Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ba8ba300
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ba8ba300
编写于
9月 21, 2018
作者:
D
Dang Qingqing
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into quantize_transpiler_update
上级
49ca3a32
3043f51b
变更
27
隐藏空白更改
内联
并排
Showing
27 changed file
with
595 addition
and
569 deletion
+595
-569
paddle/fluid/framework/details/cow_ptr.h
paddle/fluid/framework/details/cow_ptr.h
+61
-23
paddle/fluid/framework/details/cow_ptr_test.cc
paddle/fluid/framework/details/cow_ptr_test.cc
+0
-8
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+4
-38
paddle/fluid/framework/details/multi_devices_graph_pass.h
paddle/fluid/framework/details/multi_devices_graph_pass.h
+0
-6
paddle/fluid/framework/mixed_vector.h
paddle/fluid/framework/mixed_vector.h
+241
-326
paddle/fluid/framework/op_proto_maker.cc
paddle/fluid/framework/op_proto_maker.cc
+1
-0
paddle/fluid/framework/op_proto_maker.h
paddle/fluid/framework/op_proto_maker.h
+6
-0
paddle/fluid/operators/detection_map_op.h
paddle/fluid/operators/detection_map_op.h
+13
-15
paddle/fluid/operators/distributed/variable_response.cc
paddle/fluid/operators/distributed/variable_response.cc
+6
-2
paddle/fluid/operators/extract_rows_op.cc
paddle/fluid/operators/extract_rows_op.cc
+1
-1
paddle/fluid/operators/math/selected_rows_functor.cu
paddle/fluid/operators/math/selected_rows_functor.cu
+8
-6
paddle/fluid/operators/math/selected_rows_functor_test.cu
paddle/fluid/operators/math/selected_rows_functor_test.cu
+6
-2
paddle/fluid/operators/sum_op.h
paddle/fluid/operators/sum_op.h
+1
-0
paddle/fluid/pybind/const_value.cc
paddle/fluid/pybind/const_value.cc
+3
-1
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+24
-0
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+2
-2
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+73
-64
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-1
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+1
-1
python/paddle/fluid/tests/unittests/test_detection_map_op.py
python/paddle/fluid/tests/unittests/test_detection_map_op.py
+2
-3
python/paddle/fluid/tests/unittests/test_dist_mnist.py
python/paddle/fluid/tests/unittests/test_dist_mnist.py
+3
-3
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
+11
-2
python/paddle/fluid/tests/unittests/test_dist_transformer.py
python/paddle/fluid/tests/unittests/test_dist_transformer.py
+2
-2
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
+13
-4
python/paddle/fluid/transpiler/details/program_utils.py
python/paddle/fluid/transpiler/details/program_utils.py
+18
-11
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+84
-44
python/paddle/fluid/transpiler/memory_optimization_transpiler.py
...paddle/fluid/transpiler/memory_optimization_transpiler.py
+9
-4
未找到文件。
paddle/fluid/framework/details/cow_ptr.h
浏览文件 @
ba8ba300
...
...
@@ -20,41 +20,79 @@ namespace paddle {
namespace
framework
{
namespace
details
{
template
<
class
T
>
class
COWPtr
{
// Change it to thread safe flags if needed.
class
ThreadUnsafeOwnershipFlags
{
public:
typedef
std
::
shared_ptr
<
T
>
RefPtr
;
explicit
ThreadUnsafeOwnershipFlags
(
bool
flag
)
:
flag_
(
flag
)
{}
private:
RefPtr
m_sp
;
ThreadUnsafeOwnershipFlags
(
const
ThreadUnsafeOwnershipFlags
&
other
)
=
delete
;
ThreadUnsafeOwnershipFlags
&
operator
=
(
const
ThreadUnsafeOwnershipFlags
&
other
)
=
delete
;
ThreadUnsafeOwnershipFlags
(
ThreadUnsafeOwnershipFlags
&&
other
)
=
default
;
void
detach
()
{
T
*
tmp
=
m_sp
.
get
();
if
(
!
(
tmp
==
nullptr
||
m_sp
.
unique
()))
{
m_sp
=
RefPtr
(
new
T
(
*
tmp
));
void
SetOwnership
(
bool
flag
)
{
flag_
=
flag
;
}
// Invoke the callback if it is not owned.
template
<
typename
Callback
>
void
AcquireOwnershipOnce
(
Callback
acquire
)
{
if
(
!
flag_
)
{
acquire
();
flag_
=
true
;
}
}
public:
COWPtr
()
:
m_sp
(
nullptr
)
{}
explicit
COWPtr
(
T
*
t
)
:
m_sp
(
t
)
{}
explicit
COWPtr
(
const
RefPtr
&
refptr
)
:
m_sp
(
refptr
)
{}
private:
bool
flag_
;
};
const
T
&
Data
()
const
{
return
operator
*
();
}
// Copy-On-Write pointer.
// It will hold a T* pointer, and only copy once when `MutableData` is invoked.
//
// The template parameter OwnershipFlags should have:
// * a constructor takes a bool. True if own.
// * SetOwnership(bool flag).
// * AcquireOwnershipOnce(Callback). It will invoke the callback if it is not
// owned.
//
// https://en.wikipedia.org/wiki/Copy-on-write
template
<
typename
T
,
typename
OwnershipFlags
=
ThreadUnsafeOwnershipFlags
>
class
COWPtr
{
public:
// Ctor from raw pointer.
explicit
COWPtr
(
T
*
ptr
)
:
payload_
(
ptr
),
ownership_
{
true
}
{}
T
*
MutableData
()
{
return
operator
->
();
}
// Move methods. Steal ownership from origin
COWPtr
(
COWPtr
&&
other
)
:
payload_
(
other
.
payload_
),
ownership_
{
std
::
move
(
other
.
ownership_
)}
{}
COWPtr
&
operator
=
(
COWPtr
&&
origin
)
=
default
;
const
T
&
operator
*
()
const
{
return
*
m_sp
;
}
T
&
operator
*
()
{
detach
();
return
*
m_sp
;
// Copy methods. Not own payload
COWPtr
(
const
COWPtr
&
other
)
:
payload_
(
other
.
payload_
),
ownership_
{
false
}
{}
COWPtr
&
operator
=
(
const
COWPtr
&
other
)
{
payload_
=
other
.
payload_
;
ownership_
.
SetOwnership
(
false
);
return
*
this
;
}
const
T
*
operator
->
()
const
{
return
m_sp
.
operator
->
();
}
T
*
operator
->
()
{
detach
();
return
m_sp
.
operator
->
();
// Access read only data.
const
T
&
Data
()
const
{
return
*
payload_
;
}
// Access mutable data. If the data is not owned, the data will be copied
// before.
T
*
MutableData
()
{
ownership_
.
AcquireOwnershipOnce
(
[
this
]
{
payload_
.
reset
(
new
T
(
*
payload_
));
});
return
payload_
.
get
();
}
private:
// Actual data pointer.
std
::
shared_ptr
<
T
>
payload_
;
// Ownership flag.
OwnershipFlags
ownership_
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/cow_ptr_test.cc
浏览文件 @
ba8ba300
...
...
@@ -30,14 +30,6 @@ TEST(COWPtr, all) {
ASSERT_EQ
(
ptr2
.
Data
(),
10
);
}
TEST
(
COWPtr
,
change_old
)
{
COWPtr
<
int
>
ptr
(
new
int
{
0
});
COWPtr
<
int
>
ptr2
=
ptr
;
*
ptr
.
MutableData
()
=
10
;
ASSERT_EQ
(
ptr2
.
Data
(),
0
);
ASSERT_EQ
(
ptr
.
Data
(),
10
);
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
ba8ba300
...
...
@@ -210,43 +210,6 @@ std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
return
recv_vars
;
}
bool
MultiDevSSAGraphBuilder
::
IsDistTrainOp
(
ir
::
Node
*
node
,
const
std
::
vector
<
std
::
string
>
&
send_vars
,
const
std
::
vector
<
std
::
string
>
&
recv_vars
)
const
{
if
(
send_vars
.
size
()
==
0
||
recv_vars
.
size
()
==
0
)
{
return
false
;
}
/**
* Check any of opvars contains `.block` and in sendvars
*/
auto
checker
=
[](
const
std
::
vector
<
std
::
string
>
&
opvars
,
const
std
::
vector
<
std
::
string
>
&
rpc_vars
)
->
bool
{
for
(
auto
&
var
:
opvars
)
{
// a variable name with the suffix `.block` means it's a splited
// variable by (DistributeTranspiler)
// [python/paddle/fluid/transpiler/distribute_transpiler.py]
if
(
var
.
find
(
".block"
)
!=
std
::
string
::
npos
&&
std
::
find
(
rpc_vars
.
begin
(),
rpc_vars
.
end
(),
var
)
!=
rpc_vars
.
end
())
{
return
true
;
}
}
return
false
;
};
std
::
vector
<
std
::
string
>
input_var_names
;
std
::
vector
<
std
::
string
>
output_var_names
;
for
(
ir
::
Node
*
input
:
node
->
inputs
)
{
input_var_names
.
push_back
(
input
->
Name
());
}
for
(
ir
::
Node
*
output
:
node
->
outputs
)
{
output_var_names
.
push_back
(
output
->
Name
());
}
return
checker
(
output_var_names
,
send_vars
)
||
checker
(
input_var_names
,
recv_vars
);
}
size_t
MultiDevSSAGraphBuilder
::
GetAppropriateDeviceID
(
const
std
::
vector
<
std
::
string
>
&
var_names
)
const
{
int64_t
numel_sum
=
0
;
...
...
