Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b75bd29c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b75bd29c
编写于
12月 12, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove debug info
上级
7a43e517
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
224 addition
and
263 deletion
+224
-263
paddle/fluid/framework/details/computation_op_handle.cc
paddle/fluid/framework/details/computation_op_handle.cc
+8
-37
paddle/fluid/framework/details/op_handle_base.cc
paddle/fluid/framework/details/op_handle_base.cc
+1
-1
paddle/fluid/framework/ir/graph.cc
paddle/fluid/framework/ir/graph.cc
+83
-49
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+60
-100
paddle/fluid/operators/elementwise/elementwise_op.h
paddle/fluid/operators/elementwise/elementwise_op.h
+33
-36
paddle/fluid/operators/optimizers/adam_op.cc
paddle/fluid/operators/optimizers/adam_op.cc
+39
-40
未找到文件。
paddle/fluid/framework/details/computation_op_handle.cc
浏览文件 @
b75bd29c
...
...
@@ -26,46 +26,17 @@ ComputationOpHandle::ComputationOpHandle(ir::Node *node, Scope *scope,
scope_
(
scope
),
place_
(
place
)
{}
struct
RecordTime
{
RecordTime
(
const
std
::
string
&
name
,
const
std
::
string
&
type
)
:
name_
(
name
),
type_
(
type
),
start_
(
std
::
chrono
::
system_clock
::
now
())
{}
~
RecordTime
()
{
if
(
type_
==
"elementsize_add"
)
{
end_
=
std
::
chrono
::
system_clock
::
now
();
std
::
chrono
::
duration
<
double
>
diff
=
end_
-
start_
;
VLOG
(
1
)
<<
name_
<<
" "
<<
type_
<<
" time record: "
<<
diff
.
count
();
}
}
std
::
string
name_
;
std
::
string
type_
;
std
::
chrono
::
system_clock
::
time_point
start_
;
std
::
chrono
::
system_clock
::
time_point
end_
;
};
void
ComputationOpHandle
::
RunImpl
()
{
{
RecordTime
rt
(
"ComputationOpHandle::RunImpl"
,
"Wait"
);
WaitInputVarGenerated
(
place_
);
}
Scope
*
scope
=
nullptr
;
{
RecordTime
rt
(
"ComputationOpHandle::RunImpl"
,
"PrepareScope"
);
scope
=
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
}
{
RecordTime
rt
(
"ComputationOpHandle::RunImpl"
,
"ReallyRun "
+
op_
->
Type
());
WaitInputVarGenerated
(
place_
);
auto
run_func
=
[
this
,
scope
]()
{
op_
->
Run
(
*
scope
,
place_
);
};
auto
run_func
=
[
this
]()
{
op_
->
Run
(
*
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
(),
place_
);
};
if
(
is_lock_and_record_event_free_
)
{
run_func
();
}
else
{
this
->
RunAndRecordEvent
(
run_func
);
}
if
(
is_lock_and_record_event_free_
)
{
run_func
();
}
else
{
this
->
RunAndRecordEvent
(
run_func
);
}
}
...
...
paddle/fluid/framework/details/op_handle_base.cc
浏览文件 @
b75bd29c
...
...
@@ -41,7 +41,7 @@ OpHandleBase::~OpHandleBase() {
void
OpHandleBase
::
Run
(
bool
use_cuda
)
{
#ifdef PADDLE_WITH_CUDA
if
(
events_
.
empty
()
&&
use_cuda
&&
!
dev_ctxes_
.
empty
()
)
{
if
(
events_
.
empty
()
&&
use_cuda
)
{
for
(
auto
&
p
:
dev_ctxes_
)
{
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
.
first
).
device
;
PADDLE_ENFORCE
(
cudaSetDevice
(
dev_id
));
...
...
paddle/fluid/framework/ir/graph.cc
浏览文件 @
b75bd29c
...
...
@@ -20,6 +20,10 @@ limitations under the License. */
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/var_desc.h"
DEFINE_bool
(
enforce_when_check_program
,
true
,
"Checking whether the program is correct or not. We will log "
"errors rather than throwing exceptions if this flag turned off"
);
namespace
paddle
{
namespace
framework
{
namespace
ir
{
...
...
@@ -28,55 +32,85 @@ namespace {
void
CheckProgram
(
const
ProgramDesc
&
program
)
{
#define _INT(role) static_cast<int>(role)
// std::map<int, bool> visit;
// for (OpDesc *op : program.Block(0).AllOps()) {
// // For backward compatibility, some program doesn't have role added.
