未验证 提交 b7d3143f 编写于 作者: C Charles-hit 提交者: GitHub

Add nparray case for basic operator (#48229)

* add nparray case for basic operator

* fix unit test

* fix unit test

* add unit test

* fix unit test
上级 e62ab375
...@@ -75,6 +75,47 @@ static bool IsNumpyType(PyObject* obj) { ...@@ -75,6 +75,47 @@ static bool IsNumpyType(PyObject* obj) {
type_name == "numpy.int32" || type_name == "numpy.int16"; type_name == "numpy.int32" || type_name == "numpy.int16";
} }
static bool IsNumpyArray(PyObject* obj) {
auto type_name = std::string(Py_TYPE(obj)->tp_name);
return type_name == "numpy.ndarray";
}
void InitTensorWithNumpyValue(const py::object& array,
const paddle::platform::Place& place,
Tensor* self,
bool zero_copy = false) {
PADDLE_ENFORCE_EQ(
self->defined(),
true,
paddle::platform::errors::Fatal(
"Calling InitTensorWithNumpyValue of Eager Tensor without "
"EmptyTensorInitializer is "
"forbidden. Please check your code and make sure you new a "
"eager tensor before init it with NumPy."));
phi::DenseTensor* impl_ptr =
static_cast<phi::DenseTensor*>(self->impl().get());
if (platform::is_cpu_place(place)) {
SetTensorFromPyArray<platform::CPUPlace>(impl_ptr, array, place, zero_copy);
} else if (platform::is_xpu_place(place)) {
SetTensorFromPyArray<platform::XPUPlace>(impl_ptr, array, place, zero_copy);
} else if (platform::is_gpu_place(place)) {
SetTensorFromPyArray<platform::CUDAPlace>(
impl_ptr, array, place, zero_copy);
} else if (platform::is_cuda_pinned_place(place)) {
SetTensorFromPyArray<platform::CUDAPinnedPlace>(
impl_ptr, array, place, zero_copy);
} else if (platform::is_npu_place(place)) {
SetTensorFromPyArray<platform::NPUPlace>(impl_ptr, array, place, zero_copy);
} else if (platform::is_custom_place(place)) {
SetTensorFromPyArray<platform::CustomPlace>(
impl_ptr, array, place, zero_copy);
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Place should be one of "
"CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/CustomPlace"));
}
}
std::set<phi::DataType> _supported_int_dtype_{DataType::UINT8, std::set<phi::DataType> _supported_int_dtype_{DataType::UINT8,
DataType::INT8, DataType::INT8,
DataType::INT16, DataType::INT16,
...@@ -192,7 +233,13 @@ static PyObject* tensor__add__method(TensorObject* self, ...@@ -192,7 +233,13 @@ static PyObject* tensor__add__method(TensorObject* self,
// 2. create or get tensor for other_obj // 2. create or get tensor for other_obj
paddle::experimental::Tensor other_tensor; paddle::experimental::Tensor other_tensor;
if (!PyCheckTensor(other_obj)) { if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__add__", 0); CastPyArg2Scalar(other_obj, "__add__", 0);
{ {
...@@ -200,8 +247,6 @@ static PyObject* tensor__add__method(TensorObject* self, ...@@ -200,8 +247,6 @@ static PyObject* tensor__add__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -289,7 +334,13 @@ static PyObject* tensor__sub__method(TensorObject* self, ...@@ -289,7 +334,13 @@ static PyObject* tensor__sub__method(TensorObject* self,
} }
// 2. create or get tensor for other_obj // 2. create or get tensor for other_obj
paddle::experimental::Tensor other_tensor; paddle::experimental::Tensor other_tensor;
if (!PyCheckTensor(other_obj)) { if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__sub__", 0); CastPyArg2Scalar(other_obj, "__sub__", 0);
{ {
...@@ -297,8 +348,6 @@ static PyObject* tensor__sub__method(TensorObject* self, ...@@ -297,8 +348,6 @@ static PyObject* tensor__sub__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -382,7 +431,13 @@ static PyObject* tensor__rsub__method(TensorObject* self, ...@@ -382,7 +431,13 @@ static PyObject* tensor__rsub__method(TensorObject* self,
// 2. create or get tensor for other_obj // 2. create or get tensor for other_obj
paddle::experimental::Tensor other_tensor; paddle::experimental::Tensor other_tensor;
