Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b83d27ac
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b83d27ac
编写于
9月 05, 2022
作者:
H
handiz
提交者:
GitHub
9月 05, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bug in PostTrainingProgram for certain cases (#45616)
* fix bug in PostTrainingProgram for certain cases
上级
808df649
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
33 addition
and
24 deletion
+33
-24
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+24
-20
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+4
-3
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_program_resnet50.py
...tests/test_post_training_quantization_program_resnet50.py
+5
-1
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
b83d27ac
...
@@ -26,6 +26,7 @@ except:
...
@@ -26,6 +26,7 @@ except:
from
inspect
import
isgeneratorfunction
from
inspect
import
isgeneratorfunction
from
....
import
io
from
....
import
io
from
....
import
core
from
....
import
core
from
....
import
reader
from
....
import
framework
from
....
import
framework
from
....
import
unique_name
from
....
import
unique_name
from
....executor
import
global_scope
,
Executor
from
....executor
import
global_scope
,
Executor
...
@@ -141,7 +142,6 @@ class PostTrainingQuantization(object):
...
@@ -141,7 +142,6 @@ class PostTrainingQuantization(object):
is_use_cache_file
=
False
,
is_use_cache_file
=
False
,
skip_tensor_list
=
None
,
skip_tensor_list
=
None
,
same_scale_tensor_list
=
None
,
same_scale_tensor_list
=
None
,
scale_trainable
=
False
,
cache_dir
=
None
,
cache_dir
=
None
,
scale_dict
=
None
,
scale_dict
=
None
,
return_graph
=
False
):
return_graph
=
False
):
...
@@ -231,7 +231,6 @@ class PostTrainingQuantization(object):
...
@@ -231,7 +231,6 @@ class PostTrainingQuantization(object):
`conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
`conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
be different. In address this problem, fuse the pattern before
be different. In address this problem, fuse the pattern before
quantization. Default False.
quantization. Default False.
scale_trainable(bool, optional): whether scale can be train.
is_use_cache_file(bool, optional): This param is deprecated.
is_use_cache_file(bool, optional): This param is deprecated.
cache_dir(str, optional): This param is deprecated.
cache_dir(str, optional): This param is deprecated.
Returns:
Returns:
...
@@ -296,7 +295,7 @@ class PostTrainingQuantization(object):
...
@@ -296,7 +295,7 @@ class PostTrainingQuantization(object):
batch_generator
,
data_loader
]),
"The sample_generator, batch_generator "
\
batch_generator
,
data_loader
]),
"The sample_generator, batch_generator "
\
"and data_loader cannot be None in the same time."
"and data_loader cannot be None in the same time."
if
data_loader
is
not
None
:
if
data_loader
is
not
None
:
assert
isinstance
(
data_loader
,
(
io
.
DataLoader
,
type
(
isgeneratorfunction
))),
\
assert
isinstance
(
data_loader
,
(
io
.
DataLoader
,
type
(
isgeneratorfunction
)
,
reader
.
GeneratorLoader
)),
\
"data_loader only accepts `paddle.io.DataLoader` or Generator instance."
"data_loader only accepts `paddle.io.DataLoader` or Generator instance."
assert
batch_size
>
0
,
"The batch_size should be greater than 0."
assert
batch_size
>
0
,
"The batch_size should be greater than 0."
assert
algo
in
self
.
_support_algo_type
,
\
assert
algo
in
self
.
_support_algo_type
,
\
...
@@ -366,9 +365,11 @@ class PostTrainingQuantization(object):
...
@@ -366,9 +365,11 @@ class PostTrainingQuantization(object):
self
.
_quantized_threshold
=
{}
self
.
_quantized_threshold
=
{}
self
.
_same_scale_tensor_list
=
same_scale_tensor_list
self
.
_same_scale_tensor_list
=
same_scale_tensor_list
self
.
_freeze_model
=
freeze_model
self
.
_freeze_model
=
freeze_model
self
.
_scale_trainable
=
scale_trainable
self
.
_scale_dict
=
scale_dict
self
.
