict['weight'] = np.expand_dims(
para_state_dict['weight'], axis=-1) para_state_dict['weight'], axis=-1)
......
...@@ -124,52 +124,67 @@ class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase): ...@@ -124,52 +124,67 @@ class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase):
self.params_filename = None self.params_filename = None
orig_param_dict = self.train_and_save_model() orig_param_dict = self.train_and_save_model()
load_param_dict, _ = paddle.load(self.save_dirname) load_param_dict, _ = fluid.load_dygraph(self.save_dirname)
self.check_load_state_dict(orig_param_dict, load_param_dict) self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
def test_load_with_model_filename(self): def test_load_with_model_filename(self):
self.save_dirname = "static_mnist.load_state_dict.model_filename" self.save_dirname = "static_mnist.load_state_dict.model_filename"
self.model_filename = "static_mnist.model" self.model_filename = "static_mnist.model"
self.params_filename = None self.params_filename = None
orig_param_dict = self.train_and_save_model() orig_param_dict = self.train_and_save_model()
configs = paddle.SaveLoadConfig() config = paddle.SaveLoadConfig()
configs.separate_params = True config.separate_params = True
configs.model_filename = self.model_filename config.model_filename = self.model_filename
load_param_dict, _ = paddle.load(self.save_dirname, configs) load_param_dict, _ = fluid.load_dygraph(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, load_param_dict) self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
def test_load_with_param_filename(self): def test_load_with_param_filename(self):
self.save_dirname = "static_mnist.load_state_dict.param_filename" self.save_dirname = "static_mnist.load_state_dict.param_filename"
self.model_filename = None self.model_filename = None
self.params_filename = "static_mnist.params" self.params_filename = "static_mnist.params"
orig_param_dict = self.train_and_save_model() orig_param_dict = self.train_and_save_model()
configs = paddle.SaveLoadConfig() config = paddle.SaveLoadConfig()
configs.params_filename = self.params_filename config.params_filename = self.params_filename
load_param_dict, _ = paddle.load(self.save_dirname, configs) load_param_dict, _ = fluid.load_dygraph(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, load_param_dict) self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
def test_load_with_model_and_param_filename(self): def test_load_with_model_and_param_filename(self):
self.save_dirname = "static_mnist.load_state_dict.model_and_param_filename" self.save_dirname = "static_mnist.load_state_dict.model_and_param_filename"
self.model_filename = "static_mnist.model" self.model_filename = "static_mnist.model"
self.params_filename = "static_mnist.params" self.params_filename = "static_mnist.params"
orig_param_dict = self.train_and_save_model() orig_param_dict = self.train_and_save_model()
configs = paddle.SaveLoadConfig() config = paddle.SaveLoadConfig()
configs.params_filename = self.params_filename config.params_filename = self.params_filename
configs.model_filename = self.model_filename config.model_filename = self.model_filename
load_param_dict, _ = paddle.load(self.save_dirname, configs) load_param_dict, _ = fluid.load_dygraph(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, load_param_dict) self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
def test_load_state_dict_from_save_params(self): def test_load_state_dict_from_save_params(self):
self.save_dirname = "static_mnist.load_state_dict.save_params" self.save_dirname = "static_mnist.load_state_dict.save_params"
self.params_filename = None self.params_filename = None
orig_param_dict = self.train_and_save_model(True) orig_param_dict = self.train_and_save_model(True)
load_param_dict, _ = paddle.load(self.save_dirname) load_param_dict, _ = fluid.load_dygraph(self.save_dirname)
self.check_load_state_dict(orig_param_dict, load_param_dict) self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
SEED = 10
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
np.random.seed(SEED)
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
def forward(self, x):
return self._linear(x)
def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
class TestSaveLoad(unittest.TestCase):
def setUp(self):
# enable dygraph mode
self.place = paddle.CPUPlace()
paddle.disable_static(self.place)
# config seed
paddle.manual_seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
def build_and_train_model(self):
# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(
dataset,
places=self.place,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
# train
train(layer, loader, loss_fn, adam)
return layer, adam
def check_load_state_dict(self, orig_dict, load_dict):
for var_name, value in orig_dict.items():
self.assertTrue(np.array_equal(value.numpy(), load_dict[var_name]))
def test_save_load(self):
layer, opt = self.build_and_train_model()