@@ -370,7 +333,9 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
}
}
is_dist_train
=
true
;
}
else
if
(
IsDistTrainOp
(
node
,
send_vars
,
recv_vars
))
{
}
else
if
(
boost
::
get
<
int
>
(
node
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
==
static_cast
<
int
>
(
OpRole
::
kDist
))
{
int
op_dev_id
=
CreateDistTrainOp
(
&
result
,
node
);
if
(
node
->
Op
()
->
Type
()
==
"concat"
)
{
auto
origin_param_name
=
node
->
Op
()
->
OutputArgumentNames
()[
0
];
...
...
@@ -736,6 +701,7 @@ int MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
.
emplace
(
varname
,
op_dev_id
);
}
}
else
{
LOG
(
ERROR
)
<<
"got unexpected dist op: "
<<
node
->
Op
()
->
Type
();
PADDLE_THROW
(
"the distribute training related op should be in [split_byref, "
"concat]."
);
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.h
浏览文件 @
ba8ba300
...
...
@@ -51,12 +51,6 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
int
CreateRPCOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
;
int
CreateDistTrainOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
;
/**
* Is this operator as the end-point operator before/after send operator.
*/
bool
IsDistTrainOp
(
ir
::
Node
*
node
,
const
std
::
vector
<
std
::
string
>
&
send_vars
,
const
std
::
vector
<
std
::
string
>
&
recv_vars
)
const
;
std
::
vector
<
std
::
string
>
FindDistTrainSendVars
(
const
std
::
vector
<
ir
::
Node
*>
&
nodes
)
const
;
...
...
paddle/fluid/framework/mixed_vector.h
浏览文件 @
ba8ba300
...
...
@@ -17,12 +17,10 @@
#include <algorithm>
#include <initializer_list>
#include <memory>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/cow_ptr.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/memory/memcpy.h"
#include "glog/logging.h"
...
...
@@ -30,401 +28,206 @@ namespace paddle {
namespace
framework
{
#if defined(PADDLE_WITH_CUDA)
namespace
details
{
struct
CUDABuffer
{
void
*
data_
{
nullptr
};
size_t
size_
{
0
};
platform
::
CUDAPlace
place_
;
CUDABuffer
()
{}
CUDABuffer
(
platform
::
Place
place
,
size_t
size
)
:
size_
(
size
),
place_
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
))
{
data_
=
memory
::
Alloc
(
place_
,
size
);
}
~
CUDABuffer
()
{
ClearMemory
();
}
CUDABuffer
(
const
CUDABuffer
&
o
)
=
delete
;
CUDABuffer
&
operator
=
(
const
CUDABuffer
&
o
)
=
delete
;
void
Resize
(
platform
::
Place
place
,
size_t
size
)
{
ClearMemory
();
place_
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
data_
=
memory
::
Alloc
(
place_
,
size
);
size_
=
size
;
}
void
Swap
(
CUDABuffer
&
o
)
{
std
::
swap
(
data_
,
o
.
data_
);
std
::
swap
(
place_
,
o
.
place_
);
std
::
swap
(
size_
,
o
.
size_
);
}
private:
void
ClearMemory
()
const
{
if
(
data_
)
{
memory
::
Free
(
place_
,
data_
);
}
}
};
}
// namespace details
// Vector<T> implements the std::vector interface, and can get Data or
// MutableData from any place. The data will be synced implicitly inside.
template
<
typename
T
>
class
Vector
{
public:
using
value_type
=
T
;
using
iterator
=
typename
std
::
vector
<
T
>::
iterator
;
using
const_iterator
=
typename
std
::
vector
<
T
>::
const_iterator
;
private:
// The actual class to implement vector logic
class
VectorData
{
public:
VectorData
()
:
flag_
(
kDataInCPU
)
{}
VectorData
(
size_t
count
,
const
T
&
value
)
:
cpu_
(
count
,
value
),
flag_
(
kDataInCPU
)
{}
VectorData
(
std
::
initializer_list
<
T
>
init
)
:
cpu_
(
init
),
flag_
(
kDataInCPU
)
{}
template
<
typename
U
>
explicit
VectorData
(
const
std
::
vector
<
U
>
&
dat
)
:
cpu_
(
dat
),
flag_
(
kDataInCPU
)
{}
VectorData
(
const
VectorData
&
o
)
{
o
.
ImmutableCPU
();
cpu_
=
o
.
cpu_
;
flag_
=
kDataInCPU
;
}
VectorData
&
operator
=
(
const
VectorData
&
o
)
{
o
.
ImmutableCPU
();
cpu_
=
o
.
cpu_
;
flag_
=
kDataInCPU
;
details
::
CUDABuffer
null
;
gpu_
.
Swap
(
null
);
return
*
this
;
}
T
&
operator
[](
size_t
i
)
{
MutableCPU
();
return
cpu_
[
i
];
}
const
T
&
operator
[](
size_t
i
)
const
{
ImmutableCPU
();
return
cpu_
[
i
];
}
size_t
size
()
const
{
return
cpu_
.
size
();
}
iterator
begin
()
{
MutableCPU
();
return
cpu_
.
begin
();
}
iterator
end
()
{
MutableCPU
();
return
cpu_
.
end
();
}
T
&
front
()
{
MutableCPU
();
return
cpu_
.
front
();
}
T
&
back
()
{
MutableCPU
();
return
cpu_
.
back
();
}
const_iterator
begin
()
const
{
ImmutableCPU
();
return
cpu_
.
begin
();
}
const_iterator
end
()
const
{
ImmutableCPU
();
return
cpu_
.
end
();
}
const
T
&
back
()
const
{
ImmutableCPU
();
return
cpu_
.
back
();
}
T
*
data
()
{
return
&
(
*
this
)[
0
];
}
const
T
*
data
()
const
{
return
&
(
*
this
)[
0
];
}
const
T
&
front
()
const
{
ImmutableCPU
();
return
cpu_
.
front
();
}
// assign this from iterator.
// NOTE: the iterator must support `end-begin`
template
<
typename
Iter
>
void
assign
(
Iter
begin
,
Iter
end
)
{
MutableCPU
();
cpu_
.
assign
(
begin
,
end
);
}
// push_back. If the previous capacity is not enough, the memory will
// double.
void
push_back
(
T
elem
)
{
MutableCPU
();
cpu_
.
push_back
(
elem
);
}
// extend a vector by iterator.
// NOTE: the iterator must support end-begin
template
<
typename
It
>
void
Extend
(
It
begin
,
It
end
)
{
MutableCPU
();
auto
out_it
=
std
::
back_inserter
<
std
::
vector
<
T
>>
(
this
->
cpu_
);
std
::
copy
(
begin
,
end
,
out_it
);
}
// resize the vector
void
resize
(
size_t
size
)
{
MutableCPU
();
cpu_
.
resize
(
size
);
}
// get cuda ptr. immutable
const
T
*
CUDAData
(
platform
::
Place
place
)
const
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
place
),
"CUDA Data must on CUDA place"
);
ImmutableCUDA
(
place
);
return
reinterpret_cast
<
T
*>
(
gpu_
.
data_
);
}
// get cuda ptr. mutable
T
*
CUDAMutableData
(
platform
::
Place
place
)
{
const
T
*
ptr
=
CUDAData
(
place
);
flag_
=
kDirty
|
kDataInCUDA
;
return
const_cast
<
T
*>
(
ptr
);
}
// clear
void
clear
()
{
cpu_
.
clear
();
flag_
=
kDirty
|
kDataInCPU
;
}
size_t
capacity
()
const
{
return
cpu_
.
capacity
();
}
// reserve data
void
reserve
(
size_t
size
)
{
cpu_
.
reserve
(
size
);
}
// implicit cast operator. Vector can be cast to std::vector implicitly.
operator
std
::
vector
<
T
>
()
const
{
ImmutableCPU
();
return
cpu_
;
}
bool
operator
==
(
const
VectorData
&
other
)
const
{
ImmutableCPU
();
other
.
ImmutableCPU
();
return
cpu_
==
other
.
cpu_
;
}
private:
enum
DataFlag
{
kDataInCPU
=
0x01
,
kDataInCUDA
=
0x02
,
// kDirty means the data has been changed in one device.
kDirty
=
0x10
};
void
CopyToCPU
()
const
{
// COPY GPU Data To CPU
void
*
src
=
gpu_
.
data_
;
void
*
dst
=
cpu_
.
data
();
memory
::
Copy
(
platform
::
CPUPlace
(),
dst
,
gpu_
.
place_
,
src
,
gpu_
.
size_
,
nullptr
);
}
void
MutableCPU
()
{
if
(
IsInCUDA
()
&&
IsDirty
())
{
CopyToCPU
();
}
flag_
=
kDirty
|
kDataInCPU
;
}
void
ImmutableCUDA
(
platform
::
Place
place
)
const
{
if
(
IsDirty
())
{
if
(
IsInCPU
())
{
CopyCPUDataToCUDA
(
place
);
UnsetFlag
(
kDirty
);
SetFlag
(
kDataInCUDA
);
}
else
if
(
IsInCUDA
()
&&
!
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
)
==
gpu_
.
place_
))
{
CopyCUDADataToAnotherPlace
(
place
);
// Still dirty
}
else
{
// Dirty && DataInCUDA && Device is same
// Do nothing
}
}
else
{
if
(
!
IsInCUDA
())
{
// Even data is not dirty. However, data is not in CUDA. Copy data.
CopyCPUDataToCUDA
(
place
);
SetFlag
(
kDataInCUDA
);
}
else
if
(
!
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
)
==
gpu_
.
place_
))
{
CopyCUDADataToAnotherPlace
(
place
);
}
else
{
// Not Dirty && DataInCUDA && Device is same
// Do nothing.