if (!PyCheckTensor(other_obj)) { if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__rsub__", 0); CastPyArg2Scalar(other_obj, "__rsub__", 0);
{ {
...@@ -390,8 +445,6 @@ static PyObject* tensor__rsub__method(TensorObject* self, ...@@ -390,8 +445,6 @@ static PyObject* tensor__rsub__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -477,7 +530,13 @@ static PyObject* tensor__mul__method(TensorObject* self, ...@@ -477,7 +530,13 @@ static PyObject* tensor__mul__method(TensorObject* self,
// 2. create or get tensor for other_obj // 2. create or get tensor for other_obj
paddle::experimental::Tensor other_tensor; paddle::experimental::Tensor other_tensor;
if (!PyCheckTensor(other_obj)) { if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__mul__", 0); CastPyArg2Scalar(other_obj, "__mul__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -489,8 +548,6 @@ static PyObject* tensor__mul__method(TensorObject* self, ...@@ -489,8 +548,6 @@ static PyObject* tensor__mul__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -579,7 +636,13 @@ static PyObject* tensor__div__method(TensorObject* self, ...@@ -579,7 +636,13 @@ static PyObject* tensor__div__method(TensorObject* self,
// 2. create or get tensor for other_obj // 2. create or get tensor for other_obj
paddle::experimental::Tensor other_tensor; paddle::experimental::Tensor other_tensor;
if (!PyCheckTensor(other_obj)) { if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__div__", 0); CastPyArg2Scalar(other_obj, "__div__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -591,8 +654,6 @@ static PyObject* tensor__div__method(TensorObject* self, ...@@ -591,8 +654,6 @@ static PyObject* tensor__div__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -695,7 +756,13 @@ static PyObject* tensor__rdiv__method(TensorObject* self, ...@@ -695,7 +756,13 @@ static PyObject* tensor__rdiv__method(TensorObject* self,
phi::Scalar(other_double), phi::Scalar(other_double),
self_tensor.dtype(), self_tensor.dtype(),
place); place);
} else if (!PyCheckTensor(other_obj)) { } else if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__rdiv__", 0); CastPyArg2Scalar(other_obj, "__rdiv__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -707,8 +774,6 @@ static PyObject* tensor__rdiv__method(TensorObject* self, ...@@ -707,8 +774,6 @@ static PyObject* tensor__rdiv__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -809,7 +874,13 @@ static PyObject* tensor__gt__method(TensorObject* self, ...@@ -809,7 +874,13 @@ static PyObject* tensor__gt__method(TensorObject* self,
phi::Scalar(other_double), phi::Scalar(other_double),
self_tensor.dtype(), self_tensor.dtype(),
place); place);
} else if (!PyCheckTensor(other_obj)) { } else if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__gt__", 0); CastPyArg2Scalar(other_obj, "__gt__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -821,8 +892,6 @@ static PyObject* tensor__gt__method(TensorObject* self, ...@@ -821,8 +892,6 @@ static PyObject* tensor__gt__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -895,7 +964,13 @@ static PyObject* tensor__ge__method(TensorObject* self, ...@@ -895,7 +964,13 @@ static PyObject* tensor__ge__method(TensorObject* self,
phi::Scalar(other_double), phi::Scalar(other_double),
self_tensor.dtype(), self_tensor.dtype(),
place); place);
} else if (!PyCheckTensor(other_obj)) { } else if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__ge__", 0); CastPyArg2Scalar(other_obj, "__ge__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -907,8 +982,6 @@ static PyObject* tensor__ge__method(TensorObject* self, ...@@ -907,8 +982,6 @@ static PyObject* tensor__ge__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -982,7 +1055,13 @@ static PyObject* tensor__mod__method(TensorObject* self, ...@@ -982,7 +1055,13 @@ static PyObject* tensor__mod__method(TensorObject* self,