// if (!op->HasAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) continue;
// int role_id =
// boost::get<int>(op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName()));
// visit[role_id] = true;
// switch (role_id) {
// case _INT(OpRole::kForward):
// if (visit.find(_INT(OpRole::kBackward)) != visit.end()) {
// LOG(ERROR)
// << "Cannot add backward operator before forward operator %s."
// << op->Type();
// }
// break;
// case _INT(OpRole::kBackward):
// case _INT(OpRole::kBackward) | _INT(OpRole::kLoss):
// PADDLE_ENFORCE(
// visit.find(_INT(OpRole::kOptimize)) == visit.end(),
// "Cannot add backward operator %s after optimize operator.",
// op->Type());
// break;
// case _INT(OpRole::kForward) | _INT(OpRole::kLoss):
// PADDLE_ENFORCE(visit.find(_INT(OpRole::kBackward) |
// _INT(OpRole::kLoss)) == visit.end(),
// "Cannot add backward|loss operator before "
// "forward|loss operator %s.",
// op->Type());
// PADDLE_ENFORCE(
// visit.find(_INT(OpRole::kOptimize)) == visit.end(),
// "Cannot add forward|loss operator %s after optimize operator.",
// op->Type());
// break;
// case _INT(OpRole::kOptimize):
// case _INT(OpRole::kOptimize) | _INT(OpRole::kLRSched):
// PADDLE_ENFORCE(visit.find(_INT(OpRole::kBackward)) != visit.end(),
// "Optimize operators %s must follow backward operator.",
// op->Type());
// break;
// case _INT(OpRole::kLRSched):
// case _INT(OpRole::kDist):
// case _INT(OpRole::kRPC):
// case _INT(OpRole::kNotSpecified):
// break;
// default:
// LOG(FATAL) << "Unknown operator role. Don't add new role because "
// "you don't know what you are doing.";
// }
// }
std
::
map
<
int
,
bool
>
visit
;
for
(
OpDesc
*
op
:
program
.
Block
(
0
).
AllOps
())
{
// For backward compatibility, some program doesn't have role added.
if
(
!
op
->
HasAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()))
continue
;
int
role_id
=
boost
::
get
<
int
>
(
op
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()));
visit
[
role_id
]
=
true
;
switch
(
role_id
)
{
case
_INT
(
OpRole
::
kForward
):
if
(
visit
.
find
(
_INT
(
OpRole
::
kBackward
))
!=
visit
.
end
())
{
LOG
(
ERROR
)
<<
"Cannot add backward operator before forward operator %s."
<<
op
->
Type
();
}
break
;
case
_INT
(
OpRole
::
kBackward
):
case
_INT
(
OpRole
::
kBackward
)
|
_INT
(
OpRole
::
kLoss
):
if
(
!
FLAGS_enforce_when_check_program
)
{
PADDLE_ENFORCE
(
visit
.
find
(
_INT
(
OpRole
::
kOptimize
))
==
visit
.
end
(),
"Cannot add backward operator %s after optimize operator."
,
op
->
Type
());
}
else
{
if
(
visit
.
find
(
_INT
(
OpRole
::
kOptimize
))
!=
visit
.
end
())
{
LOG
(
ERROR
)
<<
"Cannot add backward operator %s after optimize operator."
,
<<
op
->
Type
();
}
}
break
;
case
_INT
(
OpRole
::
kForward
)
|
_INT
(
OpRole
::
kLoss
):
if
(
!
FLAGS_enforce_when_check_program
)
{
PADDLE_ENFORCE
(
visit
.
find
(
_INT
(
OpRole
::
kBackward
)
|
_INT
(
OpRole
::
kLoss
))
==
visit
.
end
(),
"Cannot add backward|loss operator before "
"forward|loss operator %s."
,
op
->
Type
());
PADDLE_ENFORCE
(
visit
.
find
(
_INT
(
OpRole
::
kOptimize
))
==
visit
.
end
(),
"Cannot add forward|loss operator %s after optimize operator."
,
op
->
Type
());
}
else
{
if
(
visit
.
find
(
_INT
(
OpRole
::
kBackward
)
|
_INT
(
OpRole
::
kLoss
))
!=
visit
.
end
())
{
LOG
(
ERROR
)
<<
"Cannot add backward|loss operator before "
<<
"forward|loss operator %s."