}
}
}
void
CopyCUDADataToAnotherPlace
(
const
platform
::
Place
&
place
)
const
{
details
::
CUDABuffer
tmp
(
place
,
gpu_
.
size_
);
const
void
*
src
=
gpu_
.
data_
;
void
*
dst
=
tmp
.
data_
;
memory
::
Copy
(
tmp
.
place_
,
dst
,
gpu_
.
place_
,
src
,
gpu_
.
size_
,
nullptr
);
gpu_
.
Swap
(
tmp
);
}
void
CopyCPUDataToCUDA
(
const
platform
::
Place
&
place
)
const
{
void
*
src
=
cpu_
.
data
();
gpu_
.
Resize
(
place
,
cpu_
.
size
()
*
sizeof
(
T
));
void
*
dst
=
gpu_
.
data_
;
auto
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
))
->
stream
();
memory
::
Copy
(
gpu_
.
place_
,
dst
,
platform
::
CPUPlace
(),
src
,
gpu_
.
size_
,
stream
);
}
void
ImmutableCPU
()
const
{
if
(
IsDirty
()
&&
!
IsInCPU
())
{
// If data has been changed in CUDA, or
// CPU has no data.
CopyToCPU
();
UnsetFlag
(
kDirty
);
}
SetFlag
(
kDataInCPU
);
}
void
UnsetFlag
(
int
flag
)
const
{
flag_
&=
~
flag
;
}
void
SetFlag
(
int
flag
)
const
{
flag_
|=
flag
;
}
bool
IsDirty
()
const
{
return
flag_
&
kDirty
;
}
bool
IsInCUDA
()
const
{
return
flag_
&
kDataInCUDA
;
}
bool
IsInCPU
()
const
{
return
flag_
&
kDataInCPU
;
}
mutable
std
::
vector
<
T
>
cpu_
;
mutable
details
::
CUDABuffer
gpu_
;
mutable
int
flag_
;
};
public:
// Default ctor. Create empty Vector
Vector
()
:
m_
(
new
VectorData
())
{
}
Vector
()
{
InitEmpty
();
}
// Fill vector with value. The vector size is `count`.
explicit
Vector
(
size_t
count
,
const
T
&
value
=
T
())
:
m_
(
new
VectorData
(
count
,
value
))
{}
explicit
Vector
(
size_t
count
,
const
T
&
value
=
T
())
{
InitEmpty
();
if
(
count
!=
0
)
{
resize
(
count
);
T
*
ptr
=
begin
();
for
(
size_t
i
=
0
;
i
<
count
;
++
i
)
{
ptr
[
i
]
=
value
;
}
}
}
// Ctor with init_list
Vector
(
std
::
initializer_list
<
T
>
init
)
:
m_
(
new
VectorData
(
init
))
{}
Vector
(
std
::
initializer_list
<
T
>
init
)
{
if
(
init
.
size
()
==
0
)
{
InitEmpty
();
}
else
{
InitByIter
(
init
.
size
(),
init
.
begin
(),
init
.
end
());
}
}
// implicit cast from std::vector.
template
<
typename
U
>
Vector
(
const
std
::
vector
<
U
>
&
dat
)
:
m_
(
new
VectorData
(
dat
))
{
// NOLINT
Vector
(
const
std
::
vector
<
U
>
&
dat
)
{
// NOLINT
if
(
dat
.
size
()
==
0
)
{
InitEmpty
();
}
else
{
InitByIter
(
dat
.
size
(),
dat
.
begin
(),
dat
.
end
());
}
}
// Copy ctor
Vector
(
const
Vector
<
T
>
&
other
)
{
m_
=
other
.
m_
;
}
Vector
(
const
Vector
<
T
>
&
other
)
{
this
->
operator
=
(
other
)
;
}
// Copy operator
Vector
<
T
>
&
operator
=
(
const
Vector
<
T
>
&
other
)
{
m_
=
other
.
m_
;
if
(
other
.
size
()
!=
0
)
{
this
->
InitByIter
(
other
.
size
(),
other
.
begin
(),
other
.
end
());
}
else
{
InitEmpty
();
}
return
*
this
;
}
// Move ctor
Vector
(
Vector
<
T
>
&&
other
)
{
m_
=
std
::
move
(
other
.
m_
);
}
Vector
(
Vector
<
T
>
&&
other
)
{
this
->
size_
=
other
.
size_
;
this
->
flag_
=
other
.
flag_
;
if
(
other
.
cuda_vec_
.
memory_size
())
{
this
->
cuda_vec_
.
ShareDataWith
(
other
.
cuda_vec_
);
}
if
(
other
.
cpu_vec_
.
memory_size
())
{
this
->
cpu_vec_
.
ShareDataWith
(
other
.
cpu_vec_
);
}
}
// CPU data access method. Mutable.
T
&
operator
[](
size_t
i
)
{
return
(
*
m_
)[
i
];
}
T
&
operator
[](
size_t
i
)
{
MutableCPU
();
return
const_cast
<
T
*>
(
cpu_vec_
.
data
<
T
>
())[
i
];
}
// CPU data access method. Immutable.
const
T
&
operator
[](
size_t
i
)
const
{
return
(
*
m_
)[
i
];
}
const
T
&
operator
[](
size_t
i
)
const
{
ImmutableCPU
();
return
cpu_vec_
.
data
<
T
>
()[
i
];
}
// std::vector iterator methods. Based on CPU data access method
size_t
size
()
const
{
return
m_
->
size
()
;
}
size_t
size
()
const
{
return
size_
;
}
iterator
begin
()
{
return
m_
->
begin
(
);
}
T
*
begin
()
{
return
capacity
()
==
0
?
&
EmptyDummy
()
:
&
this
->
operator
[](
0
);
}
iterator
end
()
{
return
m_
->
end
();
}
T
*
end
()
{
return
capacity
()
==
0
?
&
EmptyDummy
()
:
&
this
->
operator
[](
size
());
}
T
&
front
()
{
return
m_
->
front
();
}
T
&
front
()
{
return
*
begin
();
}
T
&
back
()
{
return
m_
->
back
();
}
T
&
back
()
{
auto
it
=
end
();
--
it
;
return
*
it
;
}
const_iterator
begin
()
const
{
return
m_
->
begin
();
}
const
T
*
begin
()
const
{
return
capacity
()
==
0
?
&
EmptyDummy
()
:
&
this
->
operator
[](
0
);
}
const_iterator
end
()
const
{
return
m_
->
end
();
}
const
T
*
end
()
const
{
return
capacity
()
==
0
?
&
EmptyDummy
()
:
&
this
->
operator
[](
size
());
}
const
_iterator
cbegin
()
const
{
return
begin
();
}
const
T
*
cbegin
()
const
{
return
begin
();
}
const
_iterator
cend
()
const
{
return
end
();
}
const
T
*
cend
()
const
{
return
end
();
}
const
T
&
back
()
const
{
return
m_
->
back
();
}
const
T
&
back
()
const
{
auto
it
=
end
();
--
it
;
return
*
it
;
}
T
*
data
()
{
return
m_
->
data
();
}
T
*
data
()
{
return
begin
();
}
const
T
*
data
()
const
{
return
m_
->
data
();
}
const
T
*
data
()
const
{
return
begin
();
}
const
T
&
front
()
const
{
return
m_
->
front
();
}
const
T
&
front
()
const
{
return
*
begin
();
}
// end of std::vector iterator methods
// assign this from iterator.
// NOTE: the iterator must support `end-begin`
template
<
typename
Iter
>
void
assign
(
Iter
begin
,
Iter
end
)
{
m_
->
assign
(
begin
,
end
);
InitByIter
(
end
-
begin
,
begin
,
end
);
}
// push_back. If the previous capacity is not enough, the memory will
// double.
void
push_back
(
T
elem
)
{
m_
->
push_back
(
elem
);
}
void
push_back
(
T
elem
)
{
if
(
size_
+
1
>
capacity
())
{
reserve
((
size_
+
1
)
<<
1
);
}
*
end
()
=
elem
;
++
size_
;
}
// extend a vector by iterator.
// NOTE: the iterator must support end-begin
template
<
typename
It
>
void
Extend
(
It
begin
,
It
end
)
{
m_
->
Extend
(
begin
,
end
);
size_t
pre_size
=
size_
;
resize
(
pre_size
+
(
end
-
begin
));
T
*
ptr
=
this
->
begin
()
+
pre_size
;
for
(;
begin
<
end
;
++
begin
,
++
ptr
)
{
*
ptr
=
*
begin
;
}
}
// resize the vector
void
resize
(
size_t
size
)
{
if
(
m_
.
Data
().
size
()
!=
size
)
{
m_
->
resize
(
size
);
if
(
size
+
1
<=
capacity
())
{
size_
=
size
;
}
else
{
MutableCPU
();
Tensor
cpu_tensor
;
platform
::
Place
cpu
=
platform
::
CPUPlace
();
T
*
ptr
=
cpu_tensor
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
size
)}),
cpu
);
const
T
*
old_ptr
=
cpu_vec_
.
memory_size
()
==
0
?
nullptr
:
cpu_vec_
.
data
<
T
>
();
if
(
old_ptr
!=
nullptr
)
{
std
::
copy
(
old_ptr
,
old_ptr
+
size_
,
ptr
);
}
size_
=
size
;
cpu_vec_
.
ShareDataWith
(
cpu_tensor
);
}
}
// get cuda ptr. immutable
const
T
*
CUDAData
(
platform
::
Place
place
)
const
{
return
m_
.
Data
().