# save
layer_save_path = "linear.pdparams"
opt_save_path = "linear.pdopt"
layer_state_dict = layer.state_dict()
opt_state_dict = opt.state_dict()
paddle.save(layer_state_dict, layer_save_path)
paddle.save(opt_state_dict, opt_save_path)
# load
load_layer_state_dict = paddle.load(layer_save_path)
load_opt_state_dict = paddle.load(opt_save_path)
self.check_load_state_dict(layer_state_dict, load_layer_state_dict)
self.check_load_state_dict(opt_state_dict, load_opt_state_dict)
# test save load in static mode
paddle.enable_static()
static_save_path = "static_mode_test/linear.pdparams"
paddle.save(layer_state_dict, static_save_path)
load_static_state_dict = paddle.load(static_save_path)
self.check_load_state_dict(layer_state_dict, load_static_state_dict)
# error test cases, some tests relay base test above
# 1. test save obj not dict error
test_list = [1, 2, 3]
with self.assertRaises(NotImplementedError):
paddle.save(test_list, "not_dict_error_path")
# 2. test save path format error
with self.assertRaises(ValueError):
paddle.save(layer_state_dict, "linear.model/")
# 3. test load path not exist error
with self.assertRaises(ValueError):
paddle.load("linear.params")
# 4. test load old save path error
with self.assertRaises(ValueError):
paddle.load("linear")
if __name__ == '__main__':
unittest.main()
...@@ -48,8 +48,8 @@ from paddle.fluid import core #DEFINE_ALIAS ...@@ -48,8 +48,8 @@ from paddle.fluid import core #DEFINE_ALIAS
from ..fluid.dygraph.base import no_grad #DEFINE_ALIAS from ..fluid.dygraph.base import no_grad #DEFINE_ALIAS
from ..fluid.dygraph.base import to_variable #DEFINE_ALIAS from ..fluid.dygraph.base import to_variable #DEFINE_ALIAS
from ..fluid.dygraph.base import grad #DEFINE_ALIAS from ..fluid.dygraph.base import grad #DEFINE_ALIAS
from ..fluid.dygraph.checkpoint import load_dygraph as load #DEFINE_ALIAS from .io import save
from ..fluid.dygraph.checkpoint import save_dygraph as save #DEFINE_ALIAS from .io import load
from ..fluid.dygraph.jit import SaveLoadConfig #DEFINE_ALIAS from ..fluid.dygraph.jit import SaveLoadConfig #DEFINE_ALIAS
from ..fluid.dygraph.parallel import DataParallel #DEFINE_ALIAS from ..fluid.dygraph.parallel import DataParallel #DEFINE_ALIAS
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import collections
import pickle
import six
import warnings
import paddle
# deprecated module import
from paddle import fluid
from paddle.fluid import core
from paddle.fluid.framework import Variable, _varbase_creator, _dygraph_tracer
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers, EXTRA_VAR_INFO_FILENAME
__all__ = [
'save',
'load',
]
def _build_saved_state_dict(state_dict):
save_dict = {}
name_table = {}
for key, value in state_dict.items():
if isinstance(value, (Variable, core.VarBase)):
save_dict[key] = value.numpy()
name_table[key] = value.name
else:
save_dict[key] = value
save_dict["StructuredToParameterName@@"] = name_table
return save_dict
def _load_state_dict_from_save_inference_model(model_path, config):
# 1. load program desc & construct _ProgramHolder
programs = _construct_program_holders(model_path, config.model_filename)
# 2. load layer parameters & buffers
with fluid.dygraph.guard():
persistable_var_dict = _construct_params_and_buffers(
model_path,
programs,
config.separate_params,
config.params_filename,
append_suffix=False)
# 3. construct state_dict
load_param_dict = dict()
for var_name in persistable_var_dict:
load_param_dict[var_name] = persistable_var_dict[var_name].numpy()
# if __variables.info__ exists, we can recover structured_name
var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
if os.path.exists(var_info_path):
with open(var_info_path, 'rb') as f:
extra_var_info = pickle.load(f)
structured_para_dict = dict()
for var_name in load_param_dict:
structured_name = extra_var_info[var_name].get(
'structured_name', None)
assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
structured_para_dict[structured_name] = load_param_dict[
var_name]
load_param_dict = structured_para_dict
return load_param_dict
def _load_state_dict_from_save_params(model_path):
# Try to load all the files in the directory in VarBase format,
# the file name is used as the name of VarBase
load_var_list = []
# 1. load file names
var_name_list = []
for root, _, files in os.walk(model_path):
for filename in files:
file_path = os.path.join(root, filename)
tmp_var_name = os.path.relpath(file_path, model_path)
var_name = tmp_var_name.replace("\\", "/")
var_name_list.append(var_name)
# 2. create and load VarBase
with fluid.dygraph.guard():
for name in var_name_list:
new_var = _varbase_creator(name=name, persistable=True)
_dygraph_tracer().trace_op(
type='load',
inputs={},
outputs={'Out': new_var},
attrs={'file_path': os.path.join(model_path, name)})
load_var_list.append(new_var)
# 3. construct state_dict
load_param_dict = dict()
for var in load_var_list:
load_param_dict[var.name] = var.numpy()
return load_param_dict
def save(obj, path):
'''
Save an object to the specified path.