<<
op
->
Type
();
}
if
(
visit
.
find
(
_INT
(
OpRole
::
kOptimize
))
!=
visit
.
end
())
{
LOG
(
ERROR
)
<<
"Cannot add forward|loss operator %s after optimize "
"operator."
,
<<
op
->
Type
();
}
}
break
;
case
_INT
(
OpRole
::
kOptimize
):
case
_INT
(
OpRole
::
kOptimize
)
|
_INT
(
OpRole
::
kLRSched
):
if
(
!
FLAGS_enforce_when_check_program
)
{
PADDLE_ENFORCE
(
visit
.
find
(
_INT
(
OpRole
::
kBackward
))
!=
visit
.
end
(),
"Optimize operators %s must follow backward operator."
,
op
->
Type
());
}
else
{
if
(
visit
.
find
(
_INT
(
OpRole
::
kBackward
))
==
visit
.
end
())
{
LOG
(
ERROR
)
<<
"Optimize operators %s must follow backward operator."
,
<<
op
->
Type
();
}
}
break
;
case
_INT
(
OpRole
::
kLRSched
):
case
_INT
(
OpRole
::
kDist
):
case
_INT
(
OpRole
::
kRPC
):
case
_INT
(
OpRole
::
kNotSpecified
):
break
;
default:
LOG
(
FATAL
)
<<
"Unknown operator role. Don't add new role because "
"you don't know what you are doing."
;
}
}
#undef _INT
}
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
b75bd29c
...
...
@@ -701,125 +701,85 @@ void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
this
->
InferShape
(
&
infer_shape_ctx
);
}
struct
RecordTime
{
RecordTime
(
const
std
::
string
&
name
,
const
std
::
string
&
type
)
:
name_
(
name
),
type_
(
type
),
start_
(
std
::
chrono
::
system_clock
::
now
())
{}
void
inline
stop
()
{
end_
=
std
::
chrono
::
system_clock
::
now
();
std
::
chrono
::
duration
<
double
>
diff
=
end_
-
start_
;
VLOG
(
1
)
<<
name_
<<
" "
<<
type_
<<
" time record: "
<<
diff
.
count
();
}
~
RecordTime
()
{
if
(
type_
==
"elementwise_add"
)
{
stop
();
}
// stop();
}
std
::
string
name_
;
std
::
string
type_
;
std
::
chrono
::
system_clock
::
time_point
start_
;
std
::
chrono
::
system_clock
::
time_point
end_
;
};
void
OperatorWithKernel
::
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
RecordTime
rt
(
"OperatorWithKernel::All"
,
type_
);
{
RecordTime
rt
(
"OperatorWithKernel::InferShape"
,
type_
);
RuntimeInferShapeContext
infer_shape_ctx
(
*
this
,
scope
);
this
->
InferShape
(
&
infer_shape_ctx
);
}
{
RecordTime
*
rt_1
=
new
RecordTime
(
"OperatorWithKernel::Compute1"
,
type_
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
RuntimeInferShapeContext
infer_shape_ctx
(
*
this
,
scope
);
this
->
InferShape
(
&
infer_shape_ctx
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
pool
.
Get
(
place
);
// check if op[type] has kernel registered.
auto
&
all_op_kernels
=
AllOpKernels
();
auto
kernels_iter
=
all_op_kernels
.
find
(
type_
);
if
(
kernels_iter
==
all_op_kernels
.
end
())
{
PADDLE_THROW
(
"There are no kernels which are registered in the %s operator."
,
type_
);
}
// check if op[type] has kernel registered.
auto
&
all_op_kernels
=
AllOpKernels
();
auto
kernels_iter
=
all_op_kernels
.
find
(
type_
);
if
(
kernels_iter
==
all_op_kernels
.
end
())
{
PADDLE_THROW
(
"There are no kernels which are registered in the %s operator."
,
type_
);
}
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
// TODO(dzhwinter) : kernel fallback mechanism will be added when all the
// transform functions are ready.
// TODO(dzhwinter) : kernel fallback mechanism will be added when all the
// transform functions are ready.
