Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ba4e7c7e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ba4e7c7e
编写于
4月 25, 2022
作者:
N
Nyakku Shigure
提交者:
GitHub
4月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
reimplement ResNeXt based on ResNet (#40588)
* refactor resnext
上级
6721376b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
256 addition
and
405 deletion
+256
-405
python/paddle/vision/__init__.py
python/paddle/vision/__init__.py
+6
-7
python/paddle/vision/models/__init__.py
python/paddle/vision/models/__init__.py
+12
-14
python/paddle/vision/models/resnet.py
python/paddle/vision/models/resnet.py
+238
-20
python/paddle/vision/models/resnext.py
python/paddle/vision/models/resnext.py
+0
-364
未找到文件。
python/paddle/vision/__init__.py
浏览文件 @
ba4e7c7e
...
@@ -34,6 +34,12 @@ from .models import resnet34 # noqa: F401
...
@@ -34,6 +34,12 @@ from .models import resnet34 # noqa: F401
from
.models
import
resnet50
# noqa: F401
from
.models
import
resnet50
# noqa: F401
from
.models
import
resnet101
# noqa: F401
from
.models
import
resnet101
# noqa: F401
from
.models
import
resnet152
# noqa: F401
from
.models
import
resnet152
# noqa: F401
from
.models
import
resnext50_32x4d
# noqa: F401
from
.models
import
resnext50_64x4d
# noqa: F401
from
.models
import
resnext101_32x4d
# noqa: F401
from
.models
import
resnext101_64x4d
# noqa: F401
from
.models
import
resnext152_32x4d
# noqa: F401
from
.models
import
resnext152_64x4d
# noqa: F401
from
.models
import
wide_resnet50_2
# noqa: F401
from
.models
import
wide_resnet50_2
# noqa: F401
from
.models
import
wide_resnet101_2
# noqa: F401
from
.models
import
wide_resnet101_2
# noqa: F401
from
.models
import
MobileNetV1
# noqa: F401
from
.models
import
MobileNetV1
# noqa: F401
...
@@ -61,13 +67,6 @@ from .models import densenet201 # noqa: F401
...
@@ -61,13 +67,6 @@ from .models import densenet201 # noqa: F401
from
.models
import
densenet264
# noqa: F401
from
.models
import
densenet264
# noqa: F401
from
.models
import
AlexNet
# noqa: F401
from
.models
import
AlexNet
# noqa: F401
from
.models
import
alexnet
# noqa: F401
from
.models
import
alexnet
# noqa: F401
from
.models
import
ResNeXt
# noqa: F401
from
.models
import
resnext50_32x4d
# noqa: F401
from
.models
import
resnext50_64x4d
# noqa: F401
from
.models
import
resnext101_32x4d
# noqa: F401
from
.models
import
resnext101_64x4d
# noqa: F401
from
.models
import
resnext152_32x4d
# noqa: F401
from
.models
import
resnext152_64x4d
# noqa: F401
from
.models
import
InceptionV3
# noqa: F401
from
.models
import
InceptionV3
# noqa: F401
from
.models
import
inception_v3
# noqa: F401
from
.models
import
inception_v3
# noqa: F401
from
.models
import
GoogLeNet
# noqa: F401
from
.models
import
GoogLeNet
# noqa: F401
...
...
python/paddle/vision/models/__init__.py
浏览文件 @
ba4e7c7e
...
@@ -18,6 +18,12 @@ from .resnet import resnet34 # noqa: F401
...
@@ -18,6 +18,12 @@ from .resnet import resnet34 # noqa: F401
from
.resnet
import
resnet50
# noqa: F401
from
.resnet
import
resnet50
# noqa: F401
from
.resnet
import
resnet101
# noqa: F401
from
.resnet
import
resnet101
# noqa: F401
from
.resnet
import
resnet152
# noqa: F401
from
.resnet
import
resnet152
# noqa: F401
from
.resnet
import
resnext50_32x4d
# noqa: F401
from
.resnet
import
resnext50_64x4d
# noqa: F401
from
.resnet
import
resnext101_32x4d
# noqa: F401
from
.resnet
import
resnext101_64x4d
# noqa: F401
from
.resnet
import
resnext152_32x4d
# noqa: F401
from
.resnet
import
resnext152_64x4d
# noqa: F401
from
.resnet
import
wide_resnet50_2
# noqa: F401
from
.resnet
import
wide_resnet50_2
# noqa: F401
from
.resnet
import
wide_resnet101_2
# noqa: F401
from
.resnet
import
wide_resnet101_2
# noqa: F401
from
.mobilenetv1
import
MobileNetV1
# noqa: F401
from
.mobilenetv1
import
MobileNetV1
# noqa: F401
...