phi::Scalar(other_double), phi::Scalar(other_double),
self_tensor.dtype(), self_tensor.dtype(),
self_tensor.place()); self_tensor.place());
} else if (!PyCheckTensor(other_obj)) { } else if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__mod__", 0); CastPyArg2Scalar(other_obj, "__mod__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -994,8 +1073,6 @@ static PyObject* tensor__mod__method(TensorObject* self, ...@@ -994,8 +1073,6 @@ static PyObject* tensor__mod__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -1068,7 +1145,13 @@ static PyObject* tensor__matmul__method(TensorObject* self, ...@@ -1068,7 +1145,13 @@ static PyObject* tensor__matmul__method(TensorObject* self,
phi::Scalar(other_double), phi::Scalar(other_double),
self_tensor.dtype(), self_tensor.dtype(),
self_tensor.place()); self_tensor.place());
} else if (!PyCheckTensor(other_obj)) { } else if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__matmul__", 0); CastPyArg2Scalar(other_obj, "__matmul__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -1080,8 +1163,6 @@ static PyObject* tensor__matmul__method(TensorObject* self, ...@@ -1080,8 +1163,6 @@ static PyObject* tensor__matmul__method(TensorObject* self,
other_tensor = other_tensor =
full_ad_func({1}, value, self_tensor.dtype(), self_tensor.place()); full_ad_func({1}, value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -1172,7 +1253,13 @@ static PyObject* tensor__lt__method(TensorObject* self, ...@@ -1172,7 +1253,13 @@ static PyObject* tensor__lt__method(TensorObject* self,
phi::Scalar(other_double), phi::Scalar(other_double),
self_tensor.dtype(), self_tensor.dtype(),
self_tensor.place()); self_tensor.place());
} else if (!PyCheckTensor(other_obj)) { } else if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__lt__", 0); CastPyArg2Scalar(other_obj, "__lt__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -1184,8 +1271,6 @@ static PyObject* tensor__lt__method(TensorObject* self, ...@@ -1184,8 +1271,6 @@ static PyObject* tensor__lt__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -1258,7 +1343,13 @@ static PyObject* tensor__le__method(TensorObject* self, ...@@ -1258,7 +1343,13 @@ static PyObject* tensor__le__method(TensorObject* self,
phi::Scalar(other_double), phi::Scalar(other_double),
self_tensor.dtype(), self_tensor.dtype(),
self_tensor.place()); self_tensor.place());
} else if (!PyCheckTensor(other_obj)) { } else if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__le__", 0); CastPyArg2Scalar(other_obj, "__le__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -1270,8 +1361,6 @@ static PyObject* tensor__le__method(TensorObject* self, ...@@ -1270,8 +1361,6 @@ static PyObject* tensor__le__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -1345,7 +1434,13 @@ static PyObject* tensor__floordiv__method(TensorObject* self, ...@@ -1345,7 +1434,13 @@ static PyObject* tensor__floordiv__method(TensorObject* self,
phi::Scalar(other_double), phi::Scalar(other_double),
self_tensor.dtype(), self_tensor.dtype(),
self_tensor.place()); self_tensor.place());
} else if (!PyCheckTensor(other_obj)) { } else if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__floordiv__", 0); CastPyArg2Scalar(other_obj, "__floordiv__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -1357,8 +1452,6 @@ static PyObject* tensor__floordiv__method(TensorObject* self, ...@@ -1357,8 +1452,6 @@ static PyObject* tensor__floordiv__method(TensorObject* self,
other_tensor = other_tensor =
full_ad_func({1}, value, self_tensor.dtype(), self_tensor.place()); full_ad_func({1}, value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -1430,7 +1523,13 @@ static PyObject* tensor__pow__method(TensorObject* self, ...@@ -1430,7 +1523,13 @@ static PyObject* tensor__pow__method(TensorObject* self,
