Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b775b6cb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b775b6cb
编写于
12月 27, 2017
作者:
F
fengjiayi
提交者:
GitHub
12月 27, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #6741 from JiayiFeng/dev_new_backward
[WIP] new backward
上级
95da78a6
14b87dbf
变更
21
隐藏空白更改
内联
并排
Showing
21 changed file
with
311 addition
and
69 deletion
+311
-69
doc/design/optimizer.md
doc/design/optimizer.md
+1
-1
paddle/framework/op_desc.cc
paddle/framework/op_desc.cc
+8
-0
paddle/framework/op_desc.h
paddle/framework/op_desc.h
+2
-0
paddle/framework/var_desc.cc
paddle/framework/var_desc.cc
+1
-1
paddle/pybind/protobuf.cc
paddle/pybind/protobuf.cc
+22
-3
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+18
-17
python/paddle/v2/fluid/backward.py
python/paddle/v2/fluid/backward.py
+224
-14
python/paddle/v2/fluid/framework.py
python/paddle/v2/fluid/framework.py
+4
-2
python/paddle/v2/fluid/optimizer.py
python/paddle/v2/fluid/optimizer.py
+3
-3
python/paddle/v2/fluid/tests/op_test.py
python/paddle/v2/fluid/tests/op_test.py
+2
-2
python/paddle/v2/fluid/tests/test_array_read_write_op.py
python/paddle/v2/fluid/tests/test_array_read_write_op.py
+2
-2
python/paddle/v2/fluid/tests/test_conditional_block.py
python/paddle/v2/fluid/tests/test_conditional_block.py
+2
-2
python/paddle/v2/fluid/tests/test_lod_tensor_array_ops.py
python/paddle/v2/fluid/tests/test_lod_tensor_array_ops.py
+2
-2
python/paddle/v2/fluid/tests/test_optimizer.py
python/paddle/v2/fluid/tests/test_optimizer.py
+7
-7
python/paddle/v2/fluid/tests/test_recurrent_op.py
python/paddle/v2/fluid/tests/test_recurrent_op.py
+2
-2
python/paddle/v2/fluid/tests/test_regularizer.py
python/paddle/v2/fluid/tests/test_regularizer.py
+3
-3
python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py
python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py
+1
-1
python/paddle/v2/fluid/tests/test_rnn_memory_helper_op.py
python/paddle/v2/fluid/tests/test_rnn_memory_helper_op.py
+1
-1
python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py
python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py
+2
-2
python/paddle/v2/fluid/tests/test_split_and_merge_lod_tensor_op.py
...ddle/v2/fluid/tests/test_split_and_merge_lod_tensor_op.py
+2
-2
python/paddle/v2/fluid/tests/test_while_op.py
python/paddle/v2/fluid/tests/test_while_op.py
+2
-2
未找到文件。
doc/design/optimizer.md
浏览文件 @
b775b6cb
...
@@ -79,7 +79,7 @@ class Optimizer(object):
...
@@ -79,7 +79,7 @@ class Optimizer(object):
def
minimize
(
self
,
loss
,
parameter_list
):
def
minimize
(
self
,
loss
,
parameter_list
):
"""Add operations to minimize `loss` by updating `parameter_list`.
"""Add operations to minimize `loss` by updating `parameter_list`.
This method combines interface `append_backward
_ops
()` and
This method combines interface `append_backward()` and
`create_optimization_pass()` into one.
`create_optimization_pass()` into one.
"""
"""
params_grads
=
self
.
create_backward_pass
(
loss
,
parameter_list
)
params_grads
=
self
.
create_backward_pass
(
loss
,
parameter_list
)
...
...
paddle/framework/op_desc.cc
浏览文件 @
b775b6cb
...
@@ -88,6 +88,14 @@ OpDesc::OpDesc(const std::string &type, const VariableNameMap &inputs,
...
@@ -88,6 +88,14 @@ OpDesc::OpDesc(const std::string &type, const VariableNameMap &inputs,
need_update_
=
true
;
need_update_
=
true
;
}
}
void
OpDesc
::
CopyFrom
(
const
OpDesc
&
op_desc
)
{
desc_
.
set_type
(
op_desc
.
Type
());
inputs_
=
op_desc
.
inputs_
;
outputs_
=
op_desc
.
outputs_
;
attrs_
=
op_desc
.
attrs_
;
need_update_
=
true
;
}
OpDesc
::
OpDesc
(
const
proto
::
OpDesc
&
desc
,
ProgramDesc
*
prog
)
OpDesc
::
OpDesc
(
const
proto
::
OpDesc
&
desc
,
ProgramDesc
*
prog
)
:
desc_
(
desc
),
need_update_
(
false
)
{
:
desc_
(
desc
),
need_update_
(
false
)
{
// restore inputs_
// restore inputs_
...
...
paddle/framework/op_desc.h
浏览文件 @
b775b6cb
...
@@ -35,6 +35,8 @@ class OpDesc {
...
@@ -35,6 +35,8 @@ class OpDesc {
OpDesc
(
const
proto
::
OpDesc
&
desc
,
ProgramDesc
*
prog
);
OpDesc
(
const
proto
::
OpDesc
&
desc
,
ProgramDesc
*
prog
);
void
CopyFrom
(
const
OpDesc
&
op_desc
);
proto
::
OpDesc
*
Proto
();
proto
::
OpDesc
*
Proto
();
std
::
string
Type
()
const
{
return
desc_
.
type
();
}
std
::
string
Type
()
const
{
return
desc_
.
type
();
}
...
...
paddle/framework/var_desc.cc
浏览文件 @
b775b6cb
...
@@ -74,7 +74,7 @@ const proto::TensorDesc &VarDesc::tensor_desc() const {
...
@@ -74,7 +74,7 @@ const proto::TensorDesc &VarDesc::tensor_desc() const {
case
proto
::
VarDesc
::
LOD_TENSOR_ARRAY
:
case
proto
::
VarDesc
::
LOD_TENSOR_ARRAY
:
return
desc_
.
tensor_array
().
tensor
();
return
desc_
.
tensor_array
().
tensor
();
default:
default:
PADDLE_THROW
(
"
Unexpected branch
."
);
PADDLE_THROW
(
"
The type of var '"
,
this
->
Name
(),
"' is unsupported
."
);
}
}
}
}
...
...
paddle/pybind/protobuf.cc
浏览文件 @
b775b6cb
...
@@ -171,12 +171,23 @@ void BindBlockDesc(py::module &m) {
...
@@ -171,12 +171,23 @@ void BindBlockDesc(py::module &m) {
std
::
string
name
=
byte_name
;
std
::
string
name
=
byte_name
;
return
self
.
HasVar
(
name
);
return
self
.
HasVar
(
name
);
})
})
.
def
(
"has_var_recursive"
,
[](
BlockDesc
&
self
,
py
::
bytes
byte_name
)
{
std
::
string
name
=
byte_name
;
return
self
.
