Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
babd26ee
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
babd26ee
编写于
12月 20, 2022
作者:
W
wenbin
提交者:
GitHub
12月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
groupnorm nhwc8 (#49160)
* gn nhwc8 * remove error
上级
6439e91d
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
405 addition
and
18 deletion
+405
-18
paddle/fluid/inference/tensorrt/plugin/common/groupNormPluginCommon.h
.../inference/tensorrt/plugin/common/groupNormPluginCommon.h
+75
-0
paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.cu
...e/fluid/inference/tensorrt/plugin/group_norm_op_plugin.cu
+327
-18
paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h
...le/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h
+3
-0
未找到文件。
paddle/fluid/inference/tensorrt/plugin/common/groupNormPluginCommon.h
0 → 100644
浏览文件 @
babd26ee
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cuda.h>
#include <cuda_fp16.h>
#include <stdint.h>
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
struct
GroupNormNHWCParams
{
// The output buffer. Layout NHWC.
__half
*
dst
;
// The input buffer. Layout NHWC.
__half
const
*
srcX
;
// The input buffer. Layout NHWC.
__half
const
*
srcY
;
// The gamma scaling factor.
void
const
*
gamma
;
// The beta term to add in GN.
void
const
*
beta
;
// The temporary buffer to do the global parallel reduction. Size:
// BLOCKS_PER_BATCH x C x 2.
float
*
redBuffer
;
// The number of instances in the batch.
int32_t
n
;
// The height and width of each activation map.
int32_t
h
,
w
;
// The number of channels.
int32_t
c
;
// The number of groups.
int32_t
groups
;
// Do we apply the Swish activation function?
bool
withSwish
;
// Precomputed values and parameters to control the execution of the kernels.
// The number of activations per instance (h * w) and the number of
// activations per block.
int32_t
hw
,
hwPerBlock
;
// The number of channels per group and blocks per activation in the C
// dimension.
int32_t
cPerBlock
,
cPerGroup
;
// The precomputed stride between instances.
int32_t
hwc
;
// The inverse of hwc in floats (to compute mean/var).
float
invHWC
;
// The precomputed number of groups per block.
int32_t
groupsPerBlock
;
// epsilon, Constant for numerical stability
float
eps
;
};
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.cu
浏览文件 @
babd26ee
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION &
AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -15,6 +17,7 @@ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h"
#include "paddle/phi/kernels/group_norm_kernel.h"
#include <cub/cub.cuh>
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/kernels/funcs/math_function.h"
...
...
@@ -25,6 +28,262 @@ namespace tensorrt {
namespace
plugin
{
using
DataLayout
=
phi
::
DataLayout
;
static
inline
int32_t
divUp
(
int32_t
m
,
int32_t
n
)
{
return
(
m
+
n
-
1
)
/
n
;
}
static
inline
__device__
__host__
float
sigmoid
(
float
x
)
{
return
1.
F
/
(
1.
F
+
expf
(
-
x
));
}
struct
GroupSums
{
// Is it the 1st element of the group?
int32_t
flag
;
// The sum.
float
sum
;
// The sum of squares.
float
sumSq
;
};
struct
GroupSumsOp
{
inline
__device__
GroupSums
operator
()(
GroupSums
const
&
a
,
GroupSums
const
&
b
)
{
GroupSums
dst
;
dst
.
sum
=
b
.
flag
?
b
.
sum
:
(
a
.
sum
+
b
.
sum
);
dst
.
sumSq
=
b
.
flag
?
b
.
sumSq
:
(
a
.
sumSq
+
b
.
sumSq
);
dst
.
flag
=
a
.
flag
+
b
.