.. note::
Now only supports save ``state_dict`` of Layer or Optimizer.
Args:
obj(Object) : The object to be saved.
path(str) : The path of the object to be saved.
If saved in the current directory, the input path string will be used as the file name.
Returns:
None
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding(10, 10)
layer_state_dict = emb.state_dict()
paddle.save(layer_state_dict, "emb.pdparams")
scheduler = paddle.optimizer.lr_scheduler.NoamLR(
d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
opt_state_dict = adam.state_dict()
paddle.save(opt_state_dict, "adam.pdopt")
'''
# 1. input check
if not isinstance(obj, dict):
raise NotImplementedError(
"Now only supports save state_dict of Layer or Optimizer, "
"expect dict, but received %s." % type(obj))
if len(obj) == 0:
warnings.warn("The input state dict is empty, no need to save.")
filename = os.path.basename(path)
if filename == "":
raise ValueError("The input path MUST be format of dirname/filename "
"[dirname\\filename in Windows system], but received "
"filename is empty string.")
# 2. save object
dirname = os.path.dirname(path)
if dirname and not os.path.exists(dirname):
os.makedirs(dirname)
# TODO(chenweihang): supports save other object
saved_obj = _build_saved_state_dict(obj)
with open(path, 'wb') as f:
pickle.dump(saved_obj, f, protocol=2)
def load(path, config=None):
'''
Load an object can be used in paddle from specified path.
.. note::
Now only supports load ``state_dict`` of Layer or Optimizer.
.. note::
``paddle.load`` supports loading ``state_dict`` from the result of several
paddle1.x save APIs in static mode, but due to some historical reasons,
if you load ``state_dict`` from the saved result of
``paddle.static.save_inference_model/paddle.fluid.io.save_params/paddle.fluid.io.save_persistables`` ,
the structured variable name will cannot be restored. You need to set the argument
``use_structured_name=False`` when using ``Layer.set_state_dict`` later.
Args:
path(str) : The path to load the target object. Generally, the path is the target
file path, when compatible with loading the saved results of
``paddle.jit.save/paddle.static.save_inference_model`` , the path is a directory.
config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig`
object that specifies additional configuration options, these options
are for compatibility with ``paddle.jit.save/paddle.static.save_inference_model``
formats. Default None.
Returns:
Object(Object): a target object can be used in paddle
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding(10, 10)
layer_state_dict = emb.state_dict()
paddle.save(layer_state_dict, "emb.pdparams")
scheduler = paddle.optimizer.lr_scheduler.NoamLR(
d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
opt_state_dict = adam.state_dict()
paddle.save(opt_state_dict, "adam.pdopt")
load_layer_state_dict = paddle.load("emb.pdparams")
load_opt_state_dict = paddle.load("adam.pdopt")
'''
# 1. input check
if not os.path.exists(path):
error_msg = "The path `%s` does not exist."
# if current path is a prefix, and the path.pdparams or path.pdopt
# is exist, users may want use `paddle.load` load the result of
# `fluid.save_dygraph`, we raise error here for users
params_file_path = path + ".pdparams"
opti_file_path = path + ".pdopt"
if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
error_msg += " If you want to load the results saved by `fluid.save_dygraph`, " \
"please specify the full file name, not just the file name prefix. For " \
"example, it should be written as `paddle.load('model.pdparams')` instead of " \
"`paddle.load('model')`."
raise ValueError(error_msg % path)
if config is None:
config = paddle.SaveLoadConfig()
# 2. load target
load_result = None
if os.path.isfile(path):
# we think path is file means this file is created by paddle.save
with open(path, 'rb') as f:
load_result = pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
del load_result["StructuredToParameterName@@"]
elif os.path.isdir(path):
# we think path is directory means compatible with loading
# store results of static mode related save APIs
# check whether model file exists
if config.model_filename is None:
model_filename = '__model__'
else:
model_filename = config.model_filename
model_file_path = os.path.join(path, model_filename)
if os.path.exists(model_file_path):
# Load state dict by `jit.save/io.save_inference_model` save format
# NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
# The model saved by `save_inference_model` does not completely correspond to
# the information required by the `state_dict` under the dygraph.
# `save_inference_model` not save structured name, we need to remind
# the user to configure the `use_structured_name` argument when `set_state_dict`
# NOTE(chenweihang): `jit.save` doesn't save optimizer state
load_result = _load_state_dict_from_save_inference_model(path,
config)
else:
# load state dict by `io.save_params/persistables` save format
# TODO(chenweihang): [ Now only supports loading parameters seperately ]
# If users save all parameters as one file, the [ variable.name -> variable ]
# mapping info will lost, so users need to give variable list, but users build
# variable list in dygraph mode is difficult, we recommend users to use
# paddle.static.load_program_state in this case
load_result = _load_state_dict_from_save_params(path)
else:
raise ValueError(
"Unsupported path format, now only supports file or directory.")
