Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ba39e688
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ba39e688
编写于
2月 28, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into srl_api_v2
上级
da754d85
ce325996
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
272 addition
and
210 deletion
+272
-210
python/paddle/trainer_config_helpers/default_decorators.py
python/paddle/trainer_config_helpers/default_decorators.py
+4
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+6
-0
python/paddle/v2/dataset/cifar.py
python/paddle/v2/dataset/cifar.py
+32
-53
python/paddle/v2/dataset/common.py
python/paddle/v2/dataset/common.py
+34
-0
python/paddle/v2/dataset/config.py
python/paddle/v2/dataset/config.py
+0
-36
python/paddle/v2/dataset/mnist.py
python/paddle/v2/dataset/mnist.py
+49
-22
python/paddle/v2/dataset/movielens.py
python/paddle/v2/dataset/movielens.py
+1
-1
python/paddle/v2/dataset/tests/cifar_test.py
python/paddle/v2/dataset/tests/cifar_test.py
+42
-0
python/paddle/v2/dataset/tests/common_test.py
python/paddle/v2/dataset/tests/common_test.py
+23
-0
python/paddle/v2/dataset/tests/mnist_test.py
python/paddle/v2/dataset/tests/mnist_test.py
+30
-0
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+50
-93
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+1
-5
未找到文件。
python/paddle/trainer_config_helpers/default_decorators.py
浏览文件 @
ba39e688
...
...
@@ -52,6 +52,10 @@ def wrap_param_default(param_names=None,
kwargs
[
name
]
=
default_factory
(
func
)
return
func
(
*
args
,
**
kwargs
)
if
hasattr
(
func
,
'argspec'
):
__wrapper__
.
argspec
=
func
.
argspec
else
:
__wrapper__
.
argspec
=
inspect
.
getargspec
(
func
)
return
__wrapper__
return
__impl__
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
ba39e688
...
...
@@ -14,6 +14,7 @@
import
functools
import
collections
import
inspect
from
paddle.trainer.config_parser
import
*
from
.activations
import
LinearActivation
,
SigmoidActivation
,
TanhActivation
,
\
...
...
@@ -316,6 +317,11 @@ def layer_support(*attrs):
val
.
check
(
method
.
__name__
)
return
method
(
*
args
,
**
kwargs
)
if
hasattr
(
method
,
'argspec'
):
wrapper
.
argspec
=
method
.
argspec
else
:
wrapper
.
argspec
=
inspect
.
getargspec
(
method
)
return
wrapper
return
decorator
...
...
python/paddle/v2/dataset/cifar.py
浏览文件 @
ba39e688
"""
CIFAR Dataset.
URL: https://www.cs.toronto.edu/~kriz/cifar.html
the default train_creator, test_creator used for CIFAR-10 dataset.
CIFAR dataset: https://www.cs.toronto.edu/~kriz/cifar.html
"""
import
cPickle
import
itertools
import
tarfile
import
numpy
import
paddle.v2.dataset.common
import
tarfile
from
config
import
download
__all__
=
[
'cifar_100_train_creator'
,
'cifar_100_test_creator'
,
'train_creator'
,
'test_creator'
]
__all__
=
[
'train100'
,
'test100'
,
'train10'
,
'test10'
]
CIFAR10_URL
=
'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
URL_PREFIX
=
'https://www.cs.toronto.edu/~kriz/'
CIFAR10_URL
=
URL_PREFIX
+
'cifar-10-python.tar.gz'
CIFAR10_MD5
=
'c58f30108f718f92721af3b95e74349a'
CIFAR100_URL
=
'https://www.cs.toronto.edu/~kriz/
cifar-100-python.tar.gz'
CIFAR100_URL
=
URL_PREFIX
+
'
cifar-100-python.tar.gz'
CIFAR100_MD5
=
'eb9058c3a382ffc7106e4002c42a8d85'
def
__read_batch__
(
filename
,
sub_name
):
def
reader
():
def
__read_one_batch_impl__
(
batch
):
data
=
batch
[
'data'
]
labels
=
batch
.
get
(
'labels'
,
batch
.
get
(
'fine_labels'
,
None
))
assert
labels
is
not
None
for
sample
,
label
in
itertools
.
izip
(
data
,
labels
):
yield
(
sample
/
255.0
).
astype
(
numpy
.
float32
),
int
(
label
)
def
reader_creator
(
filename
,
sub_name
):
def
read_batch
(
batch
):
data
=
batch
[
'data'
]
labels
=
batch
.