HasVarRecursive
(
name
);
})
.
def
(
"find_var"
,
.
def
(
"find_var"
,
[](
BlockDesc
&
self
,
py
::
bytes
byte_name
)
{
[](
BlockDesc
&
self
,
py
::
bytes
byte_name
)
{
std
::
string
name
=
byte_name
;
std
::
string
name
=
byte_name
;
return
self
.
FindVar
(
name
);
return
self
.
FindVar
(
name
);
},
},
py
::
return_value_policy
::
reference
)
py
::
return_value_policy
::
reference
)
.
def
(
"find_var_recursive"
,
[](
BlockDesc
&
self
,
py
::
bytes
byte_name
)
{
std
::
string
name
=
byte_name
;
return
self
.
FindVarRecursive
(
name
);
},
py
::
return_value_policy
::
reference
)
.
def
(
"all_vars"
,
&
BlockDesc
::
AllVars
,
py
::
return_value_policy
::
reference
)
.
def
(
"all_vars"
,
&
BlockDesc
::
AllVars
,
py
::
return_value_policy
::
reference
)
.
def
(
"op_size"
,
&
BlockDesc
::
OpSize
)
.
def
(
"op_size"
,
&
BlockDesc
::
OpSize
)
.
def
(
"op"
,
&
BlockDesc
::
Op
,
py
::
return_value_policy
::
reference
)
.
def
(
"op"
,
&
BlockDesc
::
Op
,
py
::
return_value_policy
::
reference
)
...
@@ -204,7 +215,7 @@ void BindVarDsec(py::module &m) {
...
@@ -204,7 +215,7 @@ void BindVarDsec(py::module &m) {
.
def
(
"set_shape"
,
&
VarDesc
::
SetShape
)
.
def
(
"set_shape"
,
&
VarDesc
::
SetShape
)
.
def
(
"set_dtype"
,
&
VarDesc
::
SetDataType
)
.
def
(
"set_dtype"
,
&
VarDesc
::
SetDataType
)
.
def
(
"shape"
,
&
VarDesc
::
Shape
,
py
::
return_value_policy
::
reference
)
.
def
(
"shape"
,
&
VarDesc
::
Shape
,
py
::
return_value_policy
::
reference
)
.
def
(
"dtype"
,
&
VarDesc
::
GetDataType
)
.
def
(
"dtype"
,
&
VarDesc
::
GetDataType
,
py
::
return_value_policy
::
reference
)
.
def
(
"lod_level"
,
&
VarDesc
::
GetLodLevel
)
.
def
(
"lod_level"
,
&
VarDesc
::
GetLodLevel
)
.
def
(
"set_lod_level"
,
&
VarDesc
::
SetLoDLevel
)
.
def
(
"set_lod_level"
,
&
VarDesc
::
SetLoDLevel
)
.
def
(
"type"
,
&
VarDesc
::
GetType
)
.
def
(
"type"
,
&
VarDesc
::
GetType
)
...
@@ -236,14 +247,22 @@ void BindOpDesc(py::module &m) {
...
@@ -236,14 +247,22 @@ void BindOpDesc(py::module &m) {
.
value
(
"BLOCK"
,
proto
::
AttrType
::
BLOCK
);
.
value
(
"BLOCK"
,
proto
::
AttrType
::
BLOCK
);
py
::
class_
<
OpDesc
>
op_desc
(
m
,
"OpDesc"
,
""
);
py
::
class_
<
OpDesc
>
op_desc
(
m
,
"OpDesc"
,
""
);
op_desc
.
def
(
"type"
,
&
OpDesc
::
Type
)
op_desc
.
def
(
"__init__"
,
[](
OpDesc
&
self
)
{
new
(
&
self
)
OpDesc
();
},
py
::
return_value_policy
::
reference
)
.
def
(
"copy_from"
,
&
OpDesc
::
CopyFrom
)
.
def
(
"type"
,
&
OpDesc
::
Type
)
.
def
(
"set_type"
,
&
OpDesc
::
SetType
)
.
def
(
"set_type"
,
&
OpDesc
::
SetType
)
.
def
(
"input"
,
&
OpDesc
::
Input
)
.
def
(
"input"
,
&
OpDesc
::
Input
)
.
def
(
"input_names"
,
&
OpDesc
::
InputNames
)
.
def
(
"input_names"
,
&
OpDesc
::
InputNames
)
.
def
(
"set_input"
,
&
OpDesc
::
SetInput
)
.
def
(
"output"
,
&
OpDesc
::
Output
)
.
def
(
"output"
,
&
OpDesc
::
Output
)
.
def
(
"output_names"
,
&
OpDesc
::
OutputNames
)
.
def
(
"output_names"
,
&
OpDesc
::
OutputNames
)
.
def
(
"set_input"
,
&
OpDesc
::
SetInput
)
.
def
(
"set_output"
,
&
OpDesc
::
SetOutput
)
.
def
(
"set_output"
,
&
OpDesc
::
SetOutput
)
.
def
(
"input_arg_names"
,
&
OpDesc
::
InputArgumentNames
)
.
def
(
"output_arg_names"
,
&
OpDesc
::
OutputArgumentNames
)
.
def
(
"rename_input"
,
&
OpDesc
::
RenameInput
)
.
def
(
"rename_output"
,
&
OpDesc
::
RenameOutput
)
.
def
(
"has_attr"
,
&
OpDesc
::
HasAttr
)
.
def
(
"has_attr"
,
&
OpDesc
::
HasAttr
)
.
def
(
"attr_type"
,
&
OpDesc
::
GetAttrType
)
.
def
(
"attr_type"
,
&
OpDesc
::
GetAttrType
)
.
def
(
"attr_names"
,
&
OpDesc
::
AttrNames
)
.
def
(
"attr_names"
,
&
OpDesc
::
AttrNames
)
...
...
paddle/pybind/pybind.cc
浏览文件 @
b775b6cb
...
@@ -269,23 +269,22 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -269,23 +269,22 @@ All parameter, weight, gradient are variables in Paddle.
}
}
return
ret_values
;
return
ret_values
;
});
});
m
.
def
(
"get_grad_op_descs"
,
m
.
def
(
[](
const
OpDesc
&
op_desc
,
"get_grad_op_desc"
,
[](
const
OpDesc
&
op_desc
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_set
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_set
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
grad_to_var
,
const
std
::
vector
<
BlockDesc
*>
&
grad_sub_block
)
{
const
std
::
vector
<
BlockDesc
*>
&
grad_sub_block
)
{
std
::
unordered_map
<
std
::
string
,
std
::
string
>
grad_to_var
;
std
::
vector
<
std
::
unique_ptr
<
OpDesc
>>
grad_op_descs
=
std
::
vector
<
std
::
unique_ptr
<
OpDesc
>>
grad_op_descs
=
framework
::
OpInfoMap
::
Instance
()
framework
::
OpInfoMap
::
Instance
()
.
Get
(
op_desc
.
Type
())
.
Get
(
op_desc
.
Type
())
.
GradOpMaker
()(
op_desc
,
no_grad_set
,
&
grad_to_var
,
.