// for (auto& candidate : kKernelPriority) {
// Do selection
// }
// for (auto& candidate : kKernelPriority) {
// Do selection
// }
auto
expected_kernel_key
=
this
->
GetExpectedKernelType
(
ExecutionContext
(
*
this
,
scope
,
*
dev_ctx
));
VLOG
(
3
)
<<
"expected_kernel_key:"
<<
expected_kernel_key
;
auto
expected_kernel_key
=
this
->
GetExpectedKernelType
(
ExecutionContext
(
*
this
,
scope
,
*
dev_ctx
));
VLOG
(
3
)
<<
"expected_kernel_key:"
<<
expected_kernel_key
;
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
#ifdef PADDLE_WITH_MKLDNN
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
if
(
kernel_iter
==
kernels
.
end
()
&&
expected_kernel_key
.
library_type_
==
LibraryType
::
kMKLDNN
)
{
VLOG
(
3
)
<<
"missing MKLDNN kernel: fallbacking to PLAIN one"
;
expected_kernel_key
.
library_type_
=
LibraryType
::
kPlain
;
expected_kernel_key
.
data_layout_
=
DataLayout
::
kAnyLayout
;
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
}
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
if
(
kernel_iter
==
kernels
.
end
()
&&
expected_kernel_key
.
library_type_
==
LibraryType
::
kMKLDNN
)
{
VLOG
(
3
)
<<
"missing MKLDNN kernel: fallbacking to PLAIN one"
;
expected_kernel_key
.
library_type_
=
LibraryType
::
kPlain
;
expected_kernel_key
.
data_layout_
=
DataLayout
::
kAnyLayout
;
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
}
#endif
if
(
kernel_iter
==
kernels
.
end
())
{
PADDLE_THROW
(
"op %s does not have kernel for %s"
,
type_
,
KernelTypeToString
(
expected_kernel_key
));
}
if
(
kernel_iter
==
kernels
.
end
())
{
PADDLE_THROW
(
"op %s does not have kernel for %s"
,
type_
,
KernelTypeToString
(
expected_kernel_key
));
}
// do data transformScope &transfer_scope;
std
::
vector
<
std
::
string
>
transfered_inplace_vars
;
Scope
*
transfer_scope
=
nullptr
;
// auto* transfer_scope =
// TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
// do data transformScope &transfer_scope;
std
::
vector
<
std
::
string
>
transfered_inplace_vars
;
auto
*
transfer_scope
=
TryTransferData
(
scope
,
expected_kernel_key
,
&
transfered_inplace_vars
);
// exec scope is the scope that kernel actually executed on.
const
Scope
&
exec_scope
=
scope
;
// const Scope& exec_scope =
// (transfer_scope == nullptr ? scope : *transfer_scope);
// exec scope is the scope that kernel actually executed on.
const
Scope
&
exec_scope
=
(
transfer_scope
==
nullptr
?
scope
:
*
transfer_scope
);
if
(
!
(
expected_kernel_key
.
place_
==
dev_ctx
->
GetPlace
()))
{
dev_ctx
=
pool
.
Get
(
expected_kernel_key
.
place_
);
}
delete
rt_1
;
if
(
!
(
expected_kernel_key
.
place_
==
dev_ctx
->
GetPlace
()))
{
dev_ctx
=
pool
.
Get
(
expected_kernel_key
.
place_
);
}
RecordTime
*
rt_2
=
new
RecordTime
(
"OperatorWithKernel::Compute2"
,
type_
);
kernel_iter
->
second
(
ExecutionContext
(
*
this
,
exec_scope
,
*
dev_ctx
));
delete
rt_2
;
kernel_iter
->
second
(
ExecutionContext
(
*
this
,
exec_scope
,
*
dev_ctx
));
RecordTime
*
rt_3
=
new
RecordTime
(
"OperatorWithKernel::Compute3"
,
type_
);
if
(
!
transfered_inplace_vars
.
empty
())
{
// there is inplace variable has been transfered.
TransferInplaceVarsBack
(
scope
,
transfered_inplace_vars
,
*
transfer_scope
);
}
if
(
!
transfered_inplace_vars
.
empty
())
{
// there is inplace variable has been transfered.
TransferInplaceVarsBack
(
scope
,
transfered_inplace_vars
,
*
transfer_scope
);
}
/*For profiling/benchmark only*/
if
(
FLAGS_benchmark
)
{
dev_ctx
->
Wait
();
}
/*For profiling/benchmark only*/
if
(
FLAGS_benchmark
)
{
dev_ctx
->
Wait
();
}
if
(
FLAGS_check_nan_inf
)
{
for
(
auto
&
vname
:
OutputVars
(
true
))
{
auto
*
var
=
exec_scope
.