get
(
'labels'
,
batch
.
get
(
'fine_labels'
,
None
))
assert
labels
is
not
None
for
sample
,
label
in
itertools
.
izip
(
data
,
labels
):
yield
(
sample
/
255.0
).
astype
(
numpy
.
float32
),
int
(
label
)
def
reader
():
with
tarfile
.
open
(
filename
,
mode
=
'r'
)
as
f
:
names
=
(
each_item
.
name
for
each_item
in
f
if
sub_name
in
each_item
.
name
)
for
name
in
names
:
batch
=
cPickle
.
load
(
f
.
extractfile
(
name
))
for
item
in
__read_one_batch_impl__
(
batch
):
for
item
in
read_batch
(
batch
):
yield
item
return
reader
def
cifar_100_train_creator
():
fn
=
download
(
url
=
CIFAR100_URL
,
md5
=
CIFAR100_MD5
)
return
__read_batch__
(
fn
,
'train'
)
def
cifar_100_test_creator
():
fn
=
download
(
url
=
CIFAR100_URL
,
md5
=
CIFAR100_MD5
)
return
__read_batch__
(
fn
,
'test'
)
def
train_creator
():
"""
Default train reader creator. Use CIFAR-10 dataset.
"""
fn
=
download
(
url
=
CIFAR10_URL
,
md5
=
CIFAR10_MD5
)
return
__read_batch__
(
fn
,
'data_batch'
)
def
train100
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
CIFAR100_URL
,
'cifar'
,
CIFAR100_MD5
),
'train'
)
def
test_creator
():
"""
Default test reader creator. Use CIFAR-10 dataset.
"""
fn
=
download
(
url
=
CIFAR10_URL
,
md5
=
CIFAR10_MD5
)
return
__read_batch__
(
fn
,
'test_batch'
)
def
test100
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
CIFAR100_URL
,
'cifar'
,
CIFAR100_MD5
),
'test'
)
def
unittest
():
for
_
in
train_creator
()():
pass
for
_
in
test_creator
()():
pass
def
train10
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
CIFAR10_URL
,
'cifar'
,
CIFAR10_MD5
),
'data_batch'
)
if
__name__
==
'__main__'
:
unittest
()
def
test10
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
CIFAR10_URL
,
'cifar'
,
CIFAR10_MD5
),
'test_batch'
)
python/paddle/v2/dataset/common.py
0 → 100644
浏览文件 @
ba39e688
import
requests
import
hashlib
import
os
import
shutil
__all__
=
[
'DATA_HOME'
,
'download'
,
'md5file'
]
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset'
)
if
not
os
.
path
.
exists
(
DATA_HOME
):
os
.
makedirs
(
DATA_HOME
)
def
md5file
(
fname
):
hash_md5
=
hashlib
.
md5
()
f
=
open
(
fname
,
"rb"
)
for
chunk
in
iter
(
lambda
:
f
.
read
(
4096
),
b
""
):
hash_md5
.
update
(
chunk
)
f
.
close
()
return
hash_md5
.
hexdigest
()
def
download
(
url
,
module_name
,
md5sum
):
dirname
=
os
.
path
.
join
(
DATA_HOME
,
module_name
)
if
not
os
.
path
.
exists
(
dirname
):
os
.
makedirs
(
dirname
)
filename
=
os
.
path
.
join
(
dirname
,
url
.
split
(
'/'
)[
-
1
])
if
not
(
os
.
path
.
exists
(
filename
)
and
md5file
(
filename
)
==
md5sum
):
r
=
requests
.
get
(
url
,
stream
=
True
)
with
open
(
filename
,
'w'
)
as
f
:
shutil
.
copyfileobj
(
r
.
raw
,
f
)
return
filename
python/paddle/v2/dataset/config.py
已删除
100644 → 0
浏览文件 @
da754d85
import
hashlib
import
os
import
shutil
import
urllib2
__all__
=
[
'DATA_HOME'
,
'download'
]
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle_data_set'
)
if
not
os
.
path
.
exists
(
DATA_HOME
):
os
.
makedirs
(
DATA_HOME
)
def
download
(
url
,
md5
):
filename
=
os
.
path
.
split
(
url
)[
-
1
]
assert
DATA_HOME
is
not
None
filepath
=
os
.
path
.
join
(
DATA_HOME
,
md5
)
if
not
os
.
path
.
exists
(
filepath
):
os
.
makedirs
(
filepath
)
__full_file__
=
os
.
path
.