_scale_dict
=
scale_dict
self
.
_return_graph
=
return_graph
self
.
_return_graph
=
return_graph
self
.
FLAG
=
False
if
self
.
_program
is
not
None
:
self
.
FLAG
=
True
def
quantize
(
self
):
def
quantize
(
self
):
'''
'''
...
@@ -440,7 +441,8 @@ class PostTrainingQuantization(object):
...
@@ -440,7 +441,8 @@ class PostTrainingQuantization(object):
self
.
_update_program
()
self
.
_update_program
()
# save out_threshold for quantized ops.
# save out_threshold for quantized ops.
self
.
_save_output_threshold
()
if
not
self
.
FLAG
:
self
.
_save_output_threshold
()
if
any
(
op_type
in
self
.
_quantizable_op_type
if
any
(
op_type
in
self
.
_quantizable_op_type
for
op_type
in
self
.
_dynamic_quantize_op_type
):
for
op_type
in
self
.
_dynamic_quantize_op_type
):
...
@@ -1001,8 +1003,7 @@ class PostTrainingQuantization(object):
...
@@ -1001,8 +1003,7 @@ class PostTrainingQuantization(object):
activation_bits
=
self
.
_activation_bits
,
activation_bits
=
self
.
_activation_bits
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
quantizable_op_type
=
major_quantizable_op_types
,
quantizable_op_type
=
major_quantizable_op_types
)
is_test
=
not
self
.
_scale_trainable
)
else
:
else
:
transform_pass
=
QuantizationTransformPassV2
(
transform_pass
=
QuantizationTransformPassV2
(
scope
=
self
.
_scope
,
scope
=
self
.
_scope
,
...
@@ -1011,8 +1012,7 @@ class PostTrainingQuantization(object):
...
@@ -1011,8 +1012,7 @@ class PostTrainingQuantization(object):
activation_bits
=
self
.
_activation_bits
,
activation_bits
=
self
.
_activation_bits
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
quantizable_op_type
=
major_quantizable_op_types
,
quantizable_op_type
=
major_quantizable_op_types
)
is_test
=
not
self
.
_scale_trainable
)
for
sub_graph
in
graph
.
all_sub_graphs
():
for
sub_graph
in
graph
.
all_sub_graphs
():
# Insert fake_quant/fake_dequantize op must in test graph, so
# Insert fake_quant/fake_dequantize op must in test graph, so
...
@@ -1029,15 +1029,13 @@ class PostTrainingQuantization(object):
...
@@ -1029,15 +1029,13 @@ class PostTrainingQuantization(object):
add_quant_dequant_pass
=
AddQuantDequantPass
(
add_quant_dequant_pass
=
AddQuantDequantPass
(
scope
=
self
.
_scope
,
scope
=
self
.
_scope
,
place
=
self
.
_place
,
place
=
self
.
_place
,
quantizable_op_type
=
minor_quantizable_op_types
,
quantizable_op_type
=
minor_quantizable_op_types
)
is_test
=
not
self
.
_scale_trainable
)
else
:
else
:
add_quant_dequant_pass
=
AddQuantDequantPassV2
(
add_quant_dequant_pass
=
AddQuantDequantPassV2
(
scope
=
self
.
_scope
,
scope
=
self
.
_scope
,
place
=
self
.
_place
,
place
=
self
.
_place
,
quantizable_op_type
=
minor_quantizable_op_types
,
quantizable_op_type
=
minor_quantizable_op_types
,
is_full_quantized
=
self
.
_is_full_quantize
,
is_full_quantized
=
self
.
_is_full_quantize
)
is_test
=
not
self
.
_scale_trainable
)
for
sub_graph
in
graph
.
all_sub_graphs
():
for
sub_graph
in
graph
.
all_sub_graphs
():
sub_graph
.
_for_test
=
True
sub_graph
.
_for_test
=
True
...
@@ -1055,11 +1053,11 @@ class PostTrainingQuantization(object):
...