GradOpMaker
()(
op_desc
,
no_grad_set
,
&
grad_to_var
,
grad_sub_block
);
grad_sub_block
);
std
::
vector
<
OpDesc
*>
grad_op_desc_ptrs
(
grad_op_descs
.
size
());
std
::
vector
<
OpDesc
*>
grad_op_desc_ptrs
(
grad_op_descs
.
size
());
std
::
transform
(
std
::
transform
(
grad_op_descs
.
begin
(),
grad_op_descs
.
end
(),
grad_op_descs
.
begin
(),
grad_op_descs
.
end
(),
grad_op_desc_ptrs
.
begin
(),
grad_op_desc_ptrs
.
begin
(),
[](
std
::
unique_ptr
<
OpDesc
>
&
p
)
{
return
p
.
release
();
});
[](
std
::
unique_ptr
<
OpDesc
>
&
p
)
{
return
p
.
release
();
});
return
std
::
make_pair
(
grad_op_desc_ptrs
,
grad_to_var
);
return
grad_op_desc_ptrs
;
});
});
m
.
def
(
"prune"
,
[](
const
ProgramDesc
&
origin
,
m
.
def
(
"prune"
,
[](
const
ProgramDesc
&
origin
,
const
std
::
vector
<
std
::
array
<
size_t
,
2
>>
&
targets
)
{
const
std
::
vector
<
std
::
array
<
size_t
,
2
>>
&
targets
)
{
ProgramDesc
prog_with_targets
(
origin
);
ProgramDesc
prog_with_targets
(
origin
);
...
@@ -301,6 +300,8 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -301,6 +300,8 @@ All parameter, weight, gradient are variables in Paddle.
InferenceOptimize
(
*
(
origin
.
Proto
()),
&
pruned_desc
);
InferenceOptimize
(
*
(
origin
.
Proto
()),
&
pruned_desc
);
return
new
ProgramDesc
(
pruned_desc
);
return
new
ProgramDesc
(
pruned_desc
);
});
});
m
.
def
(
"empty_var_name"
,
[]()
{
return
framework
::
kEmptyVarName
;
});
m
.
def
(
"grad_var_suffix"
,
[]()
{
return
framework
::
kGradVarSuffix
;
});
m
.
def_submodule
(
m
.
def_submodule
(
"var_names"
,
"var_names"
,
"The module will return special predefined variable name in Paddle"
)
"The module will return special predefined variable name in Paddle"
)
...
...
python/paddle/v2/fluid/backward.py
浏览文件 @
b775b6cb
from
paddle.v2.fluid
import
framework
as
framework
from
paddle.v2.fluid
import
framework
as
framework
from
.
import
core
import
collections
__all__
=
[
'append_backward
_ops
'
]
__all__
=
[
'append_backward'
]
def
append_backward_ops
(
loss
,
parameter_list
=
None
,
no_grad_set
=
None
):
def
_rename_arg_
(
op_desc_list
,
old_name
,
new_name
,
begin_idx
=
None
,
end_idx
=
None
):
if
begin_idx
is
None
:
begin_idx
=
0
if
end_idx
is
None
:
end_idx
=
len
(
op_desc_list
)
for
i
in
range
(
begin_idx
,
end_idx
):
op_desc
=
op_desc_list
[
i
]
if
isinstance
(
op_desc
,
tuple
):
op_desc
=
op_desc
[
0
]
op_desc
.
rename_input
(
old_name
,
new_name
)
op_desc
.
rename_output
(
old_name
,
new_name
)
def
_create_op_desc_
(
op_type
,
inputs
,
outputs
,
attrs
):
op_desc
=
core
.
OpDesc
()
op_desc
.
set_type
(
op_type
)
for
para
,
args
in
inputs
.
iteritems
():
op_desc
.
set_input
(
para
,
args
)
for
para
,
args
in
outputs
.
iteritems
():
op_desc
.
set_output
(
para
,
args
)
for
name
,
val
in
attrs
.
iteritems
():
if
isinstance
(
val
,
framework
.
Block
):
op_desc
.
set_block_attr
(
name
,
val
.
desc
)
else
:
op_desc
.
set_attr
(
name
,
val
)
return
op_desc
def
_infer_var_data_type_
(
var_name
,
block
):
grad_var
=
block
.
desc
.
find_var
(
var_name
.
encode
(
"ascii"
))
fwd_name
=
_strip_grad_suffix_
(
var_name
.
encode
(
"ascii"
))
if
block
.
desc
.
has_var_recursive
(
fwd_name
):
fwd_var
=
block
.
desc
.
find_var_recursive
(
fwd_name
.
encode
(
"ascii"
))
grad_var
.
set_dtype
(
fwd_var
.
dtype
())
else
:
grad_var
.
set_dtype
(
core
.
DataType
.
FP32
)
def
_all_in_set_
(
cands
,
s
):
for
c
in
cands
:
if
not
c
in
s
:
return
False
return
True
def
_strip_grad_suffix_
(
name
):
pos
=
name
.
find
(
core
.
grad_var_suffix
())
return
name
[:
pos
]
if
pos
!=
-
1
else
name
def
_append_grad_suffix_
(
name
):
return
name
+
core
.
grad_var_suffix
()
def
_addup_repetitive_outputs_
(
op_descs
):
# In backward part, an variable my be the output of more than one ops.
# In this case, the variable should be the accumulation of all the outputs.
# We adopt adding `sum_op`s to implement the accumulate.
pending_sum_ops
=
[]
var_rename_count
=
collections
.
defaultdict
(
int
)
renamed_vars
=
collections
.
defaultdict
(
list
)
for
idx
,
op_desc
in
enumerate
(
op_descs
):
for
var_name
in
op_desc
.
input_arg_names
():
if
len
(
renamed_vars
[
var_name
])
>
1
:
pending_sum_ops
.
append
(
(
_create_op_desc_
(
"sum"
,
{
"X"
:
renamed_vars
[
var_name
]},
{
"Out"
:
[
var_name
]},
{}),
idx
))
renamed_vars
[
var_name
]
=
[
var_name
]
for
var_name
in
op_desc
.
output_arg_names
():
if
var_name
==
core
.
empty_var_name
(
)
or
var_name
in
op_desc
.
input_arg_names
():
# empty variable or inplace op
continue
if
len
(
renamed_vars
[
var_name
])
==
0
:
# it's the first time we get the variable
renamed_vars
[
var_name
]
=
[
var_name
]
else
:
if
len
(
renamed_vars
[
var_name
])
==
1
:
new_name
=
var_name
+
"@RENAME@"
+
\
str
(
var_rename_count
[
var_name
])
var_rename_count
[
var_name
]
+=
1
# rename original var_name
renamed_vars
[
var_name
][
0
]
=
new_name
_rename_arg_
(
op_descs
,
var_name
,
new_name
,
0
,
idx
)
_rename_arg_
(
pending_sum_ops
,
var_name
,
new_name
)
new_name
=
var_name
+
"@RENAME@"
+
\
str
(
var_rename_count
[
var_name
])
var_rename_count
[
var_name
]
+=
1
op_desc
.