@@ -42,13 +48,6 @@ from .densenet import densenet201 # noqa: F401
...
@@ -42,13 +48,6 @@ from .densenet import densenet201 # noqa: F401
from
.densenet
import
densenet264
# noqa: F401
from
.densenet
import
densenet264
# noqa: F401
from
.alexnet
import
AlexNet
# noqa: F401
from
.alexnet
import
AlexNet
# noqa: F401
from
.alexnet
import
alexnet
# noqa: F401
from
.alexnet
import
alexnet
# noqa: F401
from
.resnext
import
ResNeXt
# noqa: F401
from
.resnext
import
resnext50_32x4d
# noqa: F401
from
.resnext
import
resnext50_64x4d
# noqa: F401
from
.resnext
import
resnext101_32x4d
# noqa: F401
from
.resnext
import
resnext101_64x4d
# noqa: F401
from
.resnext
import
resnext152_32x4d
# noqa: F401
from
.resnext
import
resnext152_64x4d
# noqa: F401
from
.inceptionv3
import
InceptionV3
# noqa: F401
from
.inceptionv3
import
InceptionV3
# noqa: F401
from
.inceptionv3
import
inception_v3
# noqa: F401
from
.inceptionv3
import
inception_v3
# noqa: F401
from
.squeezenet
import
SqueezeNet
# noqa: F401
from
.squeezenet
import
SqueezeNet
# noqa: F401
...
@@ -72,6 +71,12 @@ __all__ = [ #noqa
...
@@ -72,6 +71,12 @@ __all__ = [ #noqa
'resnet50'
,
'resnet50'
,
'resnet101'
,
'resnet101'
,
'resnet152'
,
'resnet152'
,
'resnext50_32x4d'
,
'resnext50_64x4d'
,
'resnext101_32x4d'
,
'resnext101_64x4d'
,
'resnext152_32x4d'
,
'resnext152_64x4d'
,
'wide_resnet50_2'
,
'wide_resnet50_2'
,
'wide_resnet101_2'
,
'wide_resnet101_2'
,
'VGG'
,
'VGG'
,
...
@@ -96,13 +101,6 @@ __all__ = [ #noqa
...
@@ -96,13 +101,6 @@ __all__ = [ #noqa
'densenet264'
,
'densenet264'
,
'AlexNet'
,
'AlexNet'
,
'alexnet'
,
'alexnet'
,
'ResNeXt'
,
'resnext50_32x4d'
,
'resnext50_64x4d'
,
'resnext101_32x4d'
,
'resnext101_64x4d'
,
'resnext152_32x4d'
,
'resnext152_64x4d'
,
'InceptionV3'
,
'InceptionV3'
,
'inception_v3'
,
'inception_v3'
,
'SqueezeNet'
,
'SqueezeNet'
,
...
...
python/paddle/vision/models/resnet.py
浏览文件 @
ba4e7c7e
...
@@ -33,12 +33,30 @@ model_urls = {
...