CUDAData
(
place
);
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
place
),
"CUDA Data must on CUDA place"
);
ImmutableCUDA
(
place
);
return
cuda_vec_
.
data
<
T
>
();
}
// get cuda ptr. mutable
T
*
CUDAMutableData
(
platform
::
Place
place
)
{
return
m_
->
CUDAMutableData
(
place
);
const
T
*
ptr
=
CUDAData
(
place
);
flag_
=
kDirty
|
kDataInCUDA
;
return
const_cast
<
T
*>
(
ptr
);
}
// clear
void
clear
()
{
m_
->
clear
();
}
void
clear
()
{
size_
=
0
;
flag_
=
kDirty
|
kDataInCPU
;
}
size_t
capacity
()
const
{
return
m_
->
capacity
();
}
size_t
capacity
()
const
{
return
cpu_vec_
.
memory_size
()
/
SizeOfType
(
typeid
(
T
));
}
// reserve data
void
reserve
(
size_t
size
)
{
m_
->
reserve
(
size
);
}
void
reserve
(
size_t
size
)
{
size_t
pre_size
=
size_
;
resize
(
size
);
resize
(
pre_size
);
}
// the unify method to access CPU or CUDA data. immutable.
const
T
*
Data
(
platform
::
Place
place
)
const
{
...
...
@@ -445,7 +248,12 @@ class Vector {
}
// implicit cast operator. Vector can be cast to std::vector implicitly.
operator
std
::
vector
<
T
>
()
const
{
return
*
m_
;
}
operator
std
::
vector
<
T
>
()
const
{
std
::
vector
<
T
>
result
;
result
.
resize
(
size
());
std
::
copy
(
begin
(),
end
(),
result
.
begin
());
return
result
;
}
bool
operator
==
(
const
Vector
<
T
>
&
other
)
const
{
if
(
size
()
!=
other
.
size
())
return
false
;
...
...
@@ -459,11 +267,118 @@ class Vector {
return
true
;
}
const
void
*
Handle
()
const
{
return
&
m_
.
Data
();
}
private:
// Vector is an COW object.
details
::
COWPtr
<
VectorData
>
m_
;
void
InitEmpty
()
{
size_
=
0
;
flag_
=
kDataInCPU
;
}
template
<
typename
Iter
>
void
InitByIter
(
size_t
size
,
Iter
begin
,
Iter
end
)
{
platform
::
Place
cpu
=
platform
::
CPUPlace
();
T
*
ptr
=
this
->
cpu_vec_
.
template
mutable_data
<
T
>(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
size
)}),
cpu
);
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
*
ptr
++
=
*
begin
++
;
}
flag_
=
kDataInCPU
|
kDirty
;
size_
=
size
;
}
enum
DataFlag
{
kDataInCPU
=
0x01
,
kDataInCUDA
=
0x02
,
// kDirty means the data has been changed in one device.
kDirty
=
0x10
};
void
CopyToCPU
()
const
{
// COPY GPU Data To CPU
TensorCopy
(
cuda_vec_
,
platform
::
CPUPlace
(),
&
cpu_vec_
);
WaitPlace
(
cuda_vec_
.
place
());
}
void
MutableCPU
()
{
if
(
IsInCUDA
()
&&
IsDirty
())
{
CopyToCPU
();
}
flag_
=
kDirty
|
kDataInCPU
;
}
void
ImmutableCUDA
(
platform
::
Place
place
)
const
{
if
(
IsDirty
())
{
if
(
IsInCPU
())
{
TensorCopy
(
cpu_vec_
,
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
&
cuda_vec_
);
WaitPlace
(
place
);
UnsetFlag
(
kDirty
);
SetFlag
(
kDataInCUDA
);
}
else
if
(
IsInCUDA
()
&&
!
(
place
==
cuda_vec_
.
place
()))
{
framework
::
Tensor
tmp
;
TensorCopy
(
cuda_vec_
,
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
&
tmp
);
WaitPlace
(
cuda_vec_
.
place
());
cuda_vec_
.
ShareDataWith
(
tmp
);
// Still dirty
}
else
{
// Dirty && DataInCUDA && Device is same
// Do nothing
}
}
else
{
if
(
!
IsInCUDA
())
{
// Even data is not dirty. However, data is not in CUDA. Copy data.
TensorCopy
(
cpu_vec_
,
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
&
cuda_vec_
);
WaitPlace
(
place
);
SetFlag
(
kDataInCUDA
);
}
else
if
(
!
(
place
==
cuda_vec_
.
place
()))
{
framework
::
Tensor
tmp
;
WaitPlace
(
cuda_vec_
.
place
());
TensorCopy
(
cuda_vec_
,
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
&
tmp
);
WaitPlace
(
cuda_vec_
.
place
());
WaitPlace
(
place
);
cuda_vec_
.
ShareDataWith
(
tmp
);
}
else
{
// Not Dirty && DataInCUDA && Device is same
// Do nothing.
}
}
}
void
ImmutableCPU
()
const
{
if
(
IsDirty
()
&&
!
IsInCPU
())
{
// If data has been changed in CUDA, or CPU has no data.
CopyToCPU
();
UnsetFlag
(
kDirty
);
}
SetFlag
(
kDataInCPU
);
}
void
UnsetFlag
(
int
flag
)
const
{
flag_
&=
~
flag
;
}
void
SetFlag
(
int
flag
)
const
{
flag_
|=
flag
;
}
bool
IsDirty
()
const
{
return
flag_
&
kDirty
;
}
bool
IsInCUDA
()
const
{
return
flag_
&
kDataInCUDA
;
}
bool
IsInCPU
()
const
{
return
flag_
&
kDataInCPU
;
}
static
void
WaitPlace
(
const
platform
::
Place
place
)
{
if
(
platform
::
is_gpu_place
(
place
))
{
platform
::
DeviceContextPool
::
Instance
()
.
Get
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
))
->
Wait
();
}
}
static
T
&
EmptyDummy
()
{
static
T
dummy
=
T
();
return
dummy
;
}
mutable
int
flag_
;
mutable
Tensor
cpu_vec_
;
mutable
Tensor
cuda_vec_
;
size_t
size_
;
};
#else // PADDLE_WITH_CUDA
...
...
paddle/fluid/framework/op_proto_maker.cc
浏览文件 @
ba8ba300
...
...
@@ -120,6 +120,7 @@ void OpProtoAndCheckerMaker::operator()(proto::OpProto* proto,
{
static_cast
<
int
>
(
OpRole
::
kForward
),
static_cast
<
int
>
(
OpRole
::
kBackward
),
static_cast
<
int
>
(
OpRole
::
kOptimize
),
static_cast
<
int
>
(
OpRole
::
kRPC
),
static_cast
<
int
>
(
OpRole
::
kDist
),
static_cast
<
int
>
(
OpRole
::
kLRSched
),
static_cast
<
int
>
(
OpRole
::
kLoss
)
|
static_cast
<
int
>
(
OpRole
::
kForward
),
static_cast
<
int
>
(
OpRole
::
kLoss
)
|
static_cast
<
int
>
(
OpRole
::
kBackward
),
...
...
paddle/fluid/framework/op_proto_maker.h
浏览文件 @
ba8ba300
...
...
@@ -26,7 +26,13 @@ enum class OpRole {
kForward
=
0x0000
,
kBackward
=
0x0001
,
kOptimize
=
0x0002
,
// RPC role is for send/recv releated op
kRPC
=
0x0003
,
// Dist role is for split_byref/split_selected_rows/concat
// used for distributed training.
kDist
=
0x0004
,
// Tag all learning rate scheduler operators.
kLRSched
=
0x0005
,
kLoss
=
0x0100
,
// The default value of op's role. This should be only used for unittests and
...
...
paddle/fluid/operators/detection_map_op.h
浏览文件 @
ba8ba300
...
...
@@ -76,8 +76,8 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
auto
ap_type
=
GetAPType
(
ctx
.
Attr
<
std
::
string
>
(
"ap_type"
));
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
auto
&
label_lod
=
in_label
->
lod
();
auto
&
detect_lod
=
in_detect
->
lod
();
auto
label_lod
=
in_label
->
lod
();
auto
detect_lod
=
in_detect
->
lod
();
PADDLE_ENFORCE_EQ
(
label_lod
.
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
label_lod
[
0
].
size
(),
detect_lod
[
0
].
size
(),
...
...
@@ -166,11 +166,11 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
auto
labels
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
input_label
);
auto
detect
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
input_detect
);
auto
&
label_lod
=
input_label
.
lod
();
auto
&
detect_lod
=
input_detect
.
lod
();
auto
label_lod
=
input_label
.
lod
();
auto
detect_lod
=
input_detect
.
lod
();
int
batch_size
=
label_lod
[
0
].
size
()
-
1
;
auto
&
label_index
=
label_lod
[
0
];
auto
label_index
=
label_lod
[
0
];
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
std
::
map
<
int
,
std
::
vector
<
Box
>>
boxes
;
...
...
@@ -274,6 +274,7 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
output_true_pos
->
set_lod
(
true_pos_lod
);
output_false_pos
->
set_lod
(
false_pos_lod
);
return
;
}
void
GetInputPos
(
const
framework
::
Tensor
&
input_pos_count
,
...
...
@@ -291,7 +292,7 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
auto
SetData
=
[](
const
framework
::
LoDTensor
&
pos_tensor
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
pos
)
{
const
T
*
pos_data
=
pos_tensor
.
data
<
T
>
();
auto
&
pos_data_lod
=
pos_tensor
.
lod
()[
0
];
auto
pos_data_lod
=
pos_tensor
.
lod
()[
0
];
for
(
size_t
i
=
0
;
i
<
pos_data_lod
.
size
()
-
1
;
++
i
)
{
for
(
size_t
j
=
pos_data_lod
[
i
];
j
<
pos_data_lod
[
i
+
1
];
++
j
)
{
T
score
=
pos_data
[
j
*
2
];
...