rename_output
(
var_name
,
new_name
)
renamed_vars
[
var_name
].
append
(
new_name
)
for
var_name
,
inputs
in
renamed_vars
.
iteritems
():
if
len
(
inputs
)
>
1
:
pending_sum_ops
.
append
((
_create_op_desc_
(
"sum"
,
{
"X"
:
inputs
},
{
"Out"
:
[
var_name
]},
{}),
len
(
op_descs
)))
# sum_op descs are sorted according to their insert position
for
p
in
reversed
(
pending_sum_ops
):
op_descs
.
insert
(
p
[
1
],
p
[
0
])
return
op_descs
def
_remove_no_grad_branch_
(
op_descs
,
no_grad_set
):
# Remove ops whose outputs are all in no_grad_dict
op_descs
=
filter
(
lambda
op_desc
:
not
_all_in_set_
(
op_desc
.
output_arg_names
(),
no_grad_set
),
op_descs
)
# Insert fill_zeros_like_op
to_insert
=
[]
for
idx
,
op_desc
in
enumerate
(
op_descs
):
for
arg
in
op_desc
.
input_arg_names
():
if
core
.
grad_var_suffix
()
in
arg
and
arg
in
no_grad_set
:
to_insert
.
append
((
_create_op_desc_
(
"fill_zeros_like"
,
{
"X"
:
[
_strip_grad_suffix_
(
arg
)]
},
{
"Y"
:
[
arg
]},
{}),
idx
))
map
(
lambda
p
:
op_descs
.
insert
(
p
[
1
],
p
[
0
]),
reversed
(
to_insert
))
return
op_descs
def
_append_backward_ops_
(
target
,
block
,
target_block
,
no_grad_dict
,
grad_to_var
,
callback
=
None
):
grad_op_descs
=
[]
program
=
block
.
program
for
op
in
reversed
(
block
.
ops
):
grad_sub_block_list
=
[]
# If the op has its own sub-block, deal with the sub-block first
if
op
.
has_attr
(
"sub_block"
):
sub_block
=
program
.
block
(
op
.
block_attr
(
"sub_block"
))
grad_sub_block
=
program
.
create_block
(
parent_idx
=
sub_block
.
idx
)
_append_backward_ops_
(
target
,
sub_block
,
grad_sub_block
,
no_grad_dict
,
grad_to_var
,
callback
)
grad_sub_block_list
.
append
(
grad_sub_block
.
desc
)
grad_op_desc
,
op_grad_to_var
=
core
.
get_grad_op_desc
(
op
.
desc
,
no_grad_dict
[
block
.
idx
],
grad_sub_block_list
)
grad_op_descs
.
extend
(
grad_op_desc
)
grad_to_var
.
update
(
op_grad_to_var
)
grad_op_descs
=
_addup_repetitive_outputs_
(
grad_op_descs
)
grad_op_descs
=
_remove_no_grad_branch_
(
grad_op_descs
,
no_grad_dict
[
block
.
idx
])
if
target_block
.
idx
==
0
:
grad_op_descs
.
insert
(
0
,
_create_op_desc_
(
"fill_constant"
,
{},
{
"Out"
:
[
_append_grad_suffix_
(
target
.
name
)]
},
{
"shape"
:
[
1
],
"value"
:
1.0
,
"dtype"
:
target
.
dtype
}))
# append op_desc in grad_op_descs to target_block
for
op_desc
in
grad_op_descs
:
new_op_desc
=
target_block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
op_desc
)
def
_append_backward_vars_
(
block
,
start_op_idx
,
grad_to_var
,
grad_info_map
):
for
op_idx
in
range
(
start_op_idx
,
block
.
desc
.
op_size
()):
op_desc
=
block
.
desc
.
op
(
op_idx
)
if
op_desc
.
has_attr
(
"sub_block"
):
sub_block
=
block
.
program
.
block
(
op_desc
.
block_attr
(
"sub_block"
))
_append_backward_vars_
(
sub_block
,
0
,
grad_to_var
,
grad_info_map
)
new_vars
=
set
()
# create new gradient variables
for
grad_var_name
in
op_desc
.
output_arg_names
():
grad_var_name
=
grad_var_name
.
encode
(
"ascii"
)
if
block
.
desc
.
has_var_recursive
(
grad_var_name
)
or
grad_var_name
==
core
.
empty_var_name
():
continue
block
.
desc
.
var
(
grad_var_name
)
new_vars
.
add
(
grad_var_name
)
if
not
grad_to_var
.
has_key
(
grad_var_name
):
continue
grad_info_map
[
grad_to_var
[
grad_var_name
]]
=
(
grad_var_name
,
block
)
# infer_shape and infer_type
op_desc
.
infer_var_type
(
block
.
desc
)
op_desc
.
infer_shape
(
block
.
desc
)
for
arg
in
op_desc
.
output_arg_names
():
if
arg
in
new_vars
:
_infer_var_data_type_
(
arg
,
block
)
def
append_backward
(
loss
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""
"""
Create and add gradient Operators in BlockDesc to compute
Create and add gradient Operators in BlockDesc to compute
gradients of `loss` for parameters in parameter_list
gradients of `loss` for parameters in parameter_list
:param loss: an variable generated by cost function.
:param loss: an variable generated by cost function.
:type loss: Variable
:type loss: Variable
:param no_grad_
se
t: variable that should not create gradient
:param no_grad_
dic
t: variable that should not create gradient
:type no_grad_
se
t: set
:type no_grad_
dic
t: set
:param parameter_list: parameters that need to compute gradient and
:param parameter_list: parameters that need to compute gradient and
update to optimize the lost.
update to optimize the lost.
:type: list
:type: list
...
@@ -20,35 +212,53 @@ def append_backward_ops(loss, parameter_list=None, no_grad_set=None):
...
@@ -20,35 +212,53 @@ def append_backward_ops(loss, parameter_list=None, no_grad_set=None):
"""
"""
assert
isinstance
(
loss
,
framework
.
Variable
)
assert
isinstance
(
loss
,
framework
.
Variable
)
program
=
loss
.
block
.
program
no_grad_dict
=
dict
()
if
no_grad_set
is
None
:
if
no_grad_set
is
None
:
program
=
loss
.
block
.
program
assert
isinstance
(
program
,
framework
.
Program
)
assert
isinstance
(
program
,
framework
.
Program
)
no_grad_set
=
list
()
for
block
in
program
.
blocks
:
for
block
in
program
.
blocks
:
assert
isinstance
(
block
,
framework
.
Block
)
assert
isinstance
(
block
,
framework
.
Block
)
block_no_grad_set
=
set
()
for
var
in
block
.
vars
.
itervalues
():
for
var
in
block
.
vars
.
itervalues
():
assert
isinstance
(
var
,
framework
.
Variable
)
assert
isinstance
(
var
,
framework
.