@@ -33,12 +33,30 @@ model_urls = {
'02f35f034ca3858e1e54d4036443c92d'
),
'02f35f034ca3858e1e54d4036443c92d'
),
'resnet152'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams'
,
'resnet152'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams'
,
'7ad16a2f1e7333859ff986138630fd7a'
),
'7ad16a2f1e7333859ff986138630fd7a'
),
'wide_resnet50_2'
:
'resnext50_32x4d'
:
(
'https://paddle-hapi.bj.bcebos.com/models/wide_resnet50_2.pdparams'
,
(
'https://paddle-hapi.bj.bcebos.com/models/resnext50_32x4d.pdparams'
,
'0282f804d73debdab289bd9fea3fa6dc'
),
'dc47483169be7d6f018fcbb7baf8775d'
),
'wide_resnet101_2'
:
"resnext50_64x4d"
:
(
'https://paddle-hapi.bj.bcebos.com/models/wide_resnet101_2.pdparams'
,
(
'https://paddle-hapi.bj.bcebos.com/models/resnext50_64x4d.pdparams'
,
'd4360a2d23657f059216f5d5a1a9ac93'
),
'063d4b483e12b06388529450ad7576db'
),
'resnext101_32x4d'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnext101_32x4d.pdparams'
,
'967b090039f9de2c8d06fe994fb9095f'
),
'resnext101_64x4d'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnext101_64x4d.pdparams'
,
'98e04e7ca616a066699230d769d03008'
),
'resnext152_32x4d'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnext152_32x4d.pdparams'
,
'18ff0beee21f2efc99c4b31786107121'
),
'resnext152_64x4d'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnext152_64x4d.pdparams'
,
'77c4af00ca42c405fa7f841841959379'
),
'wide_resnet50_2'
:
(
'https://paddle-hapi.bj.bcebos.com/models/wide_resnet50_2.pdparams'
,
'0282f804d73debdab289bd9fea3fa6dc'
),
'wide_resnet101_2'
:
(
'https://paddle-hapi.bj.bcebos.com/models/wide_resnet101_2.pdparams'
,
'd4360a2d23657f059216f5d5a1a9ac93'
),
}
}
...
@@ -158,11 +176,12 @@ class ResNet(nn.Layer):
...
@@ -158,11 +176,12 @@ class ResNet(nn.Layer):
Args:
Args:
Block (BasicBlock|BottleneckBlock): block module of model.
Block (BasicBlock|BottleneckBlock): block module of model.
depth (int
): layers of resnet, d
efault: 50.
depth (int
, optional): layers of resnet, D
efault: 50.
width (int
): base width of resnet, d
efault: 64.
width (int
, optional): base width per convolution group for each convolution block, D
efault: 64.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
num_classes (int
, optional
): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
with_pool (bool, optional): use pool before the last fc layer or not. Default: True.
groups (int, optional): number of groups for each convolution block, Default: 1.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -171,16 +190,23 @@ class ResNet(nn.Layer):
...
@@ -171,16 +190,23 @@ class ResNet(nn.Layer):
from paddle.vision.models import ResNet
from paddle.vision.models import ResNet
from paddle.vision.models.resnet import BottleneckBlock, BasicBlock
from paddle.vision.models.resnet import BottleneckBlock, BasicBlock
# build ResNet with 18 layers
resnet18 = ResNet(BasicBlock, 18)
# build ResNet with 50 layers
resnet50 = ResNet(BottleneckBlock, 50)
resnet50 = ResNet(BottleneckBlock, 50)
# build Wide ResNet model
wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2)
wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2)
resnet18 = ResNet(BasicBlock, 18)
# build ResNeXt model
resnext50_32x4d = ResNet(BottleneckBlock, 50, width=4, groups=32)
x = paddle.rand([1, 3, 224, 224])
x = paddle.rand([1, 3, 224, 224])
out = resnet18(x)
out = resnet18(x)
print(out.shape)
print(out.shape)
# [1, 1000]
"""
"""
...
@@ -189,7 +215,8 @@ class ResNet(nn.Layer):
...
@@ -189,7 +215,8 @@ class ResNet(nn.Layer):
depth
=
50
,
depth
=
50
,
width
=
64
,
width
=
64
,
num_classes
=
1000
,
num_classes
=
1000
,
with_pool
=
True
):
with_pool
=
True
,
groups
=
1
):
super
(
ResNet
,
self
).
__init__
()
super
(
ResNet
,
self
).
__init__
()
layer_cfg
=
{
layer_cfg
=
{
18
:
[
2
,
2
,
2
,
2
],
18
:
[
2
,
2
,
2
,
2
],
...
@@ -199,7 +226,7 @@ class ResNet(nn.Layer):
...
@@ -199,7 +226,7 @@ class ResNet(nn.Layer):
152
:
[
3
,
8
,
36
,
3
]
152
:
[
3
,
8
,
36
,
3
]
}
}
layers
=
layer_cfg
[
depth
]
layers
=
layer_cfg
[
depth
]
self
.
groups
=
1
self
.
groups
=
groups
self
.
base_width
=
width
self
.
base_width
=
width
self
.
num_classes
=
num_classes
self
.
num_classes
=
num_classes
self
.
with_pool
=
with_pool
self
.
with_pool
=
with_pool
...
@@ -300,7 +327,7 @@ def resnet18(pretrained=False, **kwargs):
...