...
@@ -316,23 +317,20 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>*
false_pos
)
const
{
int
batch_size
=
gt_boxes
.
size
();
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
auto
&
image_gt_boxes
=
gt_boxes
[
n
];
for
(
auto
&
image_gt_box
:
image_gt_boxes
)
{
auto
image_gt_boxes
=
gt_boxes
[
n
];
for
(
auto
it
=
image_gt_boxes
.
begin
();
it
!=
image_gt_boxes
.
end
();
++
it
)
{
size_t
count
=
0
;
auto
&
labeled_bboxes
=
image_gt_box
.
second
;
auto
labeled_bboxes
=
it
->
second
;
if
(
evaluate_difficult
)
{
count
=
labeled_bboxes
.
size
();
}
else
{
for
(
auto
&
box
:
labeled_bboxes
)
{
if
(
!
box
.
is_difficult
)
{
++
count
;
}
}
for
(
size_t
i
=
0
;
i
<
labeled_bboxes
.
size
();
++
i
)
if
(
!
(
labeled_bboxes
[
i
].
is_difficult
))
++
count
;
}
if
(
count
==
0
)
{
continue
;
}
int
label
=
i
mage_gt_box
.
first
;
int
label
=
i
t
->
first
;
if
(
label_pos_count
->
find
(
label
)
==
label_pos_count
->
end
())
{
(
*
label_pos_count
)[
label
]
=
count
;
}
else
{
...
...
paddle/fluid/operators/distributed/variable_response.cc
浏览文件 @
ba8ba300
...
...
@@ -92,9 +92,14 @@ bool VariableResponse::CopyLodTensorData(
::
google
::
protobuf
::
io
::
CodedInputStream
*
input
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
DDim
&
dims
,
int
length
)
{
auto
server_var
=
GetVar
();
if
(
!
server_var
)
{
LOG
(
ERROR
)
<<
"recved var should not on current server: "
<<
meta_
.
varname
();
return
false
;
}
auto
*
tensor
=
GetVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
dims
);
framework
::
LoD
lod
;
for
(
int
i
=
0
;
i
<
meta_
.
lod_level
();
++
i
)
{
framework
::
Vector
<
size_t
>
v
;
...
...
@@ -107,7 +112,6 @@ bool VariableResponse::CopyLodTensorData(
void
*
tensor_data
=
tensor
->
mutable_data
(
ctx
.
GetPlace
(),
ToTypeIndex
(
meta_
.
data_type
()));
if
(
!
ReadRaw
(
input
,
ctx
,
tensor
->
place
(),
tensor_data
,
length
))
{
return
false
;
}
...
...
paddle/fluid/operators/extract_rows_op.cc
浏览文件 @
ba8ba300
...
...
@@ -50,7 +50,7 @@ class ExtractRowsOp : public framework::OperatorBase {
auto
&
in
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
SelectedRows
>
();
auto
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
&
in_rows
=
in
.
rows
();
auto
in_rows
=
in
.
rows
();
auto
out_dim
=
framework
::
make_ddim
(
std
::
vector
<
int64_t
>
{
static_cast
<
int64_t
>
(
in_rows
.
size
()),
1
});
auto
dst_ptr
=
out
->
mutable_data
<
int64_t
>
(
out_dim
,
in
.
place
());
...
...
paddle/fluid/operators/math/selected_rows_functor.cu
浏览文件 @
ba8ba300
...
...
@@ -60,9 +60,11 @@ struct SelectedRowsAdd<platform::CUDADeviceContext, T> {
auto
out_place
=
context
.
GetPlace
();
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
out_place
));
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
out_place
),
out_data
,
boost
::
get
<
platform
::
CUDAPlace
>
(
in1_place
),
in1_data
,
in1_value
.
numel
()
*
sizeof
(
T
),
context
.
stream
());
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
out_place
),
out_data
,
boost
::
get
<
platform
::
CUDAPlace
>
(
in1_place
),
in1_data
,
in1_value
.
numel
()
*
sizeof
(
T
),
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
).
stream
());
auto
*
in2_data
=
in2_value
.
data
<
T
>
();
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
out_place
),
...
...
@@ -107,7 +109,7 @@ struct SelectedRowsAddTensor<platform::CUDADeviceContext, T> {
PADDLE_ENFORCE_EQ
(
in1_height
,
out_dims
[
0
]);
auto
&
in1_value
=
input1
.
value
();
framework
::
Vector
<
int64_t
>
in1_rows
(
input1
.
rows
()
);
auto
&
in1_rows
=
input1
.
rows
(
);
int64_t
in1_row_numel
=
in1_value
.
numel
()
/
in1_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in1_row_numel
,
input2
.
numel
()
/
in1_height
);
...
...
@@ -146,7 +148,7 @@ struct SelectedRowsAddTo<platform::CUDADeviceContext, T> {
auto
in1_height
=
input1
.
height
();
PADDLE_ENFORCE_EQ
(
in1_height
,
input2
->
height
());
auto
&
in1_rows
=
input1
.
rows
(
);
framework
::
Vector
<
int64_t
>
in1_rows
(
input1
.
rows
()
);
auto
&
in2_rows
=
*
(
input2
->
mutable_rows
());
auto
&
in1_value
=
input1
.
value
();
...
...
@@ -206,7 +208,7 @@ struct SelectedRowsAddToTensor<platform::CUDADeviceContext, T> {
PADDLE_ENFORCE_EQ
(
in1_height
,
in2_dims
[
0
]);
auto
&
in1_value
=
input1
.
value
();
framework
::
Vector
<
int64_t
>
in1_rows
(
input1
.
rows
()
);
auto
&
in1_rows
=
input1
.
rows
(
);
int64_t
in1_row_numel
=
in1_value
.
numel
()
/
in1_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in1_row_numel
,
input2
->
numel
()
/
in1_height
);
...
...
paddle/fluid/operators/math/selected_rows_functor_test.cu
浏览文件 @
ba8ba300
...
...
@@ -20,7 +20,9 @@ limitations under the License. */
TEST
(
selected_rows_functor
,
gpu_add
)
{
paddle
::
platform
::
CUDAPlace
gpu_place
(
0
);
paddle
::
platform
::
CPUPlace
cpu_place
;
paddle
::
platform
::
CUDADeviceContext
ctx
(
gpu_place
);
paddle
::
platform
::
CUDADeviceContext
&
ctx
=
*
reinterpret_cast
<
paddle
::
platform
::
CUDADeviceContext
*>
(
paddle
::
platform
::
DeviceContextPool
::
Instance
().
Get
(
gpu_place
));
paddle
::
operators
::
math
::
SetConstant
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
functor
;
...
...
@@ -132,7 +134,9 @@ TEST(selected_rows_functor, gpu_add) {
TEST
(
selected_rows_functor
,
gpu_add_to
)
{
paddle
::
platform
::
CUDAPlace
gpu_place
(
0
);
paddle
::
platform
::
CPUPlace
cpu_place
;
paddle
::
platform
::
CUDADeviceContext
ctx
(
gpu_place
);
paddle
::
platform
::
CUDADeviceContext
&
ctx
=
*
reinterpret_cast
<
paddle
::
platform
::
CUDADeviceContext
*>
(
paddle
::
platform
::
DeviceContextPool
::
Instance
().
Get
(
gpu_place
));
paddle
::
operators
::
math
::
SetConstant
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
functor
;
...
...
paddle/fluid/operators/sum_op.h
浏览文件 @
ba8ba300
...
...
@@ -123,6 +123,7 @@ class SumKernel : public framework::OpKernel<T> {
out_value
->
Resize
(
framework
::
make_ddim
(
in_dim
));
out_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// if all the input sparse vars are empty, no need to
// merge these vars.
if
(
first_dim
==
0UL
)
{
...
...
paddle/fluid/pybind/const_value.cc
浏览文件 @
ba8ba300
...
...
@@ -36,7 +36,9 @@ void BindConstValue(pybind11::module* m) {
.
value
(
"Backward"
,
framework
::
OpRole
::
kBackward
)
.
value
(
"Optimize"
,
framework
::
OpRole
::
kOptimize
)
.
value
(
"Loss"
,
framework
::
OpRole
::
kLoss
)
.
value
(
"RPC"
,
framework
::
OpRole
::
kRPC
);
.
value
(
"RPC"
,
framework
::
OpRole
::
kRPC
)
.
value
(
"Dist"
,
framework
::
OpRole
::
kDist
)
.
value
(
"LRSched"
,
framework
::
OpRole
::
kLRSched
);
op_proto_and_checker_maker
.
def
(
"kOpRoleAttrName"
,
framework
::
OpProtoAndCheckerMaker
::
OpRoleAttrName
);
...
...
python/paddle/fluid/framework.py
浏览文件 @
ba8ba300
...
...
@@ -1509,6 +1509,30 @@ class Program(object):
self
.
_op_role_var
=
[]
self
.
_current_role
=
OpRole
.
Forward
@
contextlib
.
contextmanager
def
_lr_schedule_guard
(
self
):
"""
A with guard to set :code:`LRSched` :code:`OpRole` and
:code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
set to the target learning rate.
Notes: This is a very low level API. Users should not use it directly.
Examples:
>>> p, g = backward(...)
>>> with program.lr_schedule_guard():
>>> lr = lr * decay
"""
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
self
.
_current_role
=
OpRole
.
LRSched
# TODO(typhoonzero): how to set target learning rate var
self
.
_op_role_var
=
[]
yield
self
.
_op_role_var
=
[]
self
.
_current_role
=
OpRole
.
Forward
def
__str__
(
self
):
"""
Get the protobuf debug string of this Program.
...
...
python/paddle/fluid/initializer.py
浏览文件 @
ba8ba300
...