FindVar
(
vname
);
if
(
var
==
nullptr
)
continue
;
if
(
var
->
IsType
<
framework
::
LoDTensor
>
())
{
CheckTensorNANOrInf
(
vname
,
var
->
Get
<
framework
::
LoDTensor
>
());
}
else
if
(
var
->
IsType
<
framework
::
SelectedRows
>
())
{
CheckTensorNANOrInf
(
vname
,
var
->
Get
<
framework
::
SelectedRows
>
().
value
());
}
if
(
FLAGS_check_nan_inf
)
{
for
(
auto
&
vname
:
OutputVars
(
true
))
{
auto
*
var
=
exec_scope
.
FindVar
(
vname
);
if
(
var
==
nullptr
)
continue
;
if
(
var
->
IsType
<
framework
::
LoDTensor
>
())
{
CheckTensorNANOrInf
(
vname
,
var
->
Get
<
framework
::
LoDTensor
>
());
}
else
if
(
var
->
IsType
<
framework
::
SelectedRows
>
())
{
CheckTensorNANOrInf
(
vname
,
var
->
Get
<
framework
::
SelectedRows
>
().
value
());
}
}
delete
rt_3
;
}
}
void
OperatorWithKernel
::
TransferInplaceVarsBack
(
...
...
paddle/fluid/operators/elementwise/elementwise_op.h
浏览文件 @
b75bd29c
...
...
@@ -33,37 +33,34 @@ class ElementwiseOp : public framework::OperatorWithKernel {
using
Tensor
=
framework
::
Tensor
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
if
(
!
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of elementwise op should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) of elementwise op should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of elementwise op should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Y"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the "
"received is %s [%s]"
,
ctx
->
GetInputsVarType
(
"Y"
).
front
(),
ctx
->
Inputs
(
"Y"
).
front
());
if
(
ctx
->
GetInputsVarType
(
"X"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dim
=
ctx
->
GetInputDim
(
"Y"
);
PADDLE_ENFORCE_GE
(
x_dim
.
size
(),
y_dim
.
size
(),
"Rank of first input must >= rank of second input."
);
}
else
if
(
ctx
->
GetInputsVarType
(
"X"
).
front
()
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
PADDLE_ENFORCE
((
ctx
->
GetInputDim
(
"Y"
).
size
()
==
1u
)
&&
(
ctx
->
GetInputDim
(
"Y"
)[
0
]
==
1
),
"For elementwise_op, if X is Sparse, "
"Y must be scalar."
);
}
else
{
PADDLE_THROW
(
"X's type[%s] is not supported by elementwise_op."
,
ctx
->
GetInputsVarType
(
"X"
).
front
());
}
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of elementwise op should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) of elementwise op should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of elementwise op should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Y"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s [%s]"
,
ctx
->
GetInputsVarType
(
"Y"
).
front
(),
ctx
->
Inputs
(
"Y"
).
front
());
if
(
ctx
->
GetInputsVarType
(
"X"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dim
=
ctx
->
GetInputDim
(
"Y"
);
PADDLE_ENFORCE_GE
(
x_dim
.
size
(),
y_dim
.
size
(),
"Rank of first input must >= rank of second input."
);
}
else
if
(
ctx
->
GetInputsVarType
(
"X"
).
front
()
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
PADDLE_ENFORCE
((
ctx
->
GetInputDim
(
"Y"
).
size
()
==
1u
)
&&
(
ctx
->
GetInputDim
(
"Y"
)[
0
]
==
1
),
"For elementwise_op, if X is Sparse, "
"Y must be scalar."
);
}
else
{
PADDLE_THROW
(
"X's type[%s] is not supported by elementwise_op."
,
ctx
->
GetInputsVarType
(
"X"
).
front
());
}
ctx
->
ShareDim
(
"X"
,
/*->*/
"Out"
);
...
...
@@ -128,7 +125,7 @@ The equation is:
$$%s$$
- $X$: a tensor of any dimension.
- $X$: a tensor of any dimension.
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
There are two cases for this operator:
...
...
@@ -138,10 +135,10 @@ There are two cases for this operator:
For case 2:
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
for broadcasting $Y$ onto $X$.
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
for broadcasting $Y$ onto $X$.
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
subsequence, such as shape(Y) = (2, 1) => (2).
For example:
...
...