Variable
)
if
var
.
stop_gradient
:
if
var
.
stop_gradient
:
no_grad_set
.
append
(
var
.
name
)
block_no_grad_set
.
add
(
_append_grad_suffix_
(
var
.
name
))
no_grad_set
=
set
(
no_grad_set
)
no_grad_dict
[
block
.
idx
]
=
block_no_grad_set
elif
isinstance
(
no_grad_set
,
set
):
no_grad_dict
=
{
0
:
no_grad_set
}
else
:
raise
ValueError
(
"'no_grad_set' should be a set or None."
)
grad_info_map
=
dict
()
root_block
=
program
.
block
(
0
)
fwd_op_num
=
root_block
.
desc
.
op_size
()
current_block_idx
=
program
.
current_block_idx
grad_to_var
=
dict
()
_append_backward_ops_
(
loss
,
root_block
,
root_block
,
no_grad_dict
,
grad_to_var
)
_append_backward_vars_
(
root_block
,
fwd_op_num
,
grad_to_var
,
grad_info_map
)
program
.
current_block_idx
=
current_block_idx
program
.
sync_with_cpp
()
param_grad_map
=
loss
.
block
.
program
.
append_backward
(
loss
,
no_grad_set
)
if
parameter_list
is
not
None
:
if
parameter_list
is
not
None
:
parameters
=
parameter_list
parameters
=
parameter_list
else
:
else
:
params
=
loss
.
block
.
program
.
global_block
().
all_parameters
()
params
=
program
.
global_block
().
all_parameters
()
parameters
=
[
param
.
name
for
param
in
params
]
parameters
=
[
param
.
name
for
param
in
params
]
params_and_grads
=
[]
params_and_grads
=
[]
for
param
in
parameters
:
for
param
in
parameters
:
if
param
not
in
param_grad
_map
:
if
param
not
in
grad_info
_map
:
raise
ValueError
(
"param %s is not in map"
%
param
)
raise
ValueError
(
"param %s is not in map"
%
param
)
grad_info
=
param_grad
_map
[
param
]
grad_info
=
grad_info
_map
[
param
]
grad_block
=
loss
.
block
.
program
.
block
(
grad_info
[
1
])
grad_block
=
grad_info
[
1
]
if
not
grad_block
.
has_var
(
grad_info
[
0
]):
if
not
grad_block
.
has_var
(
grad_info
[
0
]):
raise
ValueError
(
"grad block[{0}] did not have grad var {1}"
.
format
(
raise
ValueError
(
"grad block[{0}] did not have grad var {1}"
.
format
(
grad_info
[
1
],
grad_info
[
0
]))
grad_info
[
1
],
grad_info
[
0
]))
# Get the param var from the global block
# Get the param var from the global block
param_var
=
loss
.
block
.
program
.
global_block
().
var
(
param
)
param_var
=
program
.
global_block
().
var
(
param
)
grad_var
=
grad_block
.
var
(
grad_info
[
0
])
grad_var
=
grad_block
.
var
(
grad_info
[
0
])
if
loss
.
block
.
has_var
(
grad_info
[
0
]):
if
loss
.
block
.
has_var
(
grad_info
[
0
]):
params_and_grads
.
append
((
param_var
,
grad_var
))
params_and_grads
.
append
((
param_var
,
grad_var
))
...
...
python/paddle/v2/fluid/framework.py
浏览文件 @
b775b6cb
...
@@ -846,9 +846,11 @@ class Program(object):
...
@@ -846,9 +846,11 @@ class Program(object):
self
.
sync_with_cpp
()
self
.
sync_with_cpp
()
return
param_to_grad_info
return
param_to_grad_info
def
create_block
(
self
):
def
create_block
(
self
,
parent_idx
=
None
):
new_block_idx
=
len
(
self
.
blocks
)
new_block_idx
=
len
(
self
.
blocks
)
self
.
desc
.
append_block
(
self
.
current_block
().
desc
)
parent
=
self
.
current_block
()
if
parent_idx
is
None
else
self
.
block
(
parent_idx
)
self
.
desc
.
append_block
(
parent
.
desc
)
self
.
current_block_idx
=
new_block_idx
self
.
current_block_idx
=
new_block_idx
self
.
blocks
.
append
(
Block
(
self
,
self
.
current_block_idx
))
self
.
blocks
.
append
(
Block
(
self
,
self
.
current_block_idx
))
return
self
.
current_block
()
return
self
.
current_block
()
...
...
python/paddle/v2/fluid/optimizer.py
浏览文件 @
b775b6cb
from
collections
import
defaultdict
from
collections
import
defaultdict
import
framework
import
framework
from
backward
import
append_backward
_ops
from
backward
import
append_backward
from
framework
import
unique_name
,
program_guard
from
framework
import
unique_name
,
program_guard
from
initializer
import
Constant
from
initializer
import
Constant
from
layer_helper
import
LayerHelper
from
layer_helper
import
LayerHelper
...
@@ -194,10 +194,10 @@ class Optimizer(object):
...
@@ -194,10 +194,10 @@ class Optimizer(object):
no_grad_set
=
None
):
no_grad_set
=
None
):
"""Add operations to minimize `loss` by updating `parameter_list`.
"""Add operations to minimize `loss` by updating `parameter_list`.
This method combines interface `append_backward
_ops
()` and
This method combines interface `append_backward()` and
`create_optimization_pass()` into one.
`create_optimization_pass()` into one.
"""
"""
params_grads
=
append_backward
_ops
(
loss
,
parameter_list
,
no_grad_set
)
params_grads
=
append_backward
(
loss
,
parameter_list
,
no_grad_set
)
params_grads
=
append_gradient_clip_ops
(
params_grads
)
params_grads
=
append_gradient_clip_ops
(
params_grads
)
...
...
python/paddle/v2/fluid/tests/op_test.py
浏览文件 @
b775b6cb
...
@@ -4,7 +4,7 @@ import random
...
@@ -4,7 +4,7 @@ import random
import
itertools
import
itertools
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.core
as
core
import
collections
import
collections
from
paddle.v2.fluid.backward
import
append_backward
_ops
from
paddle.v2.fluid.backward
import
append_backward
from
paddle.v2.fluid.op
import
Operator
from
paddle.v2.fluid.op
import
Operator
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.framework
import
Program
,
OpProtoHolder
from
paddle.v2.fluid.framework
import
Program
,
OpProtoHolder
...
@@ -491,7 +491,7 @@ class OpTest(unittest.TestCase):
...
@@ -491,7 +491,7 @@ class OpTest(unittest.TestCase):
op_loss
.
desc
.
infer_var_type
(
block
.
desc
)
op_loss
.
desc
.
infer_var_type
(
block
.
desc
)
op_loss
.
desc
.
infer_shape
(
block
.
desc
)
op_loss
.
desc
.
infer_shape
(
block
.
desc
)
param_grad_list
=
append_backward
_ops
(
param_grad_list
=
append_backward
(
loss
=
loss
,
parameter_list
=
input_to_check
,
no_grad_set
=
no_grad_set
)
loss
=
loss
,
parameter_list
=
input_to_check
,
no_grad_set
=
no_grad_set
)
feed_dict
=
{
feed_dict
=
{
...