flag
;
return
dst
;
}
};
static
int32_t
findMaxDivisor
(
int32_t
n
,
int32_t
maxAllowedDivisor
)
{
int32_t
maxDivisor
=
-
1
;
for
(
int32_t
i
=
1
;
i
<=
std
::
sqrt
(
n
);
i
++
)
{
if
(
n
%
i
==
0
)
{
int32_t
divisor1
=
n
/
i
;
int32_t
divisor2
=
i
;
if
(
divisor1
>
maxDivisor
&&
divisor1
<
maxAllowedDivisor
)
{
maxDivisor
=
divisor1
;
}
if
(
divisor2
>
maxDivisor
&&
divisor2
<
maxAllowedDivisor
)
{
maxDivisor
=
divisor2
;
}
}
}
return
maxDivisor
;
}
template
<
int
tTHREADS_PER_BLOCK
>
__global__
void
groupNormNHWCSumKernel
(
const
GroupNormNHWCParams
params
)
{
// The object in charge of doing the sums for the different blocks.
typedef
cub
::
BlockScan
<
GroupSums
,
tTHREADS_PER_BLOCK
>
BlockScan
;
// Allocate shared memory for BlockScan.
__shared__
typename
BlockScan
::
TempStorage
tempStorage
;
// Allocate shared memory for the groups. We could reduce the amount of shared
// memory reserved.
__shared__
float2
smem
[
tTHREADS_PER_BLOCK
];
// The instance in the batch.
int32_t
ni
=
blockIdx
.
z
;
// The channel loaded by that thread (2 channels per thread for F16x2).
int32_t
ci
=
blockIdx
.
x
*
params
.
cPerBlock
+
threadIdx
.
x
*
2
;
// The first activation loaded by that block.
int32_t
hwBegin
=
blockIdx
.
y
*
params
.
hwPerBlock
;
// The last activation loaded by that block.
int32_t
hwEnd
=
min
(
hwBegin
+
params
.
hwPerBlock
,
params
.
hw
);
// The sums.
float
sum
=
0.
F
;
float
sumSq
=
0.
F
;
// Iterate over the activations to compute the sums.
for
(
int32_t
hwi
=
hwBegin
;
hwi
<
hwEnd
;
++
hwi
)
{
// The offset.
int64_t
offset
=
static_cast
<
int64_t
>
(
ni
)
*
params
.
hwc
+
static_cast
<
int64_t
>
(
hwi
)
*
params
.
c
+
ci
;
// Fetch two channels per thread.
__half2
h2
(
0
,
0
);
if
(
ci
<
params
.
c
)
{
h2
=
*
reinterpret_cast
<
__half2
const
*>
(
&
params
.
srcX
[
offset
]);
}
// Extract the two half values.
float2
f2
=
__half22float2
(
h2
);
// Update the sum.
sum
+=
f2
.
x
+
f2
.
y
;
// Update the sum of squares.
sumSq
+=
f2
.
x
*
f2
.
x
+
f2
.
y
*
f2
.
y
;
}
// The group that thread works on and the channel in the group (modulus).
int32_t
gi
=
threadIdx
.
x
*
2
/
params
.
cPerGroup
;
int32_t
cj
=
threadIdx
.
x
*
2
-
params
.
cPerGroup
*
gi
;
// The data for the summations.
GroupSums
inp
{
cj
==
0
?
1
:
0
,
sum
,
sumSq
};
// Do the segmented scan.
GroupSums
out
;
BlockScan
(
tempStorage
).
InclusiveScan
(
inp
,
out
,
GroupSumsOp
());
// Store the results for the groups in shared memory (to produce coalesced
// stores later).
// 2 channels per thread
if
(
cj
==
params
.
cPerGroup
-
2
)
{
smem
[
gi
]
=
make_float2
(
out
.
sum
,
out
.
sumSq
);
}
// Make sure the data is in shared memory.