@@ -300,7 +327,7 @@ def resnet18(pretrained=False, **kwargs):
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -318,6 +345,7 @@ def resnet18(pretrained=False, **kwargs):
...
@@ -318,6 +345,7 @@ def resnet18(pretrained=False, **kwargs):
out = model(x)
out = model(x)
print(out.shape)
print(out.shape)
# [1, 1000]
"""
"""
return
_resnet
(
'resnet18'
,
BasicBlock
,
18
,
pretrained
,
**
kwargs
)
return
_resnet
(
'resnet18'
,
BasicBlock
,
18
,
pretrained
,
**
kwargs
)
...
@@ -327,7 +355,7 @@ def resnet34(pretrained=False, **kwargs):
...
@@ -327,7 +355,7 @@ def resnet34(pretrained=False, **kwargs):
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -345,6 +373,7 @@ def resnet34(pretrained=False, **kwargs):
...
@@ -345,6 +373,7 @@ def resnet34(pretrained=False, **kwargs):
out = model(x)
out = model(x)
print(out.shape)
print(out.shape)
# [1, 1000]
"""
"""
return
_resnet
(
'resnet34'
,
BasicBlock
,
34
,
pretrained
,
**
kwargs
)
return
_resnet
(
'resnet34'
,
BasicBlock
,
34
,
pretrained
,
**
kwargs
)
...
@@ -354,7 +383,7 @@ def resnet50(pretrained=False, **kwargs):
...
@@ -354,7 +383,7 @@ def resnet50(pretrained=False, **kwargs):
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -372,6 +401,7 @@ def resnet50(pretrained=False, **kwargs):
...
@@ -372,6 +401,7 @@ def resnet50(pretrained=False, **kwargs):
out = model(x)
out = model(x)
print(out.shape)
print(out.shape)
# [1, 1000]
"""
"""
return
_resnet
(
'resnet50'
,
BottleneckBlock
,
50
,
pretrained
,
**
kwargs
)
return
_resnet
(
'resnet50'
,
BottleneckBlock
,
50
,
pretrained
,
**
kwargs
)
...
@@ -381,7 +411,7 @@ def resnet101(pretrained=False, **kwargs):
...
@@ -381,7 +411,7 @@ def resnet101(pretrained=False, **kwargs):
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -399,6 +429,7 @@ def resnet101(pretrained=False, **kwargs):
...
@@ -399,6 +429,7 @@ def resnet101(pretrained=False, **kwargs):
out = model(x)
out = model(x)
print(out.shape)
print(out.shape)
# [1, 1000]
"""
"""
return
_resnet
(
'resnet101'
,
BottleneckBlock
,
101
,
pretrained
,
**
kwargs
)
return
_resnet
(
'resnet101'
,
BottleneckBlock
,
101
,
pretrained
,
**
kwargs
)
...
@@ -408,7 +439,7 @@ def resnet152(pretrained=False, **kwargs):
...
@@ -408,7 +439,7 @@ def resnet152(pretrained=False, **kwargs):
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -426,16 +457,201 @@ def resnet152(pretrained=False, **kwargs):
...