...
python/paddle/v2/fluid/tests/test_array_read_write_op.py
浏览文件 @
b775b6cb
...
@@ -2,7 +2,7 @@ import unittest
...
@@ -2,7 +2,7 @@ import unittest
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.backward
import
append_backward
_ops
from
paddle.v2.fluid.backward
import
append_backward
from
paddle.v2.fluid.framework
import
default_main_program
from
paddle.v2.fluid.framework
import
default_main_program
import
numpy
import
numpy
...
@@ -64,7 +64,7 @@ class TestArrayReadWrite(unittest.TestCase):
...
@@ -64,7 +64,7 @@ class TestArrayReadWrite(unittest.TestCase):
total_sum
=
layers
.
sums
(
input
=
[
a_sum
,
x_sum
])
total_sum
=
layers
.
sums
(
input
=
[
a_sum
,
x_sum
])
total_sum_scaled
=
layers
.
scale
(
x
=
total_sum
,
scale
=
1
/
6.0
)
total_sum_scaled
=
layers
.
scale
(
x
=
total_sum
,
scale
=
1
/
6.0
)
append_backward
_ops
(
total_sum_scaled
)
append_backward
(
total_sum_scaled
)
g_vars
=
map
(
default_main_program
().
global_block
().
var
,
g_vars
=
map
(
default_main_program
().
global_block
().
var
,
[
each_x
.
name
+
"@GRAD"
for
each_x
in
x
])
[
each_x
.
name
+
"@GRAD"
for
each_x
in
x
])
...
...
python/paddle/v2/fluid/tests/test_conditional_block.py
浏览文件 @
b775b6cb
...
@@ -3,7 +3,7 @@ import paddle.v2.fluid.layers as layers
...
@@ -3,7 +3,7 @@ import paddle.v2.fluid.layers as layers
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.core
as
core
from
paddle.v2.fluid.framework
import
default_startup_program
,
default_main_program
from
paddle.v2.fluid.framework
import
default_startup_program
,
default_main_program
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.backward
import
append_backward
_ops
from
paddle.v2.fluid.backward
import
append_backward
import
numpy
import
numpy
...
@@ -26,7 +26,7 @@ class ConditionalBlock(unittest.TestCase):
...
@@ -26,7 +26,7 @@ class ConditionalBlock(unittest.TestCase):
outs
=
exe
.
run
(
feed
=
{
'X'
:
x
},
fetch_list
=
[
out
])[
0
]
outs
=
exe
.
run
(
feed
=
{
'X'
:
x
},
fetch_list
=
[
out
])[
0
]
print
outs
print
outs
loss
=
layers
.
mean
(
x
=
out
)
loss
=
layers
.
mean
(
x
=
out
)
append_backward
_ops
(
loss
=
loss
)
append_backward
(
loss
=
loss
)
outs
=
exe
.
run
(
outs
=
exe
.
run
(
feed
=
{
'X'
:
x
},
feed
=
{
'X'
:
x
},
fetch_list
=
[
fetch_list
=
[
...
...
python/paddle/v2/fluid/tests/test_lod_tensor_array_ops.py
浏览文件 @
b775b6cb
...
@@ -4,7 +4,7 @@ import numpy
...
@@ -4,7 +4,7 @@ import numpy
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.framework
import
Program
,
program_guard
from
paddle.v2.fluid.framework
import
Program
,
program_guard
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.backward
import
append_backward
_ops
from
paddle.v2.fluid.backward
import
append_backward
class
TestCPULoDTensorArrayOps
(
unittest
.
TestCase
):
class
TestCPULoDTensorArrayOps
(
unittest
.
TestCase
):
...
@@ -170,7 +170,7 @@ class TestCPULoDTensorArrayOpGrad(unittest.TestCase):
...
@@ -170,7 +170,7 @@ class TestCPULoDTensorArrayOpGrad(unittest.TestCase):
mean
=
layers
.
mean
(
x
=
result
)
mean
=
layers
.
mean
(
x
=
result
)
append_backward
_ops
(
mean
)
append_backward
(
mean
)
tensor
=
core
.
LoDTensor
()
tensor
=
core
.
LoDTensor
()
tensor
.
set
(
numpy
.
arange
(
10
).
reshape
(
10
,
1
).
astype
(
'float32'
),
place
)
tensor
.
set
(
numpy
.
arange
(
10
).
reshape
(
10
,
1
).
astype
(
'float32'
),
place
)
...
...
python/paddle/v2/fluid/tests/test_optimizer.py
浏览文件 @
b775b6cb
...
@@ -2,7 +2,7 @@ import unittest
...
@@ -2,7 +2,7 @@ import unittest
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid.optimizer
as
optimizer
import
paddle.v2.fluid.optimizer
as
optimizer
from
paddle.v2.fluid.backward
import
append_backward
_ops
from
paddle.v2.fluid.backward
import
append_backward
class
TestOptimizer
(
unittest
.
TestCase
):
class
TestOptimizer
(
unittest
.
TestCase
):
...
@@ -102,7 +102,7 @@ class TestMomentumOptimizer(unittest.TestCase):
...
@@ -102,7 +102,7 @@ class TestMomentumOptimizer(unittest.TestCase):
dtype
=
"float32"
,
shape
=
[
1
],
lod_level
=
0
,
name
=
"mean.out"
)
dtype
=
"float32"
,
shape
=
[
1
],
lod_level
=
0
,
name
=
"mean.out"
)
block
.
append_op
(
block
.
append_op
(
type
=
"mean"
,
inputs
=
{
"X"
:
mul_out
},
outputs
=
{
"Out"
:
mean_out
})
type
=
"mean"
,
inputs
=
{
"X"
:
mul_out
},
outputs
=
{
"Out"
:
mean_out
})
params_grads
=
append_backward
_ops
(
mean_out
)
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
momentum_optimizer
.
get_accumulators
()),
0
)
self
.
assertEqual
(
len
(
momentum_optimizer
.
get_accumulators
()),
0
)
opts
=
momentum_optimizer
.
create_optimization_pass
(
opts
=
momentum_optimizer
.
create_optimization_pass
(
...
@@ -151,7 +151,7 @@ class TestMomentumOptimizer(unittest.TestCase):
...
@@ -151,7 +151,7 @@ class TestMomentumOptimizer(unittest.TestCase):
learning_rate
=
0.01
learning_rate
=
0.01
momentum_optimizer
=
self
.
MockMomentum
(
momentum_optimizer
=
self
.
MockMomentum
(
learning_rate
=
learning_rate
,
momentum
=
0.2
,
use_nesterov
=
True
)
learning_rate
=
learning_rate
,
momentum
=
0.2
,
use_nesterov
=
True
)
params_grads
=
append_backward
_ops
(
mean_out
)
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
momentum_optimizer
.
get_accumulators
()),
0
)
self
.
assertEqual
(
len
(
momentum_optimizer
.
get_accumulators
()),
0
)
opts
=
momentum_optimizer
.
create_optimization_pass
(
opts
=
momentum_optimizer
.
create_optimization_pass
(
...