// 2. create or get tensor for other_obj // 2. create or get tensor for other_obj
paddle::experimental::Tensor other_tensor; paddle::experimental::Tensor other_tensor;
if (!PyCheckTensor(other_obj)) { if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__pow__", 0); CastPyArg2Scalar(other_obj, "__pow__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -1442,8 +1541,6 @@ static PyObject* tensor__pow__method(TensorObject* self, ...@@ -1442,8 +1541,6 @@ static PyObject* tensor__pow__method(TensorObject* self,
other_tensor = other_tensor =
full_ad_func({1}, value, self_tensor.dtype(), self_tensor.place()); full_ad_func({1}, value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -1518,7 +1615,13 @@ static PyObject* tensor__rpow__method(TensorObject* self, ...@@ -1518,7 +1615,13 @@ static PyObject* tensor__rpow__method(TensorObject* self,
phi::Scalar(other_double), phi::Scalar(other_double),
self_tensor.dtype(), self_tensor.dtype(),
self_tensor.place()); self_tensor.place());
} else if (!PyCheckTensor(other_obj)) { } else if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__rpow__", 0); CastPyArg2Scalar(other_obj, "__rpow__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -1530,8 +1633,6 @@ static PyObject* tensor__rpow__method(TensorObject* self, ...@@ -1530,8 +1633,6 @@ static PyObject* tensor__rpow__method(TensorObject* self,
other_tensor = full_ad_func( other_tensor = full_ad_func(
self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place()); self_tensor.shape(), value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -1604,7 +1705,13 @@ static PyObject* tensor__ne__method(TensorObject* self, ...@@ -1604,7 +1705,13 @@ static PyObject* tensor__ne__method(TensorObject* self,
phi::Scalar(other_double), phi::Scalar(other_double),
self_tensor.dtype(), self_tensor.dtype(),
self_tensor.place()); self_tensor.place());
} else if (!PyCheckTensor(other_obj)) { } else if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__ne__", 0); CastPyArg2Scalar(other_obj, "__ne__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -1616,8 +1723,6 @@ static PyObject* tensor__ne__method(TensorObject* self, ...@@ -1616,8 +1723,6 @@ static PyObject* tensor__ne__method(TensorObject* self,
other_tensor = other_tensor =
full_ad_func({1}, value, self_tensor.dtype(), self_tensor.place()); full_ad_func({1}, value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
...@@ -1690,7 +1795,13 @@ static PyObject* tensor__eq__method(TensorObject* self, ...@@ -1690,7 +1795,13 @@ static PyObject* tensor__eq__method(TensorObject* self,
phi::Scalar(other_double), phi::Scalar(other_double),
self_tensor.dtype(), self_tensor.dtype(),
self_tensor.place()); self_tensor.place());
} else if (!PyCheckTensor(other_obj)) { } else if (PyCheckTensor(other_obj)) {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} else if (IsNumpyArray(other_obj)) {
py::object numpy_value = py::object(py::handle(other_obj), true);
other_tensor = paddle::experimental::Tensor(place);
InitTensorWithNumpyValue(numpy_value, place, &other_tensor);
} else {
paddle::experimental::Scalar value = paddle::experimental::Scalar value =
CastPyArg2Scalar(other_obj, "__eq__", 0); CastPyArg2Scalar(other_obj, "__eq__", 0);
if (PyComplex_Check(other_obj)) { if (PyComplex_Check(other_obj)) {
...@@ -1702,8 +1813,6 @@ static PyObject* tensor__eq__method(TensorObject* self, ...@@ -1702,8 +1813,6 @@ static PyObject* tensor__eq__method(TensorObject* self,
other_tensor = other_tensor =
full_ad_func({1}, value, self_tensor.dtype(), self_tensor.place()); full_ad_func({1}, value, self_tensor.dtype(), self_tensor.place());
} }
} else {
other_tensor = CastPyArg2Tensor(other_obj, 0);
} }
// 3. promote types or unify right var type to left var // 3. promote types or unify right var type to left var
......