join
(
filepath
,
filename
)
def
__file_ok__
():
if
not
os
.
path
.
exists
(
__full_file__
):
return
False
md5_hash
=
hashlib
.
md5
()
with
open
(
__full_file__
,
'rb'
)
as
f
:
for
chunk
in
iter
(
lambda
:
f
.
read
(
4096
),
b
""
):
md5_hash
.
update
(
chunk
)
return
md5_hash
.
hexdigest
()
==
md5
while
not
__file_ok__
():
response
=
urllib2
.
urlopen
(
url
)
with
open
(
__full_file__
,
mode
=
'wb'
)
as
of
:
shutil
.
copyfileobj
(
fsrc
=
response
,
fdst
=
of
)
return
__full_file__
python/paddle/v2/dataset/mnist.py
浏览文件 @
ba39e688
import
sklearn.datasets.mldata
import
sklearn.model_selection
"""
MNIST dataset.
"""
import
numpy
from
config
import
DATA_HOME
import
paddle.v2.dataset.common
import
subprocess
__all__
=
[
'train
_creator'
,
'test_creator
'
]
__all__
=
[
'train
'
,
'test
'
]
URL_PREFIX
=
'http://yann.lecun.com/exdb/mnist/'
TEST_IMAGE_URL
=
URL_PREFIX
+
't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5
=
'25e3cc63507ef6e98d5dc541e8672bb6'
TEST_LABEL_URL
=
URL_PREFIX
+
't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5
=
'4e9511fe019b2189026bd0421ba7b688'
TRAIN_IMAGE_URL
=
URL_PREFIX
+
'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5
=
'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL
=
URL_PREFIX
+
'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5
=
'd53e105ee54ea40749a09fcbcd1e9432'
def
__mnist_reader_creator__
(
data
,
target
):
def
reader_creator
(
image_filename
,
label_filename
,
buffer_size
):
def
reader
():
n_samples
=
data
.
shape
[
0
]
for
i
in
xrange
(
n_samples
):
yield
(
data
[
i
]
/
255.0
).
astype
(
numpy
.
float32
),
int
(
target
[
i
])
# According to http://stackoverflow.com/a/38061619/724872, we
# cannot use standard package gzip here.
m
=
subprocess
.
Popen
([
"zcat"
,
image_filename
],
stdout
=
subprocess
.
PIPE
)
m
.
stdout
.
read
(
16
)
# skip some magic bytes
return
reader
l
=
subprocess
.
Popen
([
"zcat"
,
label_filename
],
stdout
=
subprocess
.
PIPE
)
l
.
stdout
.
read
(
8
)
# skip some magic bytes
while
True
:
labels
=
numpy
.
fromfile
(
l
.
stdout
,
'ubyte'
,
count
=
buffer_size
).
astype
(
"int"
)
TEST_SIZE
=
10000
if
labels
.
size
!=
buffer_size
:
break
# numpy.fromfile returns empty slice after EOF.
data
=
sklearn
.
datasets
.
mldata
.
fetch_mldata
(
"MNIST original"
,
data_home
=
DATA_HOME
)
X_train
,
X_test
,
y_train
,
y_test
=
sklearn
.
model_selection
.
train_test_split
(
data
.
data
,
data
.
target
,
test_size
=
TEST_SIZE
,
random_state
=
0
)
images
=
numpy
.
fromfile
(
m
.
stdout
,
'ubyte'
,
count
=
buffer_size
*
28
*
28
).
reshape
(
(
buffer_size
,
28
*
28
)).
astype
(
'float32'
)
images
=
images
/
255.0
*
2.0
-
1.0
def
train_creator
(
):
return
__mnist_reader_creator__
(
X_train
,
y_train
)
for
i
in
xrange
(
buffer_size
):
yield
images
[
i
,
:],
int
(
labels
[
i
]
)
m
.
terminate
()
l
.
terminate
()
def
test_creator
():
return
__mnist_reader_creator__
(
X_test
,
y_test
)
return
reader
def
unittest
():
assert
len
(
list
(
test_creator
()()))
==
TEST_SIZE
def
train
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
TRAIN_IMAGE_URL
,
'mnist'
,
TRAIN_IMAGE_MD5
),
paddle
.
v2
.
dataset
.
common
.
download
(
TRAIN_LABEL_URL
,
'mnist'
,
TRAIN_LABEL_MD5
),
100
)
if
__name__
==
'__main__'
:
unittest
()
def
test
():
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
TEST_IMAGE_URL
,
'mnist'
,
TEST_IMAGE_MD5
),
paddle
.
v2
.
dataset
.
common
.
download
(
TEST_LABEL_URL
,
'mnist'
,
TEST_LABEL_MD5
),
100
)
python/paddle/v2/dataset/movielens.py
浏览文件 @
ba39e688
import
zipfile
from
co
nfig
import
download
from
co
mmon
import
download
import
re
import
random
import
functools
...