@@ -209,7 +209,7 @@ class TestAdagradOptimizer(unittest.TestCase):
...
@@ -209,7 +209,7 @@ class TestAdagradOptimizer(unittest.TestCase):
learning_rate
=
0.01
learning_rate
=
0.01
adagrad_optimizer
=
self
.
MockAdagrad
(
adagrad_optimizer
=
self
.
MockAdagrad
(
learning_rate
=
learning_rate
,
epsilon
=
1.0e-6
)
learning_rate
=
learning_rate
,
epsilon
=
1.0e-6
)
params_grads
=
append_backward
_ops
(
mean_out
)
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
adagrad_optimizer
.
get_accumulators
()),
0
)
self
.
assertEqual
(
len
(
adagrad_optimizer
.
get_accumulators
()),
0
)
opts
=
adagrad_optimizer
.
create_optimization_pass
(
params_grads
,
mul_out
,
opts
=
adagrad_optimizer
.
create_optimization_pass
(
params_grads
,
mul_out
,
...
@@ -269,7 +269,7 @@ class TestAdamOptimizer(unittest.TestCase):
...
@@ -269,7 +269,7 @@ class TestAdamOptimizer(unittest.TestCase):
learning_rate
=
0.01
learning_rate
=
0.01
adam_optimizer
=
self
.
MockAdam
(
adam_optimizer
=
self
.
MockAdam
(
learning_rate
=
learning_rate
,
beta1
=
0.9
,
beta2
=
0.999
)
learning_rate
=
learning_rate
,
beta1
=
0.9
,
beta2
=
0.999
)
params_grads
=
append_backward
_ops
(
mean_out
)
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
adam_optimizer
.
get_accumulators
()),
0
)
self
.
assertEqual
(
len
(
adam_optimizer
.
get_accumulators
()),
0
)
opts
=
adam_optimizer
.
create_optimization_pass
(
params_grads
,
mul_out
,
opts
=
adam_optimizer
.
create_optimization_pass
(
params_grads
,
mul_out
,
...
@@ -331,7 +331,7 @@ class TestAdamaxOptimizer(unittest.TestCase):
...
@@ -331,7 +331,7 @@ class TestAdamaxOptimizer(unittest.TestCase):
learning_rate
=
0.01
learning_rate
=
0.01
adamax_optimizer
=
self
.
MockAdamax
(
adamax_optimizer
=
self
.
MockAdamax
(
learning_rate
=
learning_rate
,
beta1
=
0.9
,
beta2
=
0.999
)
learning_rate
=
learning_rate
,
beta1
=
0.9
,
beta2
=
0.999
)
params_grads
=
append_backward
_ops
(
mean_out
)
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
adamax_optimizer
.
get_accumulators
()),
0
)
self
.
assertEqual
(
len
(
adamax_optimizer
.
get_accumulators
()),
0
)
opts
=
adamax_optimizer
.
create_optimization_pass
(
params_grads
,
mul_out
,
opts
=
adamax_optimizer
.
create_optimization_pass
(
params_grads
,
mul_out
,
...
@@ -390,7 +390,7 @@ class TestDecayedAdagradOptimizer(unittest.TestCase):
...
@@ -390,7 +390,7 @@ class TestDecayedAdagradOptimizer(unittest.TestCase):
learning_rate
=
0.01
learning_rate
=
0.01
decayed_adagrad_optimizer
=
self
.
MockDecayedAdagrad
(
decayed_adagrad_optimizer
=
self
.
MockDecayedAdagrad
(
learning_rate
=
learning_rate
,
decay
=
0.95
,
epsilon
=
1.0e-6
)
learning_rate
=
learning_rate
,
decay
=
0.95
,
epsilon
=
1.0e-6
)
params_grads
=
append_backward
_ops
(
mean_out
)
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
decayed_adagrad_optimizer
.
get_accumulators
()),
0
)
self
.
assertEqual
(
len
(
decayed_adagrad_optimizer
.
get_accumulators
()),
0
)
opts
=
decayed_adagrad_optimizer
.
create_optimization_pass
(
opts
=
decayed_adagrad_optimizer
.
create_optimization_pass
(
...
...
python/paddle/v2/fluid/tests/test_recurrent_op.py
浏览文件 @
b775b6cb
...
@@ -3,7 +3,7 @@ import unittest
...
@@ -3,7 +3,7 @@ import unittest
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.framework
import
Program
,
grad_var_name
from
paddle.v2.fluid.framework
import
Program
,
grad_var_name
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.backward
import
append_backward
_ops
from
paddle.v2.fluid.backward
import
append_backward
import
numpy
as
np
import
numpy
as
np
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.core
as
core
...
@@ -177,7 +177,7 @@ class RecurrentOpTest1(unittest.TestCase):
...
@@ -177,7 +177,7 @@ class RecurrentOpTest1(unittest.TestCase):
def
test_backward
(
self
):
def
test_backward
(
self
):
self
.
check_forward
()
self
.
check_forward
()
append_backward
_ops
(
self
.
output
)
append_backward
(
self
.
output
)
ana_grad
=
[
np
.
array
(
x
)
for
x
in
self
.
backward
()]
ana_grad
=
[
np
.
array
(
x
)
for
x
in
self
.
backward
()]
...
...
python/paddle/v2/fluid/tests/test_regularizer.py
浏览文件 @
b775b6cb
...
@@ -3,7 +3,7 @@ import unittest
...
@@ -3,7 +3,7 @@ import unittest
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid.optimizer
as
optimizer
import
paddle.v2.fluid.optimizer
as
optimizer
import
paddle.v2.fluid.regularizer
as
regularizer
import
paddle.v2.fluid.regularizer
as
regularizer
from
paddle.v2.fluid.backward
import
append_backward
_ops
from
paddle.v2.fluid.backward
import
append_backward
class
TestL2DecayRegularizer
(
unittest
.
TestCase
):
class
TestL2DecayRegularizer
(
unittest
.
TestCase
):
...
@@ -33,7 +33,7 @@ class TestL2DecayRegularizer(unittest.TestCase):
...
@@ -33,7 +33,7 @@ class TestL2DecayRegularizer(unittest.TestCase):
dtype
=
"float32"
,
shape
=
[
1
],
lod_level
=
0
,
name
=
"mean.out"
)
dtype
=
"float32"
,
shape
=
[
1
],
lod_level
=
0
,
name
=
"mean.out"
)
block
.
append_op
(
block
.
append_op
(
type
=
"mean"
,
inputs
=
{
"X"
:
mul_out
},
outputs
=
{
"Out"
:
mean_out
})
type
=
"mean"
,
inputs
=
{
"X"
:
mul_out
},
outputs
=
{
"Out"
:
mean_out
})
params_grads
=
append_backward
_ops
(
mean_out
)
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
count_ops
=
len
(
block
.
ops
)
count_ops
=
len
(
block
.
ops
)
params_grads
=
optimizer
.
append_regularization_ops
(
params_grads
)
params_grads
=
optimizer
.
append_regularization_ops
(
params_grads
)
...