@@ -1055,11 +1053,11 @@ class PostTrainingQuantization(object):
max_scale
=
None
max_scale
=
None
tmp_tensor_list
=
[]
tmp_tensor_list
=
[]
for
tensor_name
in
tensor_list
:
for
tensor_name
in
tensor_list
:
if
tensor_name
not
in
scale_dict
.
keys
():
continue
if
'#'
in
tensor_name
:
if
'#'
in
tensor_name
:
real_tensor_name
,
opera
,
scalar
=
tensor_name
.
split
(
real_tensor_name
,
opera
,
scalar
=
tensor_name
.
split
(
'#'
)
'#'
)
if
real_tensor_name
not
in
scale_dict
.
keys
():
continue
if
opera
==
'*'
:
if
opera
==
'*'
:
scale_dict
[
real_tensor_name
]
=
float
(
scale_dict
[
real_tensor_name
]
=
float
(
scale_dict
[
real_tensor_name
])
*
float
(
scale_dict
[
real_tensor_name
])
*
float
(
...
@@ -1072,16 +1070,18 @@ class PostTrainingQuantization(object):
...
@@ -1072,16 +1070,18 @@ class PostTrainingQuantization(object):
real_tensor_name
]
if
max_scale
is
None
else
max
(
real_tensor_name
]
if
max_scale
is
None
else
max
(
max_scale
,
scale_dict
[
real_tensor_name
])
max_scale
,
scale_dict
[
real_tensor_name
])
else
:
else
:
if
tensor_name
not
in
scale_dict
.
keys
():
continue
max_scale
=
scale_dict
[
max_scale
=
scale_dict
[
tensor_name
]
if
max_scale
is
None
else
max
(
tensor_name
]
if
max_scale
is
None
else
max
(
max_scale
,
scale_dict
[
tensor_name
])
max_scale
,
scale_dict
[
tensor_name
])
for
tensor_name
in
tensor_list
:
for
tensor_name
in
tensor_list
:
if
tensor_name
not
in
scale_dict
.
keys
():
continue
if
'#'
in
tensor_name
:
if
'#'
in
tensor_name
:
real_tensor_name
,
opera
,
scalar
=
tensor_name
.
split
(
real_tensor_name
,
opera
,
scalar
=
tensor_name
.
split
(
'#'
)
'#'
)
if
real_tensor_name
not
in
scale_dict
.
keys
():
continue
if
opera
==
'*'
:
if
opera
==
'*'
:
scale_dict
[
scale_dict
[
real_tensor_name
]
=
max_scale
/
float
(
real_tensor_name
]
=
max_scale
/
float
(
...
@@ -1091,6 +1091,8 @@ class PostTrainingQuantization(object):
...
@@ -1091,6 +1091,8 @@ class PostTrainingQuantization(object):
real_tensor_name
]
=
max_scale
*
float
(
real_tensor_name
]
=
max_scale
*
float
(
scalar
)
scalar
)
else
:
else
:
if
tensor_name
not
in
scale_dict
.
keys
():
continue
scale_dict
[
tensor_name
]
=
max_scale
scale_dict
[
tensor_name
]
=
max_scale
self
.
_scale_dict
=
scale_dict
self
.
_scale_dict
=
scale_dict
...
@@ -1265,7 +1267,6 @@ class PostTrainingQuantizationProgram(PostTrainingQuantization):
...
@@ -1265,7 +1267,6 @@ class PostTrainingQuantizationProgram(PostTrainingQuantization):
is_use_cache_file
=
False
,
is_use_cache_file
=
False
,
skip_tensor_list
=
None
,
skip_tensor_list
=
None
,
same_scale_tensor_list
=
None
,
same_scale_tensor_list
=
None
,
scale_trainable
=
False
,
cache_dir
=
None
,
cache_dir
=
None
,
scale_dict
=
None
,
scale_dict
=
None
,
return_graph
=
True
):
return_graph
=
True
):
...
@@ -1276,9 +1277,12 @@ class PostTrainingQuantizationProgram(PostTrainingQuantization):
...
