Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b6d89204
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b6d89204
编写于
11月 18, 2018
作者:
P
peizhilin
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'windows/build' into windows/online
上级
8dd0f885
2ceb4ae9
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
227 addition
and
236 deletion
+227
-236
CMakeLists.txt
CMakeLists.txt
+5
-0
cmake/operators.cmake
cmake/operators.cmake
+1
-3
cmake/simd.cmake
cmake/simd.cmake
+14
-11
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+2
-2
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+1
-1
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+0
-1
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+1
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+178
-196
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+21
-20
python/paddle/fluid/transpiler/details/checkport.py
python/paddle/fluid/transpiler/details/checkport.py
+4
-0
未找到文件。
CMakeLists.txt
浏览文件 @
b6d89204
...
...
@@ -130,6 +130,11 @@ if (APPLE OR WIN32)
"Disable MKL for building on mac and windows"
FORCE
)
endif
()
if
(
WIN32
)
set
(
WITH_AVX OFF CACHE STRING
"Disable AVX when compiling for Windows"
FORCE
)
endif
()
set
(
THIRD_PARTY_PATH
"
${
CMAKE_BINARY_DIR
}
/third_party"
CACHE STRING
"A path setting third party libraries download & build directories."
)
...
...
cmake/operators.cmake
浏览文件 @
b6d89204
...
...
@@ -85,9 +85,7 @@ function(op_library TARGET)
if
(
WIN32
)
# remove windows unsupported op, because windows has no nccl, no warpctc such ops.
foreach
(
windows_unsupport_op
"nccl_op"
"gen_nccl_id_op"
"warpctc_op"
# "hierarchical_sigmoid_op" "cumsum_op"
# "crf_decoding_op" "select_op" "lstmp_op" "gru_op" "fusion_gru_op" "lstm_op" "fusion_lstm_op"
"fusion_seqconv_eltadd_relu_op"
"channel_send_op"
"channel_create_op"
"channel_close_op"
"channel_recv_op"
)
"channel_send_op"
"channel_create_op"
"channel_close_op"
"channel_recv_op"
)
if
(
"
${
TARGET
}
"
STREQUAL
"
${
windows_unsupport_op
}
"
)
return
()
endif
()
...
...
cmake/simd.cmake
浏览文件 @
b6d89204
...
...
@@ -70,17 +70,20 @@ int main()
return 0;
}"
AVX_FOUND
)
# Check AVX 2
set
(
CMAKE_REQUIRED_FLAGS
${
AVX2_FLAG
}
)
set
(
AVX2_FOUND_EXITCODE 1 CACHE STRING
"Result from TRY_RUN"
FORCE
)
CHECK_CXX_SOURCE_RUNS
(
"
#include <immintrin.h>
int main()
{
__m256i a = _mm256_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4);
__m256i result = _mm256_abs_epi32 (a);
return 0;
}"
AVX2_FOUND
)
# disable AVX2 by default on windows
if
(
NOT WIN32
)
# Check AVX 2
set
(
CMAKE_REQUIRED_FLAGS
${
AVX2_FLAG
}
)
set
(
AVX2_FOUND_EXITCODE 1 CACHE STRING
"Result from TRY_RUN"
FORCE
)
CHECK_CXX_SOURCE_RUNS
(
"
#include <immintrin.h>
int main()
{
__m256i a = _mm256_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4);
__m256i result = _mm256_abs_epi32 (a);
return 0;
}"
AVX2_FOUND
)
endif
(
NOT WIN32
)
# Check AVX512F
set
(
CMAKE_REQUIRED_FLAGS
${
AVX512F_FLAG
}
)
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
b6d89204
...
...
@@ -48,9 +48,9 @@ endif()
set
(
COMMON_OP_DEPS
""
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
xxhash selected_rows_functor selected_rows lod_tensor maxouting unpooling pooling lod_rank_table context_project sequence_pooling executor sequence_padding sequence_scale cos_sim_functor memory concat_and_split cross_entropy softmax vol2col im2col sampler
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
lstm_compute matrix_bit_code gru_compute activation_functions jit_kernel
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
lstm_compute matrix_bit_code
sequence2batch
gru_compute activation_functions jit_kernel
)
if
(
NOT WIN32
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
sequence2batch
dynload_warpctc
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
dynload_warpctc
)
endif
()
if
(
WITH_GPU
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
depthwise_conv cub
)
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
b6d89204
...
...
@@ -111,7 +111,7 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
*
pre_out
);
auto
pre_out_grad_mat
=
EigenMatrix
<
T
>::
From
(
pre_out_grad
);
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
out_grad
);
Eigen
::
array
<
int
,
2
>
bcast
({{
1
,
static_cast
<
int
>
(
pre_out_grad
.
dims
()[
1
])}})
;
Eigen
::
array
<
int
,
2
>
bcast
{
1
,
static_cast
<
int
>
(
pre_out_grad
.
dims
()[
1
])}
;
// softrelu derivative
pre_out_grad_mat
.
device
(
place
)
=
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
b6d89204
...