...
@@ -74,7 +74,7 @@ class Initializer(object):
directly, but need to use one of its implementations.
"""
def
__init_
(
self
):
def
__init_
_
(
self
):
pass
def
__call__
(
self
,
param
,
block
):
...
...
@@ -293,7 +293,7 @@ class TruncatedNormalInitializer(Initializer):
assert
loc
is
not
None
assert
scale
is
not
None
assert
seed
is
not
None
super
(
NormalInitializer
,
self
).
__init__
()
super
(
Truncated
NormalInitializer
,
self
).
__init__
()
self
.
_mean
=
loc
self
.
_std_dev
=
scale
self
.
_seed
=
seed
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
ba8ba300
...
...
@@ -27,7 +27,7 @@ from . import nn
from
.
import
ops
from
.
import
tensor
from
..initializer
import
init_on_cpu
from
..framework
import
default_main_program
,
Parameter
from
..framework
import
default_main_program
,
Parameter
,
unique_name
__all__
=
[
'exponential_decay'
,
'natural_exp_decay'
,
'inverse_time_decay'
,
...
...
@@ -63,11 +63,12 @@ def noam_decay(d_model, warmup_steps):
Returns:
The decayed learning rate.
"""
global_step
=
_decay_step_counter
(
1
)
with
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
(
1
)
a
=
global_step
**-
0.5
b
=
(
warmup_steps
**-
1.5
)
*
global_step
lr_value
=
(
d_model
**-
0.5
)
*
ops
.
elementwise_min
(
a
,
b
)
a
=
global_step
**-
0.5
b
=
(
warmup_steps
**-
1.5
)
*
global_step
lr_value
=
(
d_model
**-
0.5
)
*
ops
.
elementwise_min
(
a
,
b
)
return
lr_value
...
...
@@ -108,14 +109,15 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
sgd_optimizer.minimize(avg_cost)
"""
global_step
=
_decay_step_counter
()
with
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
decayed_lr
=
learning_rate
*
(
decay_rate
**
div_res
)
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
decayed_lr
=
learning_rate
*
(
decay_rate
**
div_res
)
return
decayed_lr
return
decayed_lr
def
natural_exp_decay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
):
...
...
@@ -136,14 +138,15 @@ def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Returns:
The decayed learning rate
"""
global_step
=
_decay_step_counter
()
with
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
decayed_lr
=
learning_rate
*
ops
.
exp
(
-
1
*
decay_rate
*
div_res
)
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
decayed_lr
=
learning_rate
*
ops
.
exp
(
-
1
*
decay_rate
*
div_res
)
return
decayed_lr
return
decayed_lr
def
inverse_time_decay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
):
...
...
@@ -181,15 +184,16 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
staircase=True))
sgd_optimizer.minimize(avg_cost)
"""
global_step
=
_decay_step_counter
()
with
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
decayed_lr
=
learning_rate
/
(
1
+
decay_rate
*
div_res
)
decayed_lr
=
learning_rate
/
(
1
+
decay_rate
*
div_res
)
return
decayed_lr
return
decayed_lr
def
polynomial_decay
(
learning_rate
,
...
...
@@ -220,25 +224,28 @@ def polynomial_decay(learning_rate,
Returns:
Variable: The decayed learning rate
"""
global_step
=
_decay_step_counter
()
if
cycle
:
div_res
=
ops
.
ceil
(
global_step
/
decay_steps
)
zero_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.0
)
one_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
1.0
)
with
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
global_step
==
zero_var
):
tensor
.
assign
(
input
=
one_var
,
output
=
div_res
)
decay_steps
=
decay_steps
*
div_res
else
:
decay_steps_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
decay_steps
))
global_step
=
ops
.
elementwise_min
(
x
=
global_step
,
y
=
decay_steps_var
)
with
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
if
cycle
:
div_res
=
ops
.
ceil
(
global_step
/
decay_steps
)
zero_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.0
)
one_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
1.0
)
with
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
global_step
==
zero_var
):
tensor
.
assign
(
input
=
one_var
,
output
=
div_res
)
decay_steps
=
decay_steps
*
div_res
else
:
decay_steps_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
decay_steps
))
global_step
=
ops
.
elementwise_min
(
x
=
global_step
,
y
=
decay_steps_var
)
decayed_lr
=
(
learning_rate
-
end_learning_rate
)
*
\
((
1
-
global_step
/
decay_steps
)
**
power
)
+
end_learning_rate
return
decayed_lr
decayed_lr
=
(
learning_rate
-
end_learning_rate
)
*
\
((
1
-
global_step
/
decay_steps
)
**
power
)
+
end_learning_rate
return
decayed_lr
def
piecewise_decay
(
boundaries
,
values
):
...
...
@@ -266,34 +273,36 @@ def piecewise_decay(boundaries, values):
"""
with
default_main_program
().
_lr_schedule_guard
():
if
len
(
values
)
-
len
(
boundaries
)
!=
1
:
raise
ValueError
(
"len(values) - len(boundaries) should be 1"
)
if
len
(
values
)
-
len
(
boundaries
)
!=
1
:
raise
ValueError
(
"len(values) - len(boundaries) should be 1"
)
global_step
=
_decay_step_counter
()
global_step
=
_decay_step_counter
()
lr
=
tensor
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
True
,
name
=
"learning_rate"
)
lr
=
tensor
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
True
,
name
=
"learning_rate"
)
with
control_flow
.
Switch
()
as
switch
:
for
i
in
range
(
len
(
boundaries
)):
boundary_val
=
tensor
.
fill_constant
(
with
control_flow
.
Switch
()
as
switch
:
for
i
in
range
(
len
(
boundaries
)):
boundary_val
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
boundaries
[
i
]),
force_cpu
=
True
)
value_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
values
[
i
]))
with
switch
.
case
(
global_step
<
boundary_val
):
tensor
.
assign
(
value_var
,
lr
)
last_value_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
boundaries
[
i
]),
force_cpu
=
True
)
value_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
values
[
i
]))
with
switch
.
case
(
global_step
<
boundary_val
):
tensor
.
assign
(
value_var
,
lr
)
last_value_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
values
[
len
(
values
)
-
1
]))
with
switch
.
default
():
tensor
.
assign
(
last_value_var
,
lr
)
value
=
float
(
values
[
len
(
values
)
-
1
]))
with
switch
.
default
():
tensor
.
assign
(
last_value_var
,
lr
)
return
lr
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
ba8ba300
...
...
@@ -80,7 +80,8 @@ if(WITH_DISTRIBUTE)
py_test_modules
(
test_dist_se_resnext MODULES test_dist_se_resnext SERIAL
)
endif
(
NOT APPLE
)
py_test_modules
(
test_dist_transpiler MODULES test_dist_transpiler
)
py_test_modules
(
test_dist_transformer MODULES test_dist_transformer SERIAL
)
#FIXME(gongwb): random fails.
#py_test_modules(test_dist_transformer MODULES test_dist_transformer SERIAL)
endif
()
py_test_modules
(
test_parallel_executor_crf MODULES test_parallel_executor_crf SERIAL
)
py_test_modules
(
test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL
)
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
ba8ba300
...
...
@@ -345,7 +345,7 @@ class OpTest(unittest.TestCase):
actual_t
,
expect_t
,
atol
=
atol
,
equal_nan
=
equal_nan
),
"Output ("
+
out_name
+
") has diff at "
+
str
(
place
)
+
"
\n
Expect "
+
str
(
expect_t
)
+
"
\n
"
+
"But Got"
+
str
(
actual_t
)
+
" in class "
+
self
.
__class__
.
__name__
)
str
(
actual_t
))
if
isinstance
(
expect
,
tuple
):
self
.
assertListEqual
(
actual
.
recursive_sequence_lengths
(),
expect
[
1
],
"Output ("
+
out_name
+
...
...
python/paddle/fluid/tests/unittests/test_detection_map_op.py
浏览文件 @
ba8ba300
...
...
@@ -20,7 +20,6 @@ import six
import
sys
import
collections
import
math
import
paddle.fluid
as
fluid
from
op_test
import
OpTest
...
...
@@ -33,7 +32,7 @@ class TestDetectionMAPOp(OpTest):
self
.
detect
=
np
.
array
(
self
.
detect
).
astype
(
'float32'
)
self
.
mAP
=
np
.
array
(
self
.
mAP
).
astype
(
'float32'
)
if
len
(
self
.
class_pos_count
)
>
0
:
if
(
len
(
self
.
class_pos_count
)
>
0
)
:
self
.
class_pos_count
=
np
.
array
(
self
.
class_pos_count
).
astype
(
'int32'
)
self
.
true_pos
=
np
.
array
(
self
.
true_pos
).
astype
(
'float32'
)
...
...
@@ -274,7 +273,7 @@ class TestDetectionMAPOp11Point(TestDetectionMAPOp):
class
TestDetectionMAPOpMultiBatch
(
TestDetectionMAPOp
):
def
init_test_case
(
self
):
super
(
TestDetectionMAPOpMultiBatch
,
self
).
init_test_case
()
self
.
class_pos_count
=
[
0
,
2
,
1
,
0
]
self
.
class_pos_count
=
[
0
,
2
,
1
]
self
.
true_pos_lod
=
[[
0
,
3
,
2
]]
self
.
true_pos
=
[[
0.7
,
1.
],
[
0.3
,
0.
],
[
0.2
,
1.
],
[
0.8
,
0.
],
[
0.1
,
1.
]]
self
.
false_pos_lod
=
[[
0
,
3
,
2
]]
...
...
python/paddle/fluid/tests/unittests/test_dist_mnist.py
浏览文件 @
ba8ba300
...
...