__syncthreads
();
// The global group index.
int32_t
gj
=
blockIdx
.
x
*
params
.
groupsPerBlock
+
threadIdx
.
x
;
// Threads that have nothing left to do, exit.
if
(
threadIdx
.
x
>=
params
.
groupsPerBlock
||
gj
>=
params
.
groups
)
{
return
;
}
// The first threads (those storing to global memory, load the values).
float2
sums
=
smem
[
threadIdx
.
x
];
// Store to global memory.
atomicAdd
(
&
params
.
redBuffer
[(
2
*
ni
+
0
)
*
params
.
groups
+
gj
],
sums
.
x
);
atomicAdd
(
&
params
.
redBuffer
[(
2
*
ni
+
1
)
*
params
.
groups
+
gj
],
sums
.
y
);
}
void
groupNormNHWCSum
(
const
GroupNormNHWCParams
&
params
,
cudaStream_t
stream
)
{
dim3
grid
;
// The number of blocks to compute all the channels.
grid
.
x
=
params
.
c
/
params
.
cPerBlock
;
// The number of blocks to compute all the activations in a given instance.
grid
.
y
=
divUp
(
params
.
hw
,
params
.
hwPerBlock
);
// The number of instances.
grid
.
z
=
params
.
n
;
switch
(
params
.
cPerBlock
)
{
case
320
:
groupNormNHWCSumKernel
<
160
><<<
grid
,
160
,
0
,
stream
>>>
(
params
);
break
;
case
480
:
groupNormNHWCSumKernel
<
256
><<<
grid
,
256
,
0
,
stream
>>>
(
params
);
break
;
case
256
:
groupNormNHWCSumKernel
<
128
><<<
grid
,
128
,
0
,
stream
>>>
(
params
);
break
;
case
128
:
groupNormNHWCSumKernel
<
64
><<<
grid
,
64
,
0
,
stream
>>>
(
params
);
break
;
}
}
template
<
int
tTHREADS_PER_BLOCK
>
__global__
void
groupNormNHWCScaleKernel
(
const
GroupNormNHWCParams
params
)
{
// The instance in the batch.
int32_t
ni
=
blockIdx
.
z
;
// The channel loaded by that thread (2 channels per thread for F16x2).
int32_t
ci
=
blockIdx
.
x
*
params
.
cPerBlock
+
threadIdx
.
x
*
2
;
// The group that thread works on and the channel in the group (modulus).
int32_t
gi
=
ci
/
params
.
cPerGroup
;
// Load the sum and sum of squares for the group.
float
sum
=
0.
F
,
sumSq
=
0.
F
;
if
(
gi
<
params
.
groups
)
{
sum
=
params
.
redBuffer
[(
2
*
ni
+
0
)
*
params
.
groups
+
gi
];
sumSq
=
params
.
redBuffer
[(
2
*
ni
+
1
)
*
params
.
groups
+
gi
];
}
// Load gamma/beta.
float2
gammaF2
,
betaF2
;
if
(
ci
<
params
.
c
)
{
gammaF2
=
__half22float2
(
*
reinterpret_cast
<
half2
const
*>
(
reinterpret_cast
<
half
const
*>
(
params
.
gamma
)
+
ci
));
betaF2
=
__half22float2
(
*
reinterpret_cast
<
half2
const
*>
(
reinterpret_cast
<
half
const
*>
(
params
.
beta
)
+
ci
));
}
// Compute the mean.
float
mean
=
sum
*
params
.
invHWC
;
// Compute the variance.
float
var
=
sumSq
*
params
.
invHWC
-
(
mean
*
mean
);
// Compute the inverse of the stddev.
float
invStdDev
=
rsqrtf
(
var
+
params
.
eps
);
// The first activation loaded by that block.
int32_t
hwBegin
=
blockIdx
.
y
*
params
.
hwPerBlock
;
// The last activation loaded by that block.
int32_t
hwEnd
=
min
(
hwBegin
+
params
.
hwPerBlock
,
params
.
hw
);
// Iterate over the activations to compute the sums.
for
(
int32_t
hwi
=
hwBegin
;
hwi
<
hwEnd
;
++
hwi
)
{
// The src/dst offset.
int64_t
offset
=
(
int64_t
)
ni
*
params
.
hwc
+
hwi
*
params
.
c
+
ci
;
// Fetch two channels per thread.