...
python/paddle/v2/dataset/tests/cifar_test.py
0 → 100644
浏览文件 @
ba39e688
import
paddle.v2.dataset.cifar
import
unittest
class
TestCIFAR
(
unittest
.
TestCase
):
def
check_reader
(
self
,
reader
):
sum
=
0
label
=
0
for
l
in
reader
():
self
.
assertEqual
(
l
[
0
].
size
,
3072
)
if
l
[
1
]
>
label
:
label
=
l
[
1
]
sum
+=
1
return
sum
,
label
def
test_test10
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
cifar
.
test10
())
self
.
assertEqual
(
instances
,
10000
)
self
.
assertEqual
(
max_label_value
,
9
)
def
test_train10
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
cifar
.
train10
())
self
.
assertEqual
(
instances
,
50000
)
self
.
assertEqual
(
max_label_value
,
9
)
def
test_test100
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
cifar
.
test100
())
self
.
assertEqual
(
instances
,
10000
)
self
.
assertEqual
(
max_label_value
,
99
)
def
test_train100
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
cifar
.
train100
())
self
.
assertEqual
(
instances
,
50000
)
self
.
assertEqual
(
max_label_value
,
99
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/dataset/tests/common_test.py
0 → 100644
浏览文件 @
ba39e688
import
paddle.v2.dataset.common
import
unittest
import
tempfile
class
TestCommon
(
unittest
.
TestCase
):
def
test_md5file
(
self
):
_
,
temp_path
=
tempfile
.
mkstemp
()
with
open
(
temp_path
,
'w'
)
as
f
:
f
.
write
(
"Hello
\n
"
)
self
.
assertEqual
(
'09f7e02f1290be211da707a266f153b3'
,
paddle
.
v2
.
dataset
.
common
.
md5file
(
temp_path
))
def
test_download
(
self
):
yi_avatar
=
'https://avatars0.githubusercontent.com/u/1548775?v=3&s=460'
self
.
assertEqual
(
paddle
.
v2
.
dataset
.
common
.
DATA_HOME
+
'/test/1548775?v=3&s=460'
,
paddle
.
v2
.
dataset
.
common
.
download
(
yi_avatar
,
'test'
,
'f75287202d6622414c706c36c16f8e0d'
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/dataset/tests/mnist_test.py
0 → 100644
浏览文件 @
ba39e688
import
paddle.v2.dataset.mnist
import
unittest
class
TestMNIST
(
unittest
.
TestCase
):
def
check_reader
(
self
,
reader
):
sum
=
0
label
=
0
for
l
in
reader
():
self
.
assertEqual
(
l
[
0
].
size
,
784
)
if
l
[
1
]
>
label
:
label
=
l
[
1
]
sum
+=
1
return
sum
,
label
def
test_train
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
mnist
.
train
())
self
.
assertEqual
(
instances
,
60000
)
self
.
assertEqual
(
max_label_value
,
9
)
def
test_test
(
self
):
instances
,
max_label_value
=
self
.
check_reader
(
paddle
.
v2
.
dataset
.
mnist
.
test
())
self
.
assertEqual
(
instances
,
10000
)
self
.
assertEqual
(
max_label_value
,
9
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/layer.py
浏览文件 @
ba39e688
...
...
@@ -67,6 +67,7 @@ paddle.v2.parameters.create, no longer exposed to users.
"""
import
collections
import
inspect
import
paddle.trainer_config_helpers
as
conf_helps
from
paddle.trainer_config_helpers.config_parser_utils
import
\
...
...