...@@ -739,6 +739,32 @@ class TestBoolAddFloatElementwiseAddop(unittest.TestCase): ...@@ -739,6 +739,32 @@ class TestBoolAddFloatElementwiseAddop(unittest.TestCase):
self.func_dygraph_add() self.func_dygraph_add()
class TestElementwiseAddop1(unittest.TestCase):
def func_dygraph_add(self):
paddle.disable_static()
np_a = np.random.random((2, 3, 4)).astype(np.float32)
np_b = np.random.random((2, 3, 4)).astype(np.float32)
tensor_a = paddle.to_tensor(np_a, dtype="float32")
tensor_b = paddle.to_tensor(np_b, dtype="float32")
# normal case: nparray + tenor
expect_out = np_a + np_b
actual_out = np_a + tensor_b
np.testing.assert_allclose(actual_out, expect_out)
# normal case: tensor + nparray
actual_out = tensor_a + np_b
np.testing.assert_allclose(actual_out, expect_out)
paddle.enable_static()
def test_dygraph_add(self):
with _test_eager_guard():
self.func_dygraph_add()
if __name__ == '__main__': if __name__ == '__main__':
paddle.enable_static() paddle.enable_static()
unittest.main() unittest.main()
...@@ -18,6 +18,7 @@ from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16 ...@@ -18,6 +18,7 @@ from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
import paddle import paddle
from paddle import fluid from paddle import fluid
from paddle.fluid import core from paddle.fluid import core
from paddle.fluid.framework import _test_eager_guard
class ElementwiseDivOp(OpTest): class ElementwiseDivOp(OpTest):
...@@ -436,6 +437,34 @@ class TestRealComplexElementwiseDivOp(TestComplexElementwiseDivOp): ...@@ -436,6 +437,34 @@ class TestRealComplexElementwiseDivOp(TestComplexElementwiseDivOp):
self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y) self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y)
class TestElementwiseDivop(unittest.TestCase):
def func_dygraph_div(self):
paddle.disable_static()
np_a = np.random.random((2, 3, 4)).astype(np.float32)
np_b = np.random.random((2, 3, 4)).astype(np.float32)
np_a[np.abs(np_a) < 0.0005] = 0.002
np_b[np.abs(np_b) < 0.0005] = 0.002
tensor_a = paddle.to_tensor(np_a, dtype="float32")
tensor_b = paddle.to_tensor(np_b, dtype="float32")
# normal case: nparray / tenor
expect_out = np_a / np_b
actual_out = np_a / tensor_b
np.testing.assert_allclose(actual_out, expect_out)
# normal case: tensor / nparray
actual_out = tensor_a / np_b
np.testing.assert_allclose(actual_out, expect_out)
paddle.enable_static()
def test_dygraph_div(self):
with _test_eager_guard():
self.func_dygraph_div()
if __name__ == '__main__': if __name__ == '__main__':
paddle.enable_static() paddle.enable_static()
unittest.main() unittest.main()
...@@ -19,6 +19,7 @@ import paddle ...@@ -19,6 +19,7 @@ import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid import Program, program_guard from paddle.fluid import Program, program_guard
from paddle.fluid.framework import _test_eager_guard
from paddle.fluid.tests.unittests.op_test import ( from paddle.fluid.tests.unittests.op_test import (
OpTest, OpTest,
...@@ -386,6 +387,32 @@ class TestRealComplexElementwiseMulOp(TestComplexElementwiseMulOp): ...@@ -386,6 +387,32 @@ class TestRealComplexElementwiseMulOp(TestComplexElementwiseMulOp):