@@ -1276,9 +1277,12 @@ class PostTrainingQuantizationProgram(PostTrainingQuantization):
activation_bits
,
weight_bits
,
activation_quantize_type
,
activation_bits
,
weight_bits
,
activation_quantize_type
,
weight_quantize_type
,
onnx_format
,
freeze_model
,
weight_quantize_type
,
onnx_format
,
freeze_model
,
optimize_model
,
is_use_cache_file
,
skip_tensor_list
,
optimize_model
,
is_use_cache_file
,
skip_tensor_list
,
same_scale_tensor_list
,
scale_trainable
,
cache_dir
,
same_scale_tensor_list
,
cache_dir
,
scale_dict
,
scale_dict
,
return_graph
)
return_graph
)
self
.
FLAG
=
False
self
.
_program
=
program
self
.
_program
=
program
if
self
.
_program
is
not
None
:
self
.
FLAG
=
True
assert
feed_list
is
not
None
,
\
assert
feed_list
is
not
None
,
\
"Feed list should not be None."
"Feed list should not be None."
assert
fetch_list
is
not
None
,
\
assert
fetch_list
is
not
None
,
\
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
b83d27ac
...
@@ -1470,9 +1470,10 @@ class OutScaleForTrainingPass(object):
...
@@ -1470,9 +1470,10 @@ class OutScaleForTrainingPass(object):
data_type
=
'float64'
if
in_node
.
dtype
()
\
data_type
=
'float64'
if
in_node
.
dtype
()
\
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
try
:
try
:
scale_node
=
graph
.
_find_node_by_name
(
graph
.
_find_node_by_name
(
graph
.
all_var_nodes
(),
graph
.
all_var_nodes
(),
self
.
_scale_name
(
in_node
.
name
()))
self
.
_scale_name
(
in_node
.
name
()))
continue
except
:
except
:
scale_node
=
graph
.
create_persistable_node
(
scale_node
=
graph
.
create_persistable_node
(
name
=
self
.
_scale_name
(
in_node
.
name
()),
name
=
self
.
_scale_name
(
in_node
.
name
()),
...
@@ -1487,8 +1488,8 @@ class OutScaleForTrainingPass(object):
...
@@ -1487,8 +1488,8 @@ class OutScaleForTrainingPass(object):
scale_value
=
np
.
ones
([
1
],
dtype
=
data_type
)
scale_value
=
np
.
ones
([
1
],
dtype
=
data_type
)
else
:
else
:
scale_value
=
np
.
ones
([
1
],
dtype
=
data_type
)
scale_value
=
np
.
ones
([
1
],
dtype
=
data_type
)
_init_var_node
(
scale_node
,
scale_value
,
self
.
_scope
,
_init_var_node
(
scale_node
,
scale_value
,
self
.
_scope
,
self
.
_place
)
self
.
_place
)
ins
=
{
'X'
:
in_node
}
ins
=
{
'X'
:
in_node
}
outs
=
{
'OutScale'
:
scale_node
}
outs
=
{
'OutScale'
:
scale_node
}
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_program_resnet50.py
浏览文件 @
b83d27ac
...
@@ -186,7 +186,11 @@ class TestPostTrainingQuantizationProgram(TestPostTrainingQuantization):
...
@@ -186,7 +186,11 @@ class TestPostTrainingQuantizationProgram(TestPostTrainingQuantization):
],
[
'batch_norm_27.tmp_2'
,
'batch_norm_26.tmp_2'
],
],
[
'batch_norm_27.tmp_2'
,
'batch_norm_26.tmp_2'
],
[
[
'test_scale_name_not_in_scale_dict1'
,
'test_scale_name_not_in_scale_dict1'
,
'test_scale_name_not_in_scale_dict1'
'test_scale_name_not_in_scale_dict2'
],
[
'test_scale_name_not_in_scale_dict1#/#1'
,
'test_scale_name_not_in_scale_dict2#/#1'
]]
]]
ptq
=
PostTrainingQuantizationProgram
(
ptq
=
PostTrainingQuantizationProgram
(
executor
=
exe
,
executor
=
exe
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录