@@ -74,26 +75,14 @@ from paddle.trainer_config_helpers.config_parser_utils import \
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_act_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_bias_attr_default
from
paddle.trainer_config_helpers.default_decorators
import
\
wrap_bias_attr_default
from
paddle.trainer_config_helpers.layers
import
layer_support
import
data_type
import
activation
import
attr
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'conv_shift'
,
'img_conv'
,
'img_pool'
,
'spp'
,
'maxout'
,
'img_cmrnorm'
,
'batch_norm'
,
'sum_to_one_norm'
,
'recurrent'
,
'lstmemory'
,
'grumemory'
,
'pool'
,
'last_seq'
,
'first_seq'
,
'concat'
,
'seq_concat'
,
'block_expand'
,
'expand'
,
'repeat'
,
'seq_reshape'
,
'addto'
,
'linear_comb'
,
'interpolation'
,
'bilinear_interp'
,
'power'
,
'scaling'
,
'slope_intercept'
,
'tensor'
,
'cos_sim'
,
'trans'
,
'max_id'
,
'sampling_id'
,
'pad'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'sum_cost'
,
'huber_cost'
,
'crf'
,
'crf_decoding'
,
'ctc'
,
'warp_ctc'
,
'nce'
,
'hsigmoid'
,
'eos'
]
__all__
=
[
'parse_network'
,
'data'
]
__projection_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_projection'
),
dir
(
conf_helps
))
...
...
@@ -289,83 +278,51 @@ data = DataLayerV2
AggregateLevel
=
conf_helps
.
layers
.
AggregateLevel
ExpandLevel
=
conf_helps
.
layers
.
ExpandLevel
layer_list
=
[
# [V2LayerImpl, V1_method_name, parent_names]
# fully connected layers
[
'fc'
,
'fc_layer'
,
[
'input'
]],
# conv layers
[
'conv_shift'
,
'conv_shift_layer'
,
[
'a'
,
'b'
]],
[
'img_conv'
,
'img_conv_layer'
,
[
'input'
]],
# image pooling layers
[
'img_pool'
,
'img_pool_layer'
,
[
'input'
]],
[
'spp'
,
'spp_layer'
,
[
'input'
]],
[
'maxout'
,
'maxout_layer'
,
[
'input'
]],
# norm layers
[
'img_cmrnorm'
,
'img_cmrnorm_layer'
,
[
'input'
]],
[
'batch_norm'
,
'batch_norm_layer'
,
[
'input'
]],
[
'sum_to_one_norm'
,
'sum_to_one_norm_layer'
,
[
'input'
]],
# recurrent layers
[
'recurrent'
,
'recurrent_layer'
,
[
'input'
]],
[
'lstmemory'
,
'lstmemory'
,
[
'input'
]],
[
'grumemory'
,
'grumemory'
,
[
'input'
]],
# aggregate layers
[
'pool'
,
'pooling_layer'
,
[
'input'
]],
[
'last_seq'
,
'last_seq'
,
[
'input'
]],
[
'first_seq'
,
'first_seq'
,
[
'input'
]],
[
'concat'
,
'concat_layer'
,
[
'input'
]],
[
'seq_concat'
,
'seq_concat_layer'
,
[
'a'
,
'b'
]],
# reshaping layers
[
'block_expand'
,
'block_expand_layer'
,
[
'input'
]],
[
'expand'
,
'expand_layer'
,
[
'input'
,
'expand_as'
]],
[
'repeat'
,
'repeat_layer'
,
[
'input'
]],
[
'rotate'
,
'rotate_layer'
,
[
'input'
]],
[
'seq_reshape'
,
'seq_reshape_layer'
,
[
'input'
]],
# math layers
[
'addto'
,
'addto_layer'
,
[
'input'
]],
[
'linear_comb'
,
'linear_comb_layer'
,
[
'weights'
,
'vectors'
]],
[
'interpolation'
,
'interpolation_layer'
,
[
'input'
,
'weight'
]],
[
'bilinear_interp'
,
'bilinear_interp_layer'
,
[
'input'
]],
[
'power'
,
'power_layer'
,
[
'input'
,
'weight'
]],
[
'scaling'
,
'scaling_layer'
,
[
'input'
,
'weight'
]],
[
'slope_intercept'
,
'slope_intercept_layer'
,
[
'input'
]],
[
'tensor'
,
'tensor_layer'
,
[
'a'
,
'b'
]],
[
'cos_sim'
,
'cos_sim'
,
[
'a'
,
'b'
]],
[
'trans'
,
'trans_layer'
,
[
'input'
]],
# sampling layers
[
'max_id'
,
'maxid_layer'
,
[
'input'
]],
[
'sampling_id'
,
'sampling_id_layer'
,
[
'input'
]],
# slicing and joining layers
[
'pad'
,
'pad_layer'
,
[
'input'
]],
# cost layers
[