...
@@ -81,4 +81,3 @@ if(WITH_XBYAK)
endif
()
cc_library
(
jit_kernel SRCS
${
JIT_KERNEL_SRCS
}
DEPS
${
JIT_KERNEL_DEPS
}
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
b6d89204
...
...
@@ -67,7 +67,7 @@ inline constexpr size_t FindLastSet(size_t x) {
:
(
std
::
is_same
<
size_t
,
unsigned
long
>::
value
// NOLINT
?
(
x
?
8
*
sizeof
(
x
)
-
__builtin_clzl
(
x
)
:
0
)
:
(
x
?
8
*
sizeof
(
x
)
-
__builtin_clzll
(
x
)
:
0
));
}
#else
// windows don't have built-in clz, ctz function
template
<
typename
T
>
...
...
@@ -92,7 +92,6 @@ inline int clz(const T& value) {
inline
size_t
FindLastSet
(
size_t
x
)
{
return
sizeof
(
size_t
)
*
8
-
clz
(
x
);
}
#endif // !_WIN32
}
struct
SimpleCode
{
SimpleCode
(
size_t
code
,
size_t
num_classes
)
:
c_
(
code
+
num_classes
)
{}
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b6d89204
...
...
@@ -170,12 +170,6 @@ __all__ = [
'bilinear_tensor_product'
,
]
# To avoid the api checker complains
if
os
.
name
==
'nt'
:
__all__
.
remove
(
'dynamic_lstm'
)
__all__
.
remove
(
'crf_decoding'
)
__all__
.
remove
(
'roi_pool'
)
def
fc
(
input
,
size
,
...
...
@@ -349,128 +343,126 @@ def embedding(input,
return
tmp
if
os
.
name
!=
'nt'
:
@
templatedoc
(
op_type
=
"lstm"
)
def
dynamic_lstm
(
input
,
size
,
h_0
=
None
,
c_0
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_peepholes
=
True
,
is_reverse
=
False
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'tanh'
,
candidate_activation
=
'tanh'
,
dtype
=
'float32'
,
name
=
None
):
"""
${comment}
@
templatedoc
(
op_type
=
"lstm"
)
def
dynamic_lstm
(
input
,
size
,
h_0
=
None
,
c_0
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_peepholes
=
True
,
is_reverse
=
False
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'tanh'
,
candidate_activation
=
'tanh'
,
dtype
=
'float32'
,
name
=
None
):
"""
${comment}
Args:
input (Variable): ${input_comment}
size (int): 4 * hidden size.
h_0(Variable): The initial hidden state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size and D is the hidden size.
c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weights.
- Weights = {:math:`W_{ch}, W_{ih},
\
W_{fh}, W_{oh}`}
- The shape is (D x 4D), where D is the hidden
size.
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|None): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is (1 x 4D).
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic},
\
W_{fc}, W_{oc}`}.
- The shape is (1 x 7D).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
use_peepholes (bool): ${use_peepholes_comment}
is_reverse (bool): ${is_reverse_comment}
gate_activation (str): ${gate_activation_comment}
cell_activation (str): ${cell_activation_comment}
candidate_activation (str): ${candidate_activation_comment}
dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
tuple: The hidden state, and cell state of LSTM. The shape of both
\
is (T x D), and lod is the same with the `input`.
Examples:
.. code-block:: python
hidden_dim = 512
forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
bias_attr=False)
forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
"""
assert
bias_attr
is
not
False
,
"bias_attr should not be False in dynamic_lstmp."
helper
=
LayerHelper
(
'lstm'
,
**
locals
())
size
=
size
//
4
weight
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
size
,
4
*
size
],
dtype
=
dtype
)
bias_size
=
[
1
,
7
*
size
]
if
not
use_peepholes
:
bias_size
[
1
]
=
4
*
size
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
bias_size
,
dtype
=
dtype
,
is_bias
=
True
)
Args:
input (Variable): ${input_comment}
size (int): 4 * hidden size.
h_0(Variable): The initial hidden state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size and D is the hidden size.
c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weights.
hidden
=
helper
.
create_variable_for_type_inference
(
dtype
)
cell
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_gate
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_cell_pre_act
=
helper
.
create_variable_for_type_inference
(
dtype
)
inputs
=
{
'Input'
:
input
,
'Weight'
:
weight
,
'Bias'
:
bias
}
batch_size
=
input
.
shape
[
0
]
if
h_0
:
assert
h_0
.
shape
==
(
batch_size
,
size
),
\
'The shape of h0 should be (batch_size, %d)'
%
size
inputs
[
'H0'
]
=
h_0
if
c_0
:
assert
c_0
.