self.grad_y = self.grad_out * np.conj(self.x) self.grad_y = self.grad_out * np.conj(self.x)
class TestElementwiseMulop(unittest.TestCase):
def func_dygraph_mul(self):
paddle.disable_static()
np_a = np.random.random((2, 3, 4)).astype(np.float32)
np_b = np.random.random((2, 3, 4)).astype(np.float32)
tensor_a = paddle.to_tensor(np_a, dtype="float32")
tensor_b = paddle.to_tensor(np_b, dtype="float32")
# normal case: nparray * tenor
expect_out = np_a * np_b
actual_out = np_a * tensor_b
np.testing.assert_allclose(actual_out, expect_out)
# normal case: tensor * nparray
actual_out = tensor_a * np_b
np.testing.assert_allclose(actual_out, expect_out)
paddle.enable_static()
def test_dygraph_mul(self):
with _test_eager_guard():
self.func_dygraph_mul()
if __name__ == '__main__': if __name__ == '__main__':
paddle.enable_static() paddle.enable_static()
unittest.main() unittest.main()
...@@ -450,6 +450,36 @@ class TestFloatElementwiseSubop(unittest.TestCase): ...@@ -450,6 +450,36 @@ class TestFloatElementwiseSubop(unittest.TestCase):
self.func_dygraph_sub() self.func_dygraph_sub()
class TestFloatElementwiseSubop1(unittest.TestCase):
def func_dygraph_sub(self):
paddle.disable_static()
np_a = np.random.random((2, 3, 4)).astype(np.float32)
np_b = np.random.random((2, 3, 4)).astype(np.float32)
tensor_a = paddle.to_tensor(np_a, dtype="float32")
tensor_b = paddle.to_tensor(np_b, dtype="float32")
# normal case: nparray - tenor
expect_out = np_a - np_b
actual_out = np_a - tensor_b
np.testing.assert_allclose(
actual_out, expect_out, rtol=1e-07, atol=1e-07
)
# normal case: tenor - nparray
actual_out = tensor_a - np_b
np.testing.assert_allclose(
actual_out, expect_out, rtol=1e-07, atol=1e-07
)
paddle.enable_static()
def test_dygraph_sub(self):
with _test_eager_guard():
self.func_dygraph_sub()
if __name__ == '__main__': if __name__ == '__main__':
paddle.enable_static() paddle.enable_static()
unittest.main() unittest.main()
...@@ -380,5 +380,107 @@ class TestMathOpPatches(unittest.TestCase): ...@@ -380,5 +380,107 @@ class TestMathOpPatches(unittest.TestCase):
np.testing.assert_allclose(a_np @ b_np, c_np, rtol=1e-05) np.testing.assert_allclose(a_np @ b_np, c_np, rtol=1e-05)
class TestDygraphMathOpPatches(unittest.TestCase):
def init_data(self):
self.np_a = np.random.random((2, 3, 4)).astype(np.float32)
self.np_b = np.random.random((2, 3, 4)).astype(np.float32)
self.np_a[np.abs(self.np_a) < 0.0005] = 0.002
self.np_b[np.abs(self.np_b) < 0.0005] = 0.002
self.tensor_a = paddle.to_tensor(self.np_a, dtype="float32")
self.tensor_b = paddle.to_tensor(self.np_b, dtype="float32")
def test_dygraph_greater_than(self):
paddle.disable_static()
self.init_data()
# normal case: tenor > nparray
expect_out = self.np_a > self.np_b
actual_out = self.tensor_a > self.np_b
np.testing.assert_equal(actual_out, expect_out)
paddle.enable_static()
def test_dygraph_greater_equal(self):
paddle.disable_static()
self.init_data()
# normal case: tenor >= nparray
expect_out = self.np_a >= self.np_b
actual_out = self.tensor_a >= self.np_b
np.testing.assert_equal(actual_out, expect_out)
paddle.enable_static()
def test_dygraph_reminder(self):
paddle.disable_static()