__half2
h2
(
0
,
0
);
if
(
ci
<
params
.
c
)
{
h2
=
*
reinterpret_cast
<
__half2
const
*>
(
&
params
.
srcX
[
offset
]);
}
// Extract the two half values.
float2
f2
=
__half22float2
(
h2
);
// Normalize the channels.
f2
.
x
=
(
f2
.
x
-
mean
)
*
invStdDev
;
f2
.
y
=
(
f2
.
y
-
mean
)
*
invStdDev
;
// Scale by gamma and add beta.
f2
.
x
=
gammaF2
.
x
*
f2
.
x
+
betaF2
.
x
;
f2
.
y
=
gammaF2
.
y
*
f2
.
y
+
betaF2
.
y
;
// Apply Swish if needed.
if
(
params
.
withSwish
)
{
f2
.
x
=
f2
.
x
*
sigmoid
(
f2
.
x
);
f2
.
y
=
f2
.
y
*
sigmoid
(
f2
.
y
);
}
// Store the scaled values.
if
(
ci
<
params
.
c
)
{
*
reinterpret_cast
<
__half2
*>
(
&
params
.
dst
[
offset
])
=
__float22half2_rn
(
f2
);
}
}
}
void
groupNormNHWCScale
(
const
GroupNormNHWCParams
&
params
,
cudaStream_t
stream
)
{
dim3
grid
;
// The number of blocks to compute all the channels.
grid
.
x
=
params
.
c
/
params
.
cPerBlock
;
// The number of blocks to compute all the activations in a given instance.
grid
.
y
=
divUp
(
params
.
hw
,
params
.
hwPerBlock
);
// The number of instances.
grid
.
z
=
params
.
n
;
switch
(
params
.
cPerBlock
)
{
case
320
:
groupNormNHWCScaleKernel
<
160
><<<
grid
,
160
,
0
,
stream
>>>
(
params
);
break
;
case
480
:
groupNormNHWCScaleKernel
<
256
><<<
grid
,
256
,
0
,
stream
>>>
(
params
);
break
;
case
256
:
groupNormNHWCScaleKernel
<
128
><<<
grid
,
128
,
0
,
stream
>>>
(
params
);
break
;
case
128
:
groupNormNHWCScaleKernel
<
64
><<<
grid
,
64
,
0
,
stream
>>>
(
params
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The function groupNormNHWCScale of "
"GroupNorm TRT Plugin encounter error"
));
}
}
int
GroupNormPlugin
::
initialize
()
TRT_NOEXCEPT
{
if
(
!
with_fp16_
)
{
// if use fp32
...
...
@@ -188,7 +447,8 @@ bool GroupNormPluginDynamic::supportsFormatCombination(
if
(
pos
==
0
)
{
if
(
with_fp16_
)
{
return
((
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
PluginFormat
::
kLINEAR
));
(
in
.
format
==
nvinfer1
::
PluginFormat
::
kLINEAR
||
in
.
format
==
nvinfer1
::
PluginFormat
::
kHWC8
));
}
else
{
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
...
...
@@ -275,9 +535,7 @@ int GroupNormPluginDynamic::enqueue(
int
C
=
input_shape
[
1
];
int
image_size
=
input_shape
[
2
]
*
input_shape
[
3
];
int
batchSize
=
input_shape
[
0
];
std
::
vector
<
int64_t
>
batched_mean_shape
=
{
batchSize
*
mean_shape_
[
0
]};
std
::
vector
<
int64_t
>
batched_variance_shape
=
{
batchSize
*
variance_shape_
[
0
]};
PADDLE_ENFORCE_EQ
(
C
,
scale_
.
size
(),
...
...
@@ -320,25 +578,76 @@ int GroupNormPluginDynamic::enqueue(
VLOG
(
1
)
<<
"TRT Plugin DataType selected. GroupNorm-->fp16"
;
const
half
*
input
=
reinterpret_cast
<
const
half
*>
(
inputs
[
0
]);
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
if
(
input_desc
[
0
].