@@ -155,7 +152,7 @@ For example:
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
The inputs $X$ and $Y$ can carry the different LoD information.
The inputs $X$ and $Y$ can carry the different LoD information.
But the output only shares the LoD information with the input $X$.
)DOC"
,
...
...
paddle/fluid/operators/optimizers/adam_op.cc
浏览文件 @
b75bd29c
...
...
@@ -23,57 +23,56 @@ class AdamOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
//
PADDLE_ENFORCE(ctx->HasInput("Param"),
//
"Input(Param) of AdamOp should not be null.");
//
PADDLE_ENFORCE(ctx->HasInput("Grad"),
//
"Input(Grad) of AdamOp should not be null.");
//
PADDLE_ENFORCE(ctx->HasInput("Moment1"),
//
"Input(Moment1) of AdamOp should not be null.");
//
PADDLE_ENFORCE(ctx->HasInput("Moment2"),
//
"Input(Moment2) of AdamOp should not be null.");
//
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
//
"Input(LearningRate) of AdamOp should not be null.");
//
PADDLE_ENFORCE(ctx->HasInput("Beta1Pow"),
//
"Input(Beta1Pow) of AdamOp should not be null.");
//
PADDLE_ENFORCE(ctx->HasInput("Beta2Pow"),
//
"Input(Beta2Pow) of AdamOp should not be null.");
//
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
//
"Output(ParamOut) of AdamOp should not be null.");
//
PADDLE_ENFORCE(ctx->HasOutput("Moment1Out"),
//
"Output(Moment1Out) of AdamOp should not be null.");
//
PADDLE_ENFORCE(ctx->HasOutput("Moment2Out"),
//
"Output(Moment2Out) of AdamOp should not be null.");
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(Param) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
"Input(Grad) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment1"
),
"Input(Moment1) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment2"
),
"Input(Moment2) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Beta1Pow"
),
"Input(Beta1Pow) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Beta2Pow"
),
"Input(Beta2Pow) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Moment1Out"
),
"Output(Moment1Out) of AdamOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Moment2Out"
),
"Output(Moment2Out) of AdamOp should not be null."
);
auto
lr_dims
=
ctx
->
GetInputDim
(
"LearningRate"
);
//
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
//
"Learning rate should have 1 dimension");
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dims
),
1
,
"Learning rate should have 1 dimension"
);
auto
beta1_pow_dims
=
ctx
->
GetInputDim
(
"Beta1Pow"
);
//
PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
//
"Beta1 power accumulator should have 1 dimension");
PADDLE_ENFORCE_EQ
(
framework
::
product
(
beta1_pow_dims
),
1
,
"Beta1 power accumulator should have 1 dimension"
);
auto
beta2_pow_dims
=
ctx
->
GetInputDim
(
"Beta2Pow"
);
//
PADDLE_ENFORCE_EQ(framework::product(beta2_pow_dims), 1,
//
"Beta2 power accumulator should have 1 dimension");
PADDLE_ENFORCE_EQ
(
framework
::
product
(
beta2_pow_dims
),
1
,
"Beta2 power accumulator should have 1 dimension"
);
auto
param_dims
=
ctx
->
GetInputDim
(
"Param"
);
//
if (ctx->GetInputsVarType("Grad")[0] ==
//
framework::proto::VarType::LOD_TENSOR) {
//
PADDLE_ENFORCE_EQ(
//
param_dims, ctx->GetInputDim("Grad"),
//
"Param and Grad input of AdamOp should have same dimension");
//
}
//
PADDLE_ENFORCE_EQ(
//
param_dims, ctx->GetInputDim("Moment1"),
//
"Param and Moment1 input of AdamOp should have same dimension");
//
PADDLE_ENFORCE_EQ(
//
param_dims, ctx->GetInputDim("Moment2"),
//
"Param and Moment2 input of AdamOp should have same dimension");
if
(
ctx
->
GetInputsVarType
(
"Grad"
)[
0
]
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Grad"
),
"Param and Grad input of AdamOp should have same dimension"
);
}
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Moment1"
),
"Param and Moment1 input of AdamOp should have same dimension"
);
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Moment2"
),
"Param and Moment2 input of AdamOp should have same dimension"
);
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dims
);
ctx
->
SetOutputDim
(
"Moment1Out"
,
param_dims
);
ctx
->
SetOutputDim
(
"Moment2Out"
,
param_dims
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录