@@ -22,7 +22,7 @@ class TestDistMnist2x2(TestDistBase):
self
.
_sync_mode
=
True
self
.
_use_reduce
=
False
def
test_
se_resnext
(
self
):
def
test_
dist_train
(
self
):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
1e-7
)
...
...
@@ -31,7 +31,7 @@ class TestDistMnist2x2WithMemopt(TestDistBase):
self
.
_sync_mode
=
True
self
.
_mem_opt
=
True
def
test_
se_resnext
(
self
):
def
test_
dist_train
(
self
):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
1e-7
)
...
...
@@ -40,7 +40,7 @@ class TestDistMnistAsync(TestDistBase):
self
.
_sync_mode
=
False
self
.
_use_reduce
=
False
def
test_
se_resnext
(
self
):
def
test_
dist_train
(
self
):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
200
)
...
...
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
浏览文件 @
ba8ba300
...
...
@@ -21,7 +21,16 @@ class TestDistSeResneXt2x2(TestDistBase):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
def
test_se_resnext
(
self
):
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1e-7
)
class
TestDistseResnXt2x2WithMemopt
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_mem_opt
=
True
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1e-7
)
...
...
@@ -29,7 +38,7 @@ class TestDistSeResneXt2x2Async(TestDistBase):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
def
test_
se_resnext
(
self
):
def
test_
dist_train
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
100
)
...
...
python/paddle/fluid/tests/unittests/test_dist_transformer.py
浏览文件 @
ba8ba300
...
...
@@ -59,7 +59,7 @@ class TestDistTransformer2x2Sync(TestDistBase):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
def
test_
transformer
(
self
):
def
test_
dist_train
(
self
):
download_files
()
self
.
check_with_place
(
"dist_transformer.py"
,
delta
=
1e-5
)
...
...
@@ -68,7 +68,7 @@ class TestDistTransformer2x2Async(TestDistBase):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
def
test_
transformer
(
self
):
def
test_
dist_train
(
self
):
download_files
()
self
.
check_with_place
(
"dist_transformer.py"
,
delta
=
1.0
)
...
...
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
浏览文件 @
ba8ba300
...
...
@@ -17,19 +17,28 @@ import unittest
from
test_dist_base
import
TestDistBase
class
TestDist
SeResneXt
2x2
(
TestDistBase
):
class
TestDist
W2V
2x2
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
def
test_
se_resnext
(
self
):
def
test_
dist_train
(
self
):
self
.
check_with_place
(
"dist_word2vec.py"
,
delta
=
1e-4
)
class
TestDistSeResneXt2x2Async
(
TestDistBase
):
class
TestDistW2V2x2WithMemOpt
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_mem_opt
=
True
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_word2vec.py"
,
delta
=
1e-4
)
class
TestDistW2V2x2Async
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
def
test_
se_resnext
(
self
):
def
test_
dist_train
(
self
):
self
.
check_with_place
(
"dist_word2vec.py"
,
delta
=
1
)
...
...
python/paddle/fluid/transpiler/details/program_utils.py
浏览文件 @
ba8ba300
...
...
@@ -21,13 +21,12 @@ import paddle
def
delete_ops
(
block
,
ops
):
try
:
start
=
list
(
block
.
ops
).
index
(
ops
[
0
])
end
=
list
(
block
.
ops
).
index
(
ops
[
-
1
])
[
block
.
_remove_op
(
start
)
for
_
in
six
.
moves
.
range
(
end
-
start
+
1
)]
except
Exception
as
e
:
raise
e
block
.
program
.
_sync_with_cpp
()
for
op
in
ops
:
try
:
idx
=
list
(
block
.
ops
).
index
(
op
)
block
.
_remove_op
(
idx
)
except
Exception
as
e
:
print
(
e
)
def
find_op_by_input_arg
(
block
,
arg_name
):
...
...
@@ -37,10 +36,18 @@ def find_op_by_input_arg(block, arg_name):
return
-
1
def
find_op_by_output_arg
(
block
,
arg_name
):
for
index
,
op
in
enumerate
(
block
.
ops
):
if
arg_name
in
op
.
output_arg_names
:
return
index
def
find_op_by_output_arg
(
block
,
arg_name
,
reverse
=
False
):
if
reverse
:
pos
=
len
(
block
.
ops
)
-
1
while
pos
>=
0
:
op
=
block
.
ops
[
pos
]
if
arg_name
in
op
.
output_arg_names
:
return
pos
pos
-=
1
else
:
for
index
,
op
in
enumerate
(
block
.
ops
):
if
arg_name
in
op
.
output_arg_names
:
return
index
return
-
1
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
ba8ba300
...
...
@@ -50,6 +50,15 @@ OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
RPC_OP_ROLE_ATTR_NAME
=
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
(
)
RPC_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
RPC
DIST_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Dist
LR_SCHED_OP_ROLE_ATTR_VALUE
=
core
.
op_proto_and_checker_maker
.
OpRole
.
LRSched
PRINT_LOG
=
False
def
log
(
*
args
):
if
PRINT_LOG
:
print
(
args
)
class
VarBlock
:
...
...
@@ -127,6 +136,7 @@ class DistributeTranspilerConfig(object):
slice_var_up
=
True
split_method
=
None
min_block_size
=
8192
print_log
=
False
class
DistributeTranspiler
(
object
):
...
...
@@ -174,6 +184,9 @@ class DistributeTranspiler(object):
if
self
.
config
.
split_method
is
None
:
self
.
config
.
split_method
=
RoundRobin
global
PRINT_LOG
if
self
.
config
.
print_log
:
PRINT_LOG
=
True
assert
(
self
.
config
.
min_block_size
>=
8192
)
assert
(
self
.
config
.
split_method
.
__bases__
[
0
]
==
PSDispatcher
)
...
...
@@ -257,12 +270,12 @@ class DistributeTranspiler(object):
splited_grad_varname
=
grad_varname
if
len
(
splited_vars
)
==
1
:
splited_grad_varname
=
splited_vars
[
0
].
name
index
=
find_op_by_output_arg
(
program
.
global_block
(),
splited_grad_varnam
e
)
index
=
find_op_by_output_arg
(
program
.
global_block
(),
splited_grad_varname
,
reverse
=
Tru
e
)
elif
len
(
splited_vars
)
>
1
:
orig_var
=
program
.
global_block
().
vars
[
splited_grad_varname
]
index
=
find_op_by_output_arg
(
program
.
global_block
(),
splited_grad_varnam
e
)
index
=
find_op_by_output_arg
(
program
.
global_block
(),
splited_grad_varname
,
reverse
=
Tru
e
)
self
.
_insert_split_op
(
program
,
orig_var
,
index
,
splited_vars
)
index
+=
1
else
:
...
...
@@ -301,7 +314,7 @@ class DistributeTranspiler(object):
self
.
grad_name_to_send_dummy_out
[
self
.
table_name
]
=
program
.
global_block
().
create_var
(
name
=
framework
.
generate_control_dev_var_name
())
input_deps
=
self
.
grad_name_to_send_dummy_out
.
values
(
)
input_deps
=
list
(
self
.
grad_name_to_send_dummy_out
.
values
()
)
program
.
global_block
().
append_op
(
type
=
"send_barrier"
,
...
...
@@ -377,7 +390,10 @@ class DistributeTranspiler(object):
type
=
"concat"
,
inputs
=
{
"X"
:
splited_var
},
outputs
=
{
"Out"
:
[
orig_param
]},
attrs
=
{
"axis"
:
0
})
attrs
=
{
"axis"
:
0
,
RPC_OP_ROLE_ATTR_NAME
:
DIST_OP_ROLE_ATTR_VALUE
})
self
.
_get_trainer_startup_program
(
recv_vars
=
recv_vars
,
eplist
=
eplist
)
...
...
@@ -496,9 +512,9 @@ class DistributeTranspiler(object):
# NOTE: assume blocks of the same variable is not distributed
# on the same pserver, only change param/grad varnames for
# trainers to fetch.
sys
.
stderr
.
write
(
"get_pserver_program() is deprecated, call
\
get_pserver_programs() to get pserver main and startup
\
in a single call."
)
sys
.
stderr
.
write
(
"get_pserver_program() is deprecated, call
\
get_pserver_programs() to get pserver main and startup
\
in a single call."
)
# step1
pserver_program
=
Program
()
pserver_program
.
random_seed
=
self
.
origin_program
.
random_seed
...
...
@@ -615,22 +631,31 @@ class DistributeTranspiler(object):
for
idx
,
opt_op
in
enumerate
(
opt_op_on_pserver
):
per_opt_block
=
pserver_program
.
_create_block
(
pre_block_idx
)
optimize_blocks
.
append
(
per_opt_block
)
optimize_target_param_name
=
opt_op
.
attr
(
OP_ROLE_VAR_ATTR_NAME
)[
0
]
# append grad merging ops before clip and weight decay
#
cases may like:
# L2Decay op -> clip op -> optimiz
e
#
e.g. merge grad -> L2Decay op -> clip op -> optimize
merged_var
=
Non
e
for
_
,
op
in
enumerate
(
self
.
optimize_ops
):
# find the origin @GRAD var before clipping
grad_varname_for_block
=
__op_have_grad_input__
(
op
)
if
ufind
.
is_connected
(
op
,
opt_op
)
and
grad_varname_for_block
:
# find the origin grad var before clipping/L2Decay,
# merged_var should be the input var name of L2Decaybuil
grad_varname_for_block
=
op
.
attr
(
OP_ROLE_VAR_ATTR_NAME
)[
1
]
if
op
.
attr
(
OP_ROLE_VAR_ATTR_NAME
)[
0
]
==
optimize_target_param_name
:
merged_var
=
self
.