shape
==
(
batch_size
,
size
),
\
'The shape of c0 should be (batch_size, %d)'
%
size
inputs
[
'C0'
]
=
c_0
- Weights = {:math:`W_{ch}, W_{ih},
\
W_{fh}, W_{oh}`}
- The shape is (D x 4D), where D is the hidden
size.
helper
.
append_op
(
type
=
'lstm'
,
inputs
=
inputs
,
outputs
=
{
'Hidden'
:
hidden
,
'Cell'
:
cell
,
'BatchGate'
:
batch_gate
,
'BatchCellPreAct'
:
batch_cell_pre_act
},
attrs
=
{
'use_peepholes'
:
use_peepholes
,
'is_reverse'
:
is_reverse
,
'gate_activation'
:
gate_activation
,
'cell_activation'
:
cell_activation
,
'candidate_activation'
:
candidate_activation
})
return
hidden
,
cell
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|None): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is (1 x 4D).
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic},
\
W_{fc}, W_{oc}`}.
- The shape is (1 x 7D).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
use_peepholes (bool): ${use_peepholes_comment}
is_reverse (bool): ${is_reverse_comment}
gate_activation (str): ${gate_activation_comment}
cell_activation (str): ${cell_activation_comment}
candidate_activation (str): ${candidate_activation_comment}
dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
tuple: The hidden state, and cell state of LSTM. The shape of both
\
is (T x D), and lod is the same with the `input`.
Examples:
.. code-block:: python
hidden_dim = 512
forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
bias_attr=False)
forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
"""
assert
bias_attr
is
not
False
,
"bias_attr should not be False in dynamic_lstmp."
helper
=
LayerHelper
(
'lstm'
,
**
locals
())
size
=
size
//
4
weight
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
size
,
4
*
size
],
dtype
=
dtype
)
bias_size
=
[
1
,
7
*
size
]
if
not
use_peepholes
:
bias_size
[
1
]
=
4
*
size
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
bias_size
,
dtype
=
dtype
,
is_bias
=
True
)
hidden
=
helper
.
create_variable_for_type_inference
(
dtype
)
cell
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_gate
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_cell_pre_act
=
helper
.
create_variable_for_type_inference
(
dtype
)
inputs
=
{
'Input'
:
input
,
'Weight'
:
weight
,
'Bias'
:
bias
}
batch_size
=
input
.
shape
[
0
]
if
h_0
:
assert
h_0
.
shape
==
(
batch_size
,
size
),
\
'The shape of h0 should be (batch_size, %d)'
%
size
inputs
[
'H0'
]
=
h_0
if
c_0
:
assert
c_0
.
shape
==
(
batch_size
,
size
),
\
'The shape of c0 should be (batch_size, %d)'
%
size
inputs
[
'C0'
]
=
c_0
helper
.
append_op
(
type
=
'lstm'
,
inputs
=
inputs
,
outputs
=
{
'Hidden'
:
hidden
,
'Cell'
:
cell
,
'BatchGate'
:
batch_gate
,
'BatchCellPreAct'
:
batch_cell_pre_act
},
attrs
=
{
'use_peepholes'
:
use_peepholes
,
'is_reverse'
:
is_reverse
,
'gate_activation'
:
gate_activation
,
'cell_activation'
:
cell_activation
,
'candidate_activation'
:
candidate_activation
})
return
hidden
,
cell
def
dynamic_lstmp
(
input
,
...
...
@@ -969,43 +961,39 @@ def linear_chain_crf(input, label, param_attr=None):
return
log_likelihood
if
os
.
name
!=
'nt'
:
@
templatedoc
()
def
crf_decoding
(
input
,
param_attr
,
label
=
None
):
"""
${comment}
@
templatedoc
()
def
crf_decoding
(
input
,
param_attr
,
label
=
None
):
"""
${comment}
Args:
input(${emission_type}): ${emission_comment}
Args:
input(${emission_type}): ${emission_comment}
param_attr(ParamAttr): The parameter attribute for training.
param_attr(ParamAttr): The parameter attribute for training.
label(${label_type}): ${label_comment}
label(${label_type}): ${label_comment}
Returns:
Variable: ${viterbi_path_comment}
Returns:
Variable: ${viterbi_path_comment}
Examples:
.. code-block:: python
Examples:
.. code-block:: python
crf_decode = layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
"""
helper
=
LayerHelper
(
'crf_decoding'
,
**
locals
())
transition
=
helper
.
get_parameter
(
param_attr
.
name
)
viterbi_path
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'crf_decoding'
,
inputs
=
{
"Emission"
:
[
input
],
crf_decode = layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
"""
helper
=
LayerHelper
(
'crf_decoding'
,
**
locals
())
transition
=
helper
.
get_parameter
(
param_attr
.
name
)
viterbi_path
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'crf_decoding'
,
inputs
=
{
"Emission"
:
[
input
],
"Transition"
:
transition
,
"Label"
:
label
},
outputs
=
{
"ViterbiPath"
:
[
viterbi_path
]})
"Label"
:
label
},
outputs
=
{
"ViterbiPath"
:
[
viterbi_path
]})
return
viterbi_path
return
viterbi_path
@
templatedoc
()
...