@@ -426,16 +457,201 @@ def resnet152(pretrained=False, **kwargs):
out = model(x)
out = model(x)
print(out.shape)
print(out.shape)
# [1, 1000]
"""
"""
return
_resnet
(
'resnet152'
,
BottleneckBlock
,
152
,
pretrained
,
**
kwargs
)
return
_resnet
(
'resnet152'
,
BottleneckBlock
,
152
,
pretrained
,
**
kwargs
)
def
resnext50_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext50_32x4d
# build model
model = resnext50_32x4d()
# build model and load imagenet pretrained weight
# model = resnext50_32x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
32
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext50_32x4d'
,
BottleneckBlock
,
50
,
pretrained
,
**
kwargs
)
def
resnext50_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-50 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext50_64x4d
# build model
model = resnext50_64x4d()
# build model and load imagenet pretrained weight
# model = resnext50_64x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
64
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext50_64x4d'
,
BottleneckBlock
,
50
,
pretrained
,
**
kwargs
)
def
resnext101_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-101 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext101_32x4d
# build model
model = resnext101_32x4d()
# build model and load imagenet pretrained weight
# model = resnext101_32x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
32
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext101_32x4d'
,
BottleneckBlock
,
101
,
pretrained
,
**
kwargs
)
def
resnext101_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-101 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext101_64x4d
# build model
model = resnext101_64x4d()
# build model and load imagenet pretrained weight
# model = resnext101_64x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
64
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext101_64x4d'
,
BottleneckBlock
,
101
,
pretrained
,
**
kwargs
)
def
resnext152_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-152 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext152_32x4d
# build model
model = resnext152_32x4d()
# build model and load imagenet pretrained weight
# model = resnext152_32x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
32
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext152_32x4d'
,
BottleneckBlock
,
152
,
pretrained
,
**
kwargs
)
def
resnext152_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-152 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext152_64x4d
# build model
model = resnext152_64x4d()
# build model and load imagenet pretrained weight
# model = resnext152_64x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
64
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext152_64x4d'
,
BottleneckBlock
,
152
,
pretrained
,
**
kwargs
)
def
wide_resnet50_2
(
pretrained
=
False
,
**
kwargs
):
def
wide_resnet50_2
(
pretrained
=
False
,
**
kwargs
):
"""Wide ResNet-50-2 model from
"""Wide ResNet-50-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
Args:
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -453,6 +669,7 @@ def wide_resnet50_2(pretrained=False, **kwargs):
...
@@ -453,6 +669,7 @@ def wide_resnet50_2(pretrained=False, **kwargs):
out = model(x)
out = model(x)
print(out.shape)
print(out.shape)
# [1, 1000]
"""
"""
kwargs
[
'width'
]
=
64
*
2
kwargs
[
'width'
]
=
64
*
2
return
_resnet
(
'wide_resnet50_2'
,
BottleneckBlock
,
50
,
pretrained
,
**
kwargs
)
return
_resnet
(
'wide_resnet50_2'
,
BottleneckBlock
,
50
,
pretrained
,
**
kwargs
)
...
@@ -463,7 +680,7 @@ def wide_resnet101_2(pretrained=False, **kwargs):
...
@@ -463,7 +680,7 @@ def wide_resnet101_2(pretrained=False, **kwargs):
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
Args:
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -481,6 +698,7 @@ def wide_resnet101_2(pretrained=False, **kwargs):
...
@@ -481,6 +698,7 @@ def wide_resnet101_2(pretrained=False, **kwargs):
out = model(x)
out = model(x)
print(out.shape)
print(out.shape)
# [1, 1000]
"""
"""
kwargs
[
'width'
]
=
64
*
2
kwargs
[
'width'
]
=
64
*
2
return
_resnet
(
'wide_resnet101_2'
,
BottleneckBlock
,
101
,
pretrained
,
return
_resnet
(
'wide_resnet101_2'
,
BottleneckBlock
,
101
,
pretrained
,
...
...
python/paddle/vision/models/resnext.py
已删除
100644 → 0
浏览文件 @
6721376b
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.nn
import
AdaptiveAvgPool2D
,
BatchNorm
,
Conv2D
,
Linear
,
MaxPool2D
from
paddle.nn.initializer
import
Uniform
from
paddle.utils.download
import
get_weights_path_from_url
__all__
=
[]
model_urls
=
{
'resnext50_32x4d'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams'
,
'bf04add2f7fd22efcbe91511bcd1eebe'
),
"resnext50_64x4d"
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams'
,
'46307df0e2d6d41d3b1c1d22b00abc69'
),
'resnext101_32x4d'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams'
,
'078ca145b3bea964ba0544303a43c36d'
),
'resnext101_64x4d'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams'
,
'4edc0eb32d3cc5d80eff7cab32cd5c64'
),
'resnext152_32x4d'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams'
,
'7971cc994d459af167c502366f866378'
),
'resnext152_64x4d'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams'
,
'836943f03709efec364d486c57d132de'
),
}
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv
(
inputs
)
x
=
self
.
_batch_norm
(
x
)
return
x
class
BottleneckBlock
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
cardinality
,
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
stride
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
):
x
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
x
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
x
=
paddle
.
add
(
x
=
short
,
y
=
conv2
)
x
=
F
.
relu
(
x
)
return
x
class
ResNeXt
(
nn
.