self.init_data()
# normal case: tenor % nparray
expect_out = self.np_a % self.np_b
actual_out = self.tensor_a % self.np_b
np.testing.assert_allclose(actual_out, expect_out, rtol=1e-7, atol=1e-7)
paddle.enable_static()
def test_dygraph_less_than(self):
paddle.disable_static()
self.init_data()
# normal case: tenor < nparray
expect_out = self.np_a < self.np_b
actual_out = self.tensor_a < self.np_b
np.testing.assert_equal(actual_out, expect_out)
paddle.enable_static()
def test_dygraph_less_equal(self):
paddle.disable_static()
self.init_data()
# normal case: tenor <= nparray
expect_out = self.np_a <= self.np_b
actual_out = self.tensor_a <= self.np_b
np.testing.assert_equal(actual_out, expect_out)
paddle.enable_static()
def test_dygraph_floor_divide(self):
paddle.disable_static()
np_a = np.random.random((2, 3, 4)).astype(np.int32)
np_b = np.random.random((2, 3, 4)).astype(np.int32)
np_b[np.abs(np_b) < 1] = 2
# normal case: tenor // nparray
tensor_a = paddle.to_tensor(np_a, dtype="int32")
tensor_b = paddle.to_tensor(np_b, dtype="int32")
expect_out = np_a // np_b
actual_out = tensor_a // np_b
np.testing.assert_equal(actual_out, expect_out)
paddle.enable_static()
def test_dygraph_elementwise_pow(self):
paddle.disable_static()
self.init_data()
# normal case: tenor ** nparray
expect_out = self.np_a**self.np_b
actual_out = self.tensor_a**self.np_b
np.testing.assert_allclose(actual_out, expect_out, rtol=1e-7, atol=1e-7)
# normal case: nparray ** tensor
expect_out = self.np_a**self.np_b
actual_out = self.np_a**self.tensor_b
np.testing.assert_allclose(actual_out, expect_out, rtol=1e-7, atol=1e-7)
paddle.enable_static()
def test_dygraph_not_equal(self):
paddle.disable_static()
self.init_data()
# normal case: tenor != nparray
expect_out = self.np_a != self.np_b
actual_out = self.tensor_a != self.np_b
np.testing.assert_equal(actual_out, expect_out)
paddle.enable_static()
def test_dygraph_equal(self):
paddle.disable_static()
self.init_data()
# normal case: tenor == nparray
expect_out = self.np_a == self.np_b
actual_out = self.tensor_a == self.np_b
np.testing.assert_equal(actual_out, expect_out)
paddle.enable_static()
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -714,6 +714,28 @@ class TestMatMulTypePromotion(TestComplexMatMulOp): ...@@ -714,6 +714,28 @@ class TestMatMulTypePromotion(TestComplexMatMulOp):
self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out) self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out)
class TestMatmulop(unittest.TestCase):
def func_dygraph_matmul(self):
paddle.disable_static()
np_a = np.random.random((2, 4)).astype(np.float32)
np_b = np.random.random((4, 2)).astype(np.float32)
tensor_a = paddle.to_tensor(np_a, dtype="float32")
tensor_b = paddle.to_tensor(np_b, dtype="float32")
# normal case: tensor @ nparray
expect_out = np_a @ np_b
actual_out = tensor_a @ np_b
np.testing.assert_allclose(actual_out, expect_out)
paddle.enable_static()
def func_dygraph_matmul(self):
with _test_eager_guard():
self.func_dygraph_matmul()
if __name__ == "__main__": if __name__ == "__main__":
paddle.enable_static() paddle.enable_static()
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册