return load_result
...@@ -25,16 +25,8 @@ __all__ = [ ...@@ -25,16 +25,8 @@ __all__ = [
'Sampler', 'Sampler',
'SequenceSampler', 'SequenceSampler',
'RandomSampler', 'RandomSampler',
'load',
'save',
'load_program_state',
'set_program_state',
'load_inference_model',
'save_inference_model',
] ]
from ..fluid.io import DataLoader from ..fluid.io import DataLoader
from ..fluid.dataloader import Dataset, IterableDataset, BatchSampler, get_worker_info, \ from ..fluid.dataloader import Dataset, IterableDataset, BatchSampler, get_worker_info, \
TensorDataset, Sampler, SequenceSampler, RandomSampler, DistributedBatchSampler TensorDataset, Sampler, SequenceSampler, RandomSampler, DistributedBatchSampler
from ..fluid.io import load, save, load_program_state, set_program_state, \
load_inference_model, save_inference_model, batch
...@@ -17,8 +17,9 @@ __all__ = [ ...@@ -17,8 +17,9 @@ __all__ = [
'append_backward', 'gradients', 'Executor', 'global_scope', 'scope_guard', 'append_backward', 'gradients', 'Executor', 'global_scope', 'scope_guard',
'BuildStrategy', 'CompiledProgram', 'Print', 'py_func', 'ExecutionStrategy', 'BuildStrategy', 'CompiledProgram', 'Print', 'py_func', 'ExecutionStrategy',
'name_scope', 'ParallelExecutor', 'program_guard', 'WeightNormParamAttr', 'name_scope', 'ParallelExecutor', 'program_guard', 'WeightNormParamAttr',
'default_main_program', 'default_startup_program', 'Program', 'save', 'default_main_program', 'default_startup_program', 'Program', 'data',
'load', 'data', 'InputSpec' 'InputSpec', 'save', 'load', 'save_inference_model', 'load_inference_model',
'load_program_state', 'set_program_state'
] ]
from . import nn from . import nn
...@@ -41,5 +42,9 @@ from ..fluid.layers.control_flow import Print #DEFINE_ALIAS ...@@ -41,5 +42,9 @@ from ..fluid.layers.control_flow import Print #DEFINE_ALIAS
from ..fluid.layers.nn import py_func #DEFINE_ALIAS from ..fluid.layers.nn import py_func #DEFINE_ALIAS
from ..fluid.parallel_executor import ParallelExecutor #DEFINE_ALIAS from ..fluid.parallel_executor import ParallelExecutor #DEFINE_ALIAS
from ..fluid.param_attr import WeightNormParamAttr #DEFINE_ALIAS from ..fluid.param_attr import WeightNormParamAttr #DEFINE_ALIAS
from ..tensor.io import save #DEFINE_ALIAS from ..fluid.io import save #DEFINE_ALIAS
from ..tensor.io import load #DEFINE_ALIAS from ..fluid.io import load #DEFINE_ALIAS
from ..fluid.io import save_inference_model #DEFINE_ALIAS
from ..fluid.io import load_inference_model #DEFINE_ALIAS
from ..fluid.io import load_program_state #DEFINE_ALIAS
from ..fluid.io import set_program_state #DEFINE_ALIAS
...@@ -42,8 +42,6 @@ from .creation import tril #DEFINE_ALIAS ...@@ -42,8 +42,6 @@ from .creation import tril #DEFINE_ALIAS
from .creation import meshgrid #DEFINE_ALIAS from .creation import meshgrid #DEFINE_ALIAS
from .creation import empty #DEFINE_ALIAS from .creation import empty #DEFINE_ALIAS
from .creation import empty_like #DEFINE_ALIAS from .creation import empty_like #DEFINE_ALIAS
from .io import save #DEFINE_ALIAS
from .io import load #DEFINE_ALIAS
from .linalg import matmul #DEFINE_ALIAS from .linalg import matmul #DEFINE_ALIAS
from .linalg import dot #DEFINE_ALIAS from .linalg import dot #DEFINE_ALIAS
# from .linalg import einsum #DEFINE_ALIAS # from .linalg import einsum #DEFINE_ALIAS
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define functions to save & load a tensor
from ..fluid import save #DEFINE_ALIAS
from ..fluid.io import load #DEFINE_ALIAS
__all__ = ['save', 'load']
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册