'classification_cost'
,
'classification_cost'
,
[
'input'
,
'label'
,
'weight'
]
],
[
'regression_cost'
,
'regression_cost'
,
[
'input'
,
'label'
,
'weight'
]],
[
'cross_entropy_cost'
,
'cross_entropy'
,
[
'input'
,
'label'
]],
[
'cross_entropy_with_selfnorm_cost'
,
'cross_entropy_with_selfnorm'
,
[
'input'
,
'label'
]
],
[
'multi_binary_label_cross_entropy_cost'
,
'multi_binary_label_cross_entropy'
,
[
'input'
,
'label'
]
],
[
'rank_cost'
,
'rank_cost'
,
[
'left'
,
'right'
,
'label'
,
'weight'
]],
[
'lambda_cost'
,
'lambda_cost'
,
[
'input'
,
'score'
]],
[
'sum_cost'
,
'sum_cost'
,
[
'input'
]],
[
'huber_cost'
,
'huber_cost'
,
[
'input'
,
'label'
]],
[
'crf'
,
'crf_layer'
,
[
'input'
,
'label'
]],
[
'crf_decoding'
,
'crf_decoding_layer'
,
[
'input'
]],
[
'ctc'
,
'ctc_layer'
,
[
'input'
,
'label'
]],
[
'warp_ctc'
,
'warp_ctc_layer'
,
[
'input'
,
'label'
]],
[
'nce'
,
'nce_layer'
,
[
'input'
,
'label'
]],
[
'hsigmoid'
,
'hsigmoid'
,
[
'input'
,
'label'
]],
# check layers
[
'eos'
,
'eos_layer'
,
[
'input'
]]
]
for
l
in
layer_list
:
globals
()[
l
[
0
]]
=
__convert_to_v2__
(
l
[
1
],
l
[
2
])
def
__layer_name_mapping__
(
inname
):
if
inname
in
[
'data_layer'
,
'memory'
,
'mixed_layer'
]:
# Do Not handle these layers
return
elif
inname
==
'maxid_layer'
:
return
'max_id'
elif
inname
.
endswith
(
'memory'
)
or
inname
.
endswith
(
'_seq'
)
or
inname
.
endswith
(
'_sim'
)
or
inname
==
'hsigmoid'
:
return
inname
elif
inname
in
[
'cross_entropy'
,
'multi_binary_label_cross_entropy'
,
'cross_entropy_with_selfnorm'
]:
return
inname
+
"_cost"
elif
inname
.
endswith
(
'_cost'
):
return
inname
elif
inname
.
endswith
(
"_layer"
):
return
inname
[:
-
len
(
"_layer"
)]
def
__layer_name_mapping_parent_names__
(
inname
):
all_args
=
getattr
(
conf_helps
,
inname
).
argspec
.
args
return
filter
(
lambda
x
:
x
in
[
'input1'
,
'input2'
,
'label'
,
'input'
,
'a'
,
'b'
,
'expand_as'
,
'weights'
,
'vectors'
,
'weight'
,
'score'
,
'left'
,
'right'
],
all_args
)
def
__convert_layer__
(
_new_name_
,
_old_name_
,
_parent_names_
):
global
__all__
__all__
.
append
(
_new_name_
)
globals
()[
new_name
]
=
__convert_to_v2__
(
_old_name_
,
_parent_names_
)
for
each_layer_name
in
dir
(
conf_helps
):
new_name
=
__layer_name_mapping__
(
each_layer_name
)
if
new_name
is
not
None
:
parent_names
=
__layer_name_mapping_parent_names__
(
each_layer_name
)
assert
len
(
parent_names
)
!=
0
,
each_layer_name
__convert_layer__
(
new_name
,
each_layer_name
,
parent_names
)
del
parent_names
del
new_name
del
each_layer_name
# convert projection
for
prj
in
__projection_names__
:
...
...
python/paddle/v2/tests/test_layer.py
浏览文件 @
ba39e688
...
...
@@ -11,17 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
difflib
import
unittest
import
paddle.trainer_config_helpers
as
conf_helps
import
paddle.v2.activation
as
activation
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
import
paddle.v2.pooling
as
pooling
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
128
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
...
...
@@ -70,7 +66,7 @@ class ImageLayerTest(unittest.TestCase):
class
AggregateLayerTest
(
unittest
.
TestCase
):
def
test_aggregate_layer
(
self
):
pool
=
layer
.
pool
(
pool
=
layer
.
pool
ing
(
input
=
pixel
,
pooling_type
=
pooling
.
Avg
(),
agg_level
=
layer
.
AggregateLevel
.
EACH_SEQUENCE
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录