@@ -70,7 +70,7 @@ class TestL1DecayRegularizer(unittest.TestCase):
...
@@ -70,7 +70,7 @@ class TestL1DecayRegularizer(unittest.TestCase):
dtype
=
"float32"
,
shape
=
[
1
],
lod_level
=
0
,
name
=
"mean.out"
)
dtype
=
"float32"
,
shape
=
[
1
],
lod_level
=
0
,
name
=
"mean.out"
)
block
.
append_op
(
block
.
append_op
(
type
=
"mean"
,
inputs
=
{
"X"
:
mul_out
},
outputs
=
{
"Out"
:
mean_out
})
type
=
"mean"
,
inputs
=
{
"X"
:
mul_out
},
outputs
=
{
"Out"
:
mean_out
})
params_grads
=
append_backward
_ops
(
mean_out
)
params_grads
=
append_backward
(
mean_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
count_ops
=
len
(
block
.
ops
)
count_ops
=
len
(
block
.
ops
)
params_grads
=
optimizer
.
append_regularization_ops
(
params_grads
)
params_grads
=
optimizer
.
append_regularization_ops
(
params_grads
)
...
...
python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py
浏览文件 @
b775b6cb
...
@@ -12,7 +12,7 @@ class TestReorderLoDTensor(unittest.TestCase):
...
@@ -12,7 +12,7 @@ class TestReorderLoDTensor(unittest.TestCase):
new_dat
=
fluid
.
layers
.
reorder_lod_tensor_by_rank
(
new_dat
=
fluid
.
layers
.
reorder_lod_tensor_by_rank
(
x
=
dat
,
rank_table
=
table
)
x
=
dat
,
rank_table
=
table
)
loss
=
fluid
.
layers
.
mean
(
x
=
new_dat
)
loss
=
fluid
.
layers
.
mean
(
x
=
new_dat
)
fluid
.
backward
.
append_backward
_ops
(
loss
=
loss
)
fluid
.
backward
.
append_backward
(
loss
=
loss
)
cpu
=
fluid
.
CPUPlace
()
cpu
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
cpu
)
exe
=
fluid
.
Executor
(
cpu
)
...
...
python/paddle/v2/fluid/tests/test_rnn_memory_helper_op.py
浏览文件 @
b775b6cb
...
@@ -2,7 +2,7 @@ import unittest
...
@@ -2,7 +2,7 @@ import unittest
from
paddle.v2.fluid.framework
import
Program
from
paddle.v2.fluid.framework
import
Program
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.backward
import
append_backward
_ops
from
paddle.v2.fluid.backward
import
append_backward
import
numpy
as
np
import
numpy
as
np
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.core
as
core
...
...
python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py
浏览文件 @
b775b6cb
...
@@ -2,7 +2,7 @@ import unittest
...
@@ -2,7 +2,7 @@ import unittest
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.core
as
core
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.executor
import
Executor
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.backward
import
append_backward
_ops
from
paddle.v2.fluid.backward
import
append_backward
from
paddle.v2.fluid.framework
import
default_main_program
from
paddle.v2.fluid.framework
import
default_main_program
import
numpy
import
numpy
...
@@ -35,7 +35,7 @@ class TestShrinkRNNMemory(unittest.TestCase):
...
@@ -35,7 +35,7 @@ class TestShrinkRNNMemory(unittest.TestCase):
self
.
assertTrue
(
numpy
.
allclose
(
tensor_np
[
0
:
1
],
outs
[
2
]))
self
.
assertTrue
(
numpy
.
allclose
(
tensor_np
[
0
:
1
],
outs
[
2
]))
mem3_mean
=
layers
.
mean
(
x
=
mem3
)
mem3_mean
=
layers
.
mean
(
x
=
mem3
)
append_backward
_ops
(
loss
=
mem3_mean
)
append_backward
(
loss
=
mem3_mean
)
x_grad
=
exe
.
run
(
x_grad
=
exe
.
run
(
feed
=
{
'x'
:
tensor
},
feed
=
{
'x'
:
tensor
},
fetch_list
=
[
main_program
.
global_block
().
var
(
'x@GRAD'
)])[
0
]
fetch_list
=
[
main_program
.
global_block
().
var
(
'x@GRAD'
)])[
0
]
...
...
python/paddle/v2/fluid/tests/test_split_and_merge_lod_tensor_op.py
浏览文件 @
b775b6cb
...
@@ -4,7 +4,7 @@ import numpy as np
...
@@ -4,7 +4,7 @@ import numpy as np
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.framework
import
Program
,
program_guard
from
paddle.v2.fluid.framework
import
Program
,
program_guard
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.backward
import
append_backward
_ops
from
paddle.v2.fluid.backward
import
append_backward
class
TestCPULoDTensorArrayOps
(
unittest
.
TestCase
):
class
TestCPULoDTensorArrayOps
(
unittest
.
TestCase
):
...
@@ -133,7 +133,7 @@ class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase):
...
@@ -133,7 +133,7 @@ class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase):
in_true
=
out_true
,
in_false
=
out_false
,
mask
=
y
,
x
=
x
,
level
=
level
)
in_true
=
out_true
,
in_false
=
out_false
,
mask
=
y
,
x
=
x
,
level
=
level
)
mean
=
layers
.
mean
(
x
=
out
)
mean
=
layers
.
mean
(
x
=
out
)
append_backward
_ops
(
mean
)
append_backward
(
mean
)
tensor
=
core
.
LoDTensor
()
tensor
=
core
.
LoDTensor
()
tensor
.
set
(
np
.
arange
(
10
).
reshape
(
10
,
1
).
astype
(
'float32'
),
place
)
tensor
.
set
(
np
.
arange
(
10
).
reshape
(
10
,
1
).
astype
(
'float32'
),
place
)
...
...
python/paddle/v2/fluid/tests/test_while_op.py
浏览文件 @
b775b6cb
...
@@ -2,7 +2,7 @@ import unittest
...
@@ -2,7 +2,7 @@ import unittest
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.executor
import
Executor
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.core
as
core
from
paddle.v2.fluid.backward
import
append_backward
_ops
from
paddle.v2.fluid.backward
import
append_backward
import
numpy
import
numpy
...
@@ -46,7 +46,7 @@ class TestWhileOp(unittest.TestCase):
...
@@ -46,7 +46,7 @@ class TestWhileOp(unittest.TestCase):
sum_result
=
layers
.
array_read
(
array
=
mem_array
,
i
=
i
)
sum_result
=
layers
.
array_read
(
array
=
mem_array
,
i
=
i
)
loss
=
layers
.
mean
(
x
=
sum_result
)
loss
=
layers
.
mean
(
x
=
sum_result
)
append_backward
_ops
(
loss
)
append_backward
(
loss
)
cpu
=
core
.
CPUPlace
()
cpu
=
core
.
CPUPlace
()
exe
=
Executor
(
cpu
)
exe
=
Executor
(
cpu
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录