未验证 提交 b5ac40ba 编写于 作者: O Orkun Özoğlu 提交者: GitHub

Update docstrings to reflect functions accepting Tensors. (#56379)

上级 edfc1ab8
...@@ -104,7 +104,7 @@ def resize(img, size, interpolation='bilinear'): ...@@ -104,7 +104,7 @@ def resize(img, size, interpolation='bilinear'):
Resizes the image to given size Resizes the image to given size
Args: Args:
input (PIL.Image|np.ndarray): Image to be resized. input (PIL.Image|np.ndarray|paddle.Tensor): Image to be resized.
size (int|list|tuple): Target size of input data, with (height, width) shape. size (int|list|tuple): Target size of input data, with (height, width) shape.
interpolation (int|str, optional): Interpolation method. when use pil backend, interpolation (int|str, optional): Interpolation method. when use pil backend,
support method are as following: support method are as following:
...@@ -122,7 +122,7 @@ def resize(img, size, interpolation='bilinear'): ...@@ -122,7 +122,7 @@ def resize(img, size, interpolation='bilinear'):
- "lanczos": cv2.INTER_LANCZOS4 - "lanczos": cv2.INTER_LANCZOS4
Returns: Returns:
PIL.Image or np.array: Resized image. PIL.Image|np.array|paddle.Tensor: Resized image.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -162,10 +162,10 @@ def resize(img, size, interpolation='bilinear'): ...@@ -162,10 +162,10 @@ def resize(img, size, interpolation='bilinear'):
def pad(img, padding, fill=0, padding_mode='constant'): def pad(img, padding, fill=0, padding_mode='constant'):
""" """
Pads the given PIL.Image or numpy.array on all sides with specified padding mode and fill value. Pads the given PIL.Image or numpy.array or paddle.Tensor on all sides with specified padding mode and fill value.
Args: Args:
img (PIL.Image|np.array): Image to be padded. img (PIL.Image|np.array|paddle.Tensor): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If list/tuple of length 2 is provided this is the padding is used to pad all borders. If list/tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a list/tuple of length 4 is provided on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
...@@ -191,7 +191,7 @@ def pad(img, padding, fill=0, padding_mode='constant'): ...@@ -191,7 +191,7 @@ def pad(img, padding, fill=0, padding_mode='constant'):
will result in [2, 1, 1, 2, 3, 4, 4, 3] will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns: Returns:
PIL.Image or np.array: Padded image. PIL.Image|np.array|paddle.Tensor: Padded image.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -231,7 +231,7 @@ def crop(img, top, left, height, width): ...@@ -231,7 +231,7 @@ def crop(img, top, left, height, width):
"""Crops the given Image. """Crops the given Image.
Args: Args:
img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left img (PIL.Image|np.array|paddle.Tensor): Image to be cropped. (0,0) denotes the top left
corner of the image. corner of the image.
top (int): Vertical component of the top left corner of the crop box. top (int): Vertical component of the top left corner of the crop box.
left (int): Horizontal component of the top left corner of the crop box. left (int): Horizontal component of the top left corner of the crop box.
...@@ -239,7 +239,7 @@ def crop(img, top, left, height, width): ...@@ -239,7 +239,7 @@ def crop(img, top, left, height, width):
width (int): Width of the crop box. width (int): Width of the crop box.
Returns: Returns:
PIL.Image or np.array: Cropped image. PIL.Image|np.array|paddle.Tensor: Cropped image.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -277,12 +277,12 @@ def center_crop(img, output_size): ...@@ -277,12 +277,12 @@ def center_crop(img, output_size):
"""Crops the given Image and resize it to desired size. """Crops the given Image and resize it to desired size.
Args: Args:
img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left corner of the image. img (PIL.Image|np.array|paddle.Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int, output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions it is used for both directions
Returns: Returns:
PIL.Image or np.array: Cropped image. PIL.Image|np.array|paddle.Tensor: Cropped image.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -316,13 +316,13 @@ def center_crop(img, output_size): ...@@ -316,13 +316,13 @@ def center_crop(img, output_size):
def hflip(img): def hflip(img):
"""Horizontally flips the given Image or np.array. """Horizontally flips the given Image or np.array or paddle.Tensor.
Args: Args:
img (PIL.Image|np.array): Image to be flipped. img (PIL.Image|np.array|Tensor): Image to be flipped.
Returns: Returns:
PIL.Image or np.array: Horizontall flipped image. PIL.Image|np.array|paddle.Tensor: Horizontall flipped image.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -357,13 +357,13 @@ def hflip(img): ...@@ -357,13 +357,13 @@ def hflip(img):
def vflip(img): def vflip(img):
"""Vertically flips the given Image or np.array. """Vertically flips the given Image or np.array or paddle.Tensor.
Args: Args:
img (PIL.Image|np.array): Image to be flipped. img (PIL.Image|np.array|paddle.Tensor): Image to be flipped.
Returns: Returns:
PIL.Image or np.array: Vertically flipped image. PIL.Image|np.array|paddle.Tensor: Vertically flipped image.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -760,7 +760,7 @@ def rotate( ...@@ -760,7 +760,7 @@ def rotate(
Args: Args:
img (PIL.Image|np.array): Image to be rotated. img (PIL.Image|np.array|paddle.Tensor): Image to be rotated.
angle (float or int): In degrees degrees counter clockwise order. angle (float or int): In degrees degrees counter clockwise order.
interpolation (str, optional): Interpolation method. If omitted, or if the interpolation (str, optional): Interpolation method. If omitted, or if the
image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST
...@@ -784,7 +784,7 @@ def rotate( ...@@ -784,7 +784,7 @@ def rotate(
Returns: Returns:
PIL.Image or np.array: Rotated image. PIL.Image|np.array|paddle.Tensor: Rotated image.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -934,11 +934,11 @@ def to_grayscale(img, num_output_channels=1): ...@@ -934,11 +934,11 @@ def to_grayscale(img, num_output_channels=1):
"""Converts image to grayscale version of image. """Converts image to grayscale version of image.
Args: Args:
img (PIL.Image|np.array): Image to be converted to grayscale. img (PIL.Image|np.array|paddle.Tensor): Image to be converted to grayscale.
num_output_channels (int, optional): The number of channels for the output num_output_channels (int, optional): The number of channels for the output
image. Single channel. Default: 1. image. Single channel. Default: 1.
Returns: Returns:
PIL.Image or np.array: Grayscale version of the image. PIL.Image|np.array|paddle.Tensor: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b if num_output_channels = 3 : returned image is 3 channel with r = g = b
...@@ -988,7 +988,7 @@ def normalize(img, mean, std, data_format='CHW', to_rgb=False): ...@@ -988,7 +988,7 @@ def normalize(img, mean, std, data_format='CHW', to_rgb=False):
this option will be igored. Default: False. this option will be igored. Default: False.
Returns: Returns:
np.ndarray or Tensor: Normalized mage. Data format is same as input img. PIL.Image|np.array|paddle.Tensor: Normalized mage. Data format is same as input img.
Examples: Examples:
.. code-block:: python .. code-block:: python
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册