_append_pserver_grad_merge_ops
(
per_opt_block
,
grad_varname_for_block
,
endpoint
,
grad_to_block_id
,
self
.
origin_program
)
break
# append optimize op once then append other ops.
for
_
,
op
in
enumerate
(
self
.
optimize_ops
):
# optimizer is connected to itself
if
ufind
.
is_connected
(
op
,
opt_op
)
and
op
not
in
global_ops
:
__append_optimize_op__
(
op
,
per_opt_block
,
grad_to_block_id
,
merged_var
,
lr_ops
)
if
merged_var
:
break
# append optimize op once then append other ops.
if
merged_var
:
for
_
,
op
in
enumerate
(
self
.
optimize_ops
):
# optimizer is connected to itself
if
op
.
attr
(
OP_ROLE_VAR_ATTR_NAME
)[
0
]
==
optimize_target_param_name
and
\
op
not
in
global_ops
:
log
(
"append opt op: "
,
op
.
type
,
op
.
input_arg_names
,
merged_var
)
__append_optimize_op__
(
op
,
per_opt_block
,
grad_to_block_id
,
merged_var
,
lr_ops
)
# dedup grad to ids list
grad_to_block_id
=
list
(
set
(
grad_to_block_id
))
...
...
@@ -726,17 +751,17 @@ class DistributeTranspiler(object):
Returns:
Program: parameter server side startup program.
"""
sys
.
stderr
.
write
(
"get_startup_program() is deprecated, call
\
get_pserver_programs() to get pserver main and startup
\
in a single call."
)
sys
.
stderr
.
write
(
"get_startup_program() is deprecated, call
\
get_pserver_programs() to get pserver main and startup
\
in a single call."
)
if
pserver_program
!=
None
:
sys
.
stderr
.
write
(
"passing pserver_program to get_startup_program()
\
is deprecated, you can use new API get_pserver_programs() to
\
get both pserver main program and startup program."
)
sys
.
stderr
.
write
(
"passing pserver_program to get_startup_program()
\
is deprecated, you can use new API get_pserver_programs() to
\
get both pserver main program and startup program."
)
if
startup_program
!=
None
:
sys
.
stderr
.
write
(
"passing startup_program to get_startup_program()
\
is deprecated, use fluid.program_guard() or pass this argument
\
to transpile() call."
)
sys
.
stderr
.
write
(
"passing startup_program to get_startup_program()
\
is deprecated, use fluid.program_guard() or pass this argument
\
to transpile() call."
)
s_prog
=
Program
()
orig_s_prog
=
self
.
startup_program
...
...
@@ -1302,7 +1327,10 @@ class DistributeTranspiler(object):
type
=
"split_selected_rows"
,
inputs
=
{
"X"
:
orig_var
},
outputs
=
{
"Out"
:
splited_vars
},
attrs
=
{
"height_sections"
:
height_sections
})
attrs
=
{
"height_sections"
:
height_sections
,
RPC_OP_ROLE_ATTR_NAME
:
DIST_OP_ROLE_ATTR_VALUE
})
elif
orig_var
.
type
==
core
.
VarDesc
.
VarType
.
LOD_TENSOR
:
sections
=
[]
for
v
in
splited_vars
:
...
...
@@ -1312,8 +1340,10 @@ class DistributeTranspiler(object):
type
=
"split_byref"
,
inputs
=
{
"X"
:
orig_var
},
outputs
=
{
"Out"
:
splited_vars
},
attrs
=
{
"sections"
:
sections
}
# assume split evenly
)
attrs
=
{
"sections"
:
sections
,
RPC_OP_ROLE_ATTR_NAME
:
DIST_OP_ROLE_ATTR_VALUE
})
else
:
AssertionError
(
"Variable type should be in set "
"[LOD_TENSOR, SELECTED_ROWS]"
)
...
...
@@ -1381,15 +1411,15 @@ class DistributeTranspiler(object):
if
not
grad_block
:
# do not append this op if current endpoint
# is not dealing with this grad block
return
return
None
orig_varname
,
block_name
,
trainer_name
=
self
.
_get_varname_parts
(
grad_block
.
name
)
if
block_name
:
merged_var_name
=
'.'
.
join
([
orig_varname
,
block_name
])
else
:
merged_var_name
=
orig_varname
merged_var
=
\
pserver_block
.
vars
[
merged_var_name
]
merged_var
=
pserver_block
.
vars
[
merged_var_name
]
grad_to_block_id
.
append
(
merged_var
.
name
+
":"
+
str
(
optimize_block
.
idx
))
if
self
.
sync_mode
and
self
.
trainer_num
>
1
:
vars2merge
=
[]
...
...
@@ -1473,7 +1503,6 @@ class DistributeTranspiler(object):
outputs
=
self
.
_get_output_map_from_op
(
self
.
origin_program
.
global_block
().
vars
,
opt_op
)
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
optimize_block
.
append_op
(
type
=
opt_op
.
type
,
inputs
=
new_inputs
,
...
...
@@ -1618,6 +1647,16 @@ class DistributeTranspiler(object):
return
iomap
def
_get_lr_ops
(
self
):
lr_ops
=
[]
block
=
self
.
origin_program
.
global_block
()
for
op
in
block
.
ops
:
if
int
(
op
.
attr
(
RPC_OP_ROLE_ATTR_NAME
))
==
int
(
LR_SCHED_OP_ROLE_ATTR_VALUE
):
lr_ops
.
append
(
op
)
log
(
"append lr op: "
,
op
.
type
)
return
lr_ops
def
_get_lr_ops_deprecated
(
self
):
lr_ops
=
[]
# find learning rate variables by optimize op
lr_vars
=
set
()
...
...
@@ -1670,20 +1709,21 @@ class DistributeTranspiler(object):
block
=
self
.
origin_program
.
global_block
()
opt_ops
=
[]
params_grads
=
[]
# tmp set to dedup
optimize_params
=
set
()
origin_var_dict
=
self
.
origin_program
.
global_block
().
vars
for
op
in
block
.
ops
:
if
self
.
_is_opt_role_op
(
op
):
opt_ops
.
append
(
op
)
# HACK(wuyi): if we find grad vars from input of optimize
# ops, we may get the output of clip op. Use syntax "@GRAD"
# and op_role_var to get the pair.
for
input_name
in
op
.
input_arg_names
:
if
input_name
.
find
(
"@GRAD"
)
!=
-
1
and
\
op
.
attr
(
RPC_OP_ROLE_ATTR_NAME
):
param_name
=
op
.
attr
(
OP_ROLE_VAR_ATTR_NAME
)[
0
]
if
op
.
attr
(
OP_ROLE_VAR_ATTR_NAME
):
param_name
=
op
.
attr
(
OP_ROLE_VAR_ATTR_NAME
)[
0
]
grad_name
=
op
.
attr
(
OP_ROLE_VAR_ATTR_NAME
)[
1
]
if
not
param_name
in
optimize_params
:
optimize_params
.
add
(
param_name
)
log
(
"adding param_grad pair: "
,
param_name
,
grad_name
)
params_grads
.
append
([
origin_var_dict
[
param_name
],
origin_var_dict
[
input
_name
]
origin_var_dict
[
grad
_name
]
])
else
:
pass
...
...
python/paddle/fluid/transpiler/memory_optimization_transpiler.py
浏览文件 @
ba8ba300
...
...
@@ -14,10 +14,10 @@
from
__future__
import
print_function
from
collections
import
defaultdict
from
collections
import
defaultdict
,
OrderedDict
,
Callable
from
..
import
core
from
...
import
compat
as
cpt
from
..framework
import
Program
,
default_main_program
,
Parameter
from
..framework
import
Program
,
default_main_program
,
Parameter
,
Variable
from
..backward
import
_rename_arg_
from
functools
import
reduce
from
six.moves
import
range
...
...
@@ -113,8 +113,10 @@ class ControlFlowGraph(object):
def
_fill_pool
(
self
,
i
,
is_forward
):
block_desc
=
self
.
_ops
[
i
].
block
()
in_diff
,
_
=
self
.
_get_diff
(
self
.
_live_in
[
i
],
self
.
_live_out
[
i
])
# NOTE: must sort the in_diff set for cases that get different cache var.
# FIXME(typhoonzero): maybe use a "sorted set" is better than this.
can_optimize
=
[
x
for
x
in
in_diff
x
for
x
in
sorted
(
list
(
in_diff
))
if
self
.
_check_var_validity
(
block_desc
,
x
,
is_forward
)
]
if
can_optimize
:
...
...
@@ -220,8 +222,9 @@ class ControlFlowGraph(object):
block_desc
=
op
.
block
()
is_forward
=
i
<
self
.
_forward_num
if
self
.
pool
:
# NOTE: must sort the in_diff set for cases that get different cache var.
defs_can_optimize
=
[
x
for
x
in
s
elf
.
_defs
[
i
]
x
for
x
in
s
orted
(
list
(
self
.
_defs
[
i
]))
if
self
.
_check_var_validity
(
block_desc
,
x
,
is_forward
)
]
out_pair
=
[
...
...
@@ -271,6 +274,8 @@ class ControlFlowGraph(object):
self
.
_program
.
block
(
block_desc
.
id
).
var
(
cpt
.
to_text
(
x
)).
desc
=
self
.
_find_var
(
block_desc
,
cache_var
,
is_forward
)
self
.
_program
.
block
(
block_desc
.
id
).
vars
[
cpt
.
to_text
(
x
)]
=
\
Variable
(
self
.
_program
.
block
(
block_desc
.
id
),
name
=
cpt
.
to_text
(
x
))
self
.
_update_graph
(
x
,
cache_var
,
begin_idx
=
i
)
break
self
.
_fill_pool
(
i
,
is_forward
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录