Layer
):
"""ResNeXt model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
depth (int, optional): depth of resnext. Default: 50.
cardinality (int, optional): cardinality of resnext. Default: 32.
num_classes (int, optional): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool, optional): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import ResNeXt
resnext50_32x4d = ResNeXt(depth=50, cardinality=32)
"""
def
__init__
(
self
,
depth
=
50
,
cardinality
=
32
,
num_classes
=
1000
,
with_pool
=
True
):
super
(
ResNeXt
,
self
).
__init__
()
self
.
depth
=
depth
self
.
cardinality
=
cardinality
self
.
num_classes
=
num_classes
self
.
with_pool
=
with_pool
supported_depth
=
[
50
,
101
,
152
]
assert
depth
in
supported_depth
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_depth
,
depth
)
supported_cardinality
=
[
32
,
64
]
assert
cardinality
in
supported_cardinality
,
\
"supported cardinality is {} but input cardinality is {}"
\
.
format
(
supported_cardinality
,
cardinality
)
layer_cfg
=
{
50
:
[
3
,
4
,
6
,
3
],
101
:
[
3
,
4
,
23
,
3
],
152
:
[
3
,
8
,
36
,
3
]}
layers
=
layer_cfg
[
depth
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
128
,
256
,
512
,
1024
]
if
cardinality
==
32
else
[
256
,
512
,
1024
,
2048
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool2d_max
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
layers
)):
shortcut
=
False
for
i
in
range
(
layers
[
block
]):
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
if
with_pool
:
self
.
pool2d_avg
=
AdaptiveAvgPool2D
(
1
)
if
num_classes
>
0
:
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
num_classes
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
inputs
):
with
paddle
.
static
.
amp
.
fp16_guard
():
x
=
self
.
conv
(
inputs
)
x
=
self
.
pool2d_max
(
x
)
for
block
in
self
.
block_list
:
x
=
block
(
x
)
if
self
.
with_pool
:
x
=
self
.
pool2d_avg
(
x
)
if
self
.
num_classes
>
0
:
x
=
paddle
.
reshape
(
x
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
x
=
self
.
out
(
x
)
return
x
def
_resnext
(
arch
,
depth
,
cardinality
,
pretrained
,
**
kwargs
):
model
=
ResNeXt
(
depth
=
depth
,
cardinality
=
cardinality
,
**
kwargs
)
if
pretrained
:
assert
arch
in
model_urls
,
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
weight_path
=
get_weights_path_from_url
(
model_urls
[
arch
][
0
],
model_urls
[
arch
][
1
])
param
=
paddle
.
load
(
weight_path
)
model
.
set_dict
(
param
)
return
model
def
resnext50_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext50_32x4d
# build model
model = resnext50_32x4d()
# build model and load imagenet pretrained weight
# model = resnext50_32x4d(pretrained=True)
"""
return
_resnext
(
'resnext50_32x4d'
,
50
,
32
,
pretrained
,
**
kwargs
)
def
resnext50_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-50 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext50_64x4d
# build model
model = resnext50_64x4d()
# build model and load imagenet pretrained weight
# model = resnext50_64x4d(pretrained=True)
"""
return
_resnext
(
'resnext50_64x4d'
,
50
,
64
,
pretrained
,
**
kwargs
)
def
resnext101_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-101 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext101_32x4d
# build model
model = resnext101_32x4d()
# build model and load imagenet pretrained weight
# model = resnext101_32x4d(pretrained=True)
"""
return
_resnext
(
'resnext101_32x4d'
,
101
,
32
,
pretrained
,
**
kwargs
)
def
resnext101_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-101 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext101_64x4d
# build model
model = resnext101_64x4d()
# build model and load imagenet pretrained weight
# model = resnext101_64x4d(pretrained=True)
"""
return
_resnext
(
'resnext101_64x4d'
,
101
,
64
,
pretrained
,
**
kwargs
)
def
resnext152_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-152 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext152_32x4d
# build model
model = resnext152_32x4d()
# build model and load imagenet pretrained weight
# model = resnext152_32x4d(pretrained=True)
"""
return
_resnext
(
'resnext152_32x4d'
,
152
,
32
,
pretrained
,
**
kwargs
)
def
resnext152_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-152 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext152_64x4d
# build model
model = resnext152_64x4d()
# build model and load imagenet pretrained weight
# model = resnext152_64x4d(pretrained=True)
"""
return
_resnext
(
'resnext152_64x4d'
,
152
,
64
,
pretrained
,
**
kwargs
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录