...
@@ -5599,48 +5587,42 @@ def label_smooth(label,
return
smooth_label
if
os
.
name
!=
'nt'
:
@
templatedoc
()
def
roi_pool
(
input
,
rois
,
pooled_height
=
1
,
pooled_width
=
1
,
spatial_scale
=
1.0
):
"""
${comment}
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
Returns:
Variable: ${out_comment}.
Examples:
.. code-block:: python
pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
"""
helper
=
LayerHelper
(
'roi_pool'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
argmaxes
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
helper
.
append_op
(
type
=
"roi_pool"
,
inputs
=
{
"X"
:
input
,
"ROIs"
:
rois
},
outputs
=
{
"Out"
:
pool_out
,
"Argmax"
:
argmaxes
},
attrs
=
{
"pooled_height"
:
pooled_height
,
"pooled_width"
:
pooled_width
,
"spatial_scale"
:
spatial_scale
})
return
pool_out
@
templatedoc
()
def
roi_pool
(
input
,
rois
,
pooled_height
=
1
,
pooled_width
=
1
,
spatial_scale
=
1.0
):
"""
${comment}
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
Returns:
Variable: ${out_comment}.
Examples:
.. code-block:: python
pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
"""
helper
=
LayerHelper
(
'roi_pool'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
argmaxes
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
helper
.
append_op
(
type
=
"roi_pool"
,
inputs
=
{
"X"
:
input
,
"ROIs"
:
rois
},
outputs
=
{
"Out"
:
pool_out
,
"Argmax"
:
argmaxes
},
attrs
=
{
"pooled_height"
:
pooled_height
,
"pooled_width"
:
pooled_width
,
"spatial_scale"
:
spatial_scale
})
return
pool_out
@
templatedoc
()
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
b6d89204
...
...
@@ -100,26 +100,27 @@ Examples:
>>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
if
os
.
name
!=
'nt'
:
__all__
+=
[
'cumsum'
]
_cum_sum_
=
generate_layer_fn
(
'cumsum'
)
def
cumsum
(
x
,
axis
=
None
,
exclusive
=
None
,
reverse
=
None
):
locals_var
=
locals
().
keys
()
kwargs
=
dict
()
for
name
in
locals_var
:
val
=
locals
()[
name
]
if
val
is
not
None
:
kwargs
[
name
]
=
val
return
_cum_sum_
(
**
kwargs
)
cumsum
.
__doc__
=
_cum_sum_
.
__doc__
+
"""
Examples:
>>> data = fluid.layers.data(name="input", shape=[32, 784])
>>> result = fluid.layers.cumsum(data, axis=0)
"""
__all__
+=
[
'cumsum'
]
_cum_sum_
=
generate_layer_fn
(
'cumsum'
)
def
cumsum
(
x
,
axis
=
None
,
exclusive
=
None
,
reverse
=
None
):
locals_var
=
locals
().
keys
()
kwargs
=
dict
()
for
name
in
locals_var
:
val
=
locals
()[
name
]
if
val
is
not
None
:
kwargs
[
name
]
=
val
return
_cum_sum_
(
**
kwargs
)
cumsum
.
__doc__
=
_cum_sum_
.
__doc__
+
"""
Examples:
>>> data = fluid.layers.data(name="input", shape=[32, 784])
>>> result = fluid.layers.cumsum(data, axis=0)
"""
__all__
+=
[
'thresholded_relu'
]
...
...
python/paddle/fluid/transpiler/details/checkport.py
浏览文件 @
b6d89204
...
...
@@ -34,6 +34,7 @@ def wait_server_ready(endpoints):
"""
while
True
:
all_ok
=
True
not_ready_endpoints
=
[]
for
ep
in
endpoints
:
ip_port
=
ep
.
split
(
":"
)
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
...
...
@@ -42,8 +43,11 @@ def wait_server_ready(endpoints):
result
=
sock
.
connect_ex
((
ip_port
[
0
],
int
(
ip_port
[
1
])))
if
result
!=
0
:
all_ok
=
False
not_ready_endpoints
.
append
(
ep
)
if
not
all_ok
:
sys
.
stderr
.
write
(
"pserver not ready, wait 3 sec to retry...
\n
"
)
sys
.
stderr
.
write
(
"not ready endpoints:"
+
str
(
not_ready_endpoints
)
+
"
\n
"
)
sys
.
stderr
.
flush
()
time
.
sleep
(
3
)
else
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录