format
==
nvinfer1
::
PluginFormat
::
kLINEAR
)
{
phi
::
GroupNormDirectCUDAFunctor
<
half
,
float
>
group_norm
;
group_norm
(
stream
,
input
,
input_shape
,
reinterpret_cast
<
half
*>
(
bias_gpu_
),
reinterpret_cast
<
half
*>
(
scale_gpu_
),
temp_variance_d
,
groups
,
eps
,
output
,
mean_d
,
variance_d
,
DataLayout
::
kNCHW
);
}
else
if
(
input_desc
[
0
].
format
==
nvinfer1
::
PluginFormat
::
kHWC8
)
{
int32_t
cPerBlock
=
320
;
int32_t
maxBlocksPerHW
=
1024
;
switch
(
input_desc
[
0
].
dims
.
d
[
1
])
{
case
960
:
case
1920
:
cPerBlock
=
480
;
break
;
case
512
:
case
256
:
cPerBlock
=
256
;
break
;
case
128
:
cPerBlock
=
128
;
break
;
default:
cPerBlock
=
320
;
}
phi
::
GroupNormDirectCUDAFunctor
<
half
,
float
>
group_norm
;
group_norm
(
stream
,
input
,
input_shape
,
reinterpret_cast
<
half
*>
(
bias_gpu_
),
reinterpret_cast
<
half
*>
(
scale_gpu_
),
temp_variance_d
,
groups
,
eps
,
output
,
mean_d
,
variance_d
,
DataLayout
::
kNCHW
);
params_
.
withSwish
=
false
;
params_
.
dst
=
static_cast
<
half
*>
(
outputs
[
0
]);
params_
.
srcX
=
static_cast
<
half
const
*>
(
inputs
[
0
]);
params_
.
gamma
=
scale_gpu_
;
params_
.
beta
=
bias_gpu_
;
params_
.
redBuffer
=
static_cast
<
float
*>
(
workspace
);
params_
.
n
=
input_desc
[
0
].
dims
.
d
[
0
];
params_
.
h
=
input_desc
[
0
].
dims
.
d
[
2
];
params_
.
w
=
input_desc
[
0
].
dims
.
d
[
3
];
params_
.
c
=
input_desc
[
0
].
dims
.
d
[
1
];
params_
.
groups
=
groups_
;
params_
.
hw
=
params_
.
h
*
params_
.
w
;
const
int32_t
blocksPerHW
=
findMaxDivisor
(
params_
.
hw
,
maxBlocksPerHW
);
params_
.
hwPerBlock
=
divUp
(
params_
.
hw
,
blocksPerHW
);
params_
.
cPerBlock
=
cPerBlock
;
params_
.
cPerGroup
=
params_
.
c
/
params_
.
groups
;
params_
.
hwc
=
params_
.
hw
*
params_
.
c
;
params_
.
invHWC
=
1.
F
/
static_cast
<
float
>
(
params_
.
hw
*
params_
.
cPerGroup
);
params_
.
groupsPerBlock
=
cPerBlock
/
params_
.
cPerGroup
;
params_
.
eps
=
eps_
;
cudaMemsetAsync
(
params_
.
redBuffer
,
0
,
2
*
sizeof
(
float
)
*
params_
.
n
*
groups_
,
stream
);
groupNormNHWCSum
(
params_
,
stream
);
groupNormNHWCScale
(
params_
,
stream
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The Groupnorm TRT Plugin's only support nchw or nhwc8 input"
));
}
}
else
{
// input not float
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The Groupnorm TRT Plugin's only support fp32 input"
));
"The Groupnorm TRT Plugin's only support fp32
or fp16
input"
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
...
...
paddle/fluid/inference/tensorrt/plugin/group_norm_op_plugin.h
浏览文件 @
babd26ee
...
...
@@ -21,7 +21,9 @@ limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/common/groupNormPluginCommon.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
...
...
@@ -274,6 +276,7 @@ class GroupNormPluginDynamic : public DynamicPluginTensorRT {
float
eps_
;
std
::
vector
<
int64_t
>
mean_shape_
;
std
::
vector
<
int64_t
>
variance_shape_
;
GroupNormNHWCParams
params_
;
bool
with_fp16_
;
};
class
GroupNormPluginDynamicCreator
:
public
TensorRTPluginCreator
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录