Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b55dd32e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b55dd32e
编写于
3月 25, 2019
作者:
X
Xin Pan
提交者:
GitHub
3月 25, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16394 from panyx0718/imperative2
Add DeepCF model
上级
f9061796
55a7b981
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
197 addition
and
1 deletion
+197
-1
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
...on/paddle/fluid/tests/unittests/test_imperative_deepcf.py
+196
-0
python/paddle/fluid/tests/unittests/test_imperative_gan.py
python/paddle/fluid/tests/unittests/test_imperative_gan.py
+1
-1
未找到文件。
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
0 → 100644
浏览文件 @
b55dd32e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
random
import
sys
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
test_imperative_base
import
new_program_scope
from
paddle.fluid.imperative.base
import
to_variable
NUM_USERS
=
100
NUM_ITEMS
=
1000
BATCH_SIZE
=
32
NUM_BATCHES
=
2
class
MLP
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
MLP
,
self
).
__init__
(
name_scope
)
self
.
_user_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_user_layers
=
[]
self
.
_item_layers
=
[]
self
.
_hid_sizes
=
[
128
,
64
]
for
i
in
range
(
len
(
self
.
_hid_sizes
)):
self
.
_user_layers
.
append
(
self
.
add_sublayer
(
'user_layer_%d'
%
i
,
fluid
.
imperative
.
FC
(
self
.
full_name
(),
self
.
_hid_sizes
[
i
],
act
=
'relu'
)))
self
.
_item_layers
.
append
(
self
.
add_sublayer
(
'item_layer_%d'
%
i
,
fluid
.
imperative
.
FC
(
self
.
full_name
(),
self
.
_hid_sizes
[
i
],
act
=
'relu'
)))
def
forward
(
self
,
users
,
items
):
users
=
self
.
_user_latent
(
users
)
items
=
self
.
_item_latent
(
items
)
for
ul
,
il
in
zip
(
self
.
_user_layers
,
self
.
_item_layers
):
users
=
ul
(
users
)
items
=
il
(
items
)
return
fluid
.
layers
.
elementwise_mul
(
users
,
items
)
class
DMF
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
DMF
,
self
).
__init__
(
name_scope
)
self
.
_user_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_item_latent
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
256
)
self
.
_match_layers
=
[]
self
.
_hid_sizes
=
[
128
,
64
]
for
i
in
range
(
len
(
self
.
_hid_sizes
)):
self
.
_match_layers
.
append
(
self
.
add_sublayer
(
'match_layer_%d'
%
i
,
fluid
.
imperative
.
FC
(
self
.
full_name
(),
self
.
_hid_sizes
[
i
],
act
=
'relu'
)))
self
.
_mat
def
forward
(
self
,
users
,
items
):
users
=
self
.
_user_latent
(
users
)
items
=
self
.
_item_latent
(
items
)
match_vec
=
fluid
.
layers
.
concat
(
[
users
,
items
],
axis
=
len
(
users
.
shape
)
-
1
)
for
l
in
self
.
_match_layers
:
match_vec
=
l
(
match_vec
)
return
match_vec
class
DeepCF
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
DeepCF
,
self
).
__init__
(
name_scope
)
self
.
_user_emb
=
fluid
.
imperative
.
Embedding
(
self
.
full_name
(),
[
NUM_USERS
,
256
])
self
.
_item_emb
=
fluid
.
imperative
.
Embedding
(
self
.
full_name
(),
[
NUM_ITEMS
,
256
])
self
.
_mlp
=
MLP
(
self
.
full_name
())
self
.
_dmf
=
DMF
(
self
.
full_name
())
self
.
_match_fc
=
fluid
.
imperative
.
FC
(
self
.
full_name
(),
1
,
act
=
'sigmoid'
)
def
forward
(
self
,
users
,
items
):
users_emb
=
self
.
_user_emb
(
users
)
items_emb
=
self
.
_item_emb
(
items
)
mlp_predictive
=
self
.
_mlp
(
users_emb
,
items_emb
)
dmf_predictive
=
self
.
_dmf
(
users_emb
,
items_emb
)
predictive
=
fluid
.
layers
.
concat
(
[
mlp_predictive
,
dmf_predictive
],
axis
=
len
(
mlp_predictive
.
shape
)
-
1
)
prediction
=
self
.
_match_fc
(
predictive
)
return
prediction
def
get_data
():
user_ids
=
[]
item_ids
=
[]
labels
=
[]
for
uid
in
range
(
NUM_USERS
):
for
iid
in
range
(
NUM_ITEMS
):
# 10% positive
label
=
float
(
random
.
randint
(
1
,
10
)
==
1
)
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
label
)
indices
=
np
.
arange
(
NUM_USERS
*
NUM_ITEMS
)
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int64
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int64
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
)
class
TestImperativeDeepCF
(
unittest
.
TestCase
):
def
test_gan_float32
(
self
):
seed
=
90
users_np
,
items_np
,
labels_np
=
get_data
()
startup
=
fluid
.
Program
()
startup
.
random_seed
=
seed
main
=
fluid
.
Program
()
main
.
random_seed
=
seed
scope
=
fluid
.
core
.
Scope
()
with
new_program_scope
(
main
=
main
,
startup
=
startup
,
scope
=
scope
):
users
=
fluid
.
layers
.
data
(
'users'
,
[
1
],
dtype
=
'int64'
)
items
=
fluid
.
layers
.
data
(
'items'
,
[
1
],
dtype
=
'int64'
)
labels
=
fluid
.
layers
.
data
(
'labels'
,
[
1
],
dtype
=
'float32'
)
deepcf
=
DeepCF
(
'deepcf'
)
prediction
=
deepcf
(
users
,
items
)
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
labels
))
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
)
adam
.
minimize
(
loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
startup
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
static_loss
=
exe
.
run
(
main
,
feed
=
{
users
.
name
:
users_np
[
slice
:
slice
+
BATCH_SIZE
],
items
.
name
:
items_np
[
slice
:
slice
+
BATCH_SIZE
],
labels
.
name
:
labels_np
[
slice
:
slice
+
BATCH_SIZE
]
},
fetch_list
=
[
loss
])[
0
]
sys
.
stderr
.
write
(
'static loss %s
\n
'
%
static_loss
)
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
deepcf
=
DeepCF
(
'deepcf'
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
prediction
=
deepcf
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
loss
.
_backward
()
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
)
adam
.
minimize
(
loss
)
deepcf
.
clear_gradients
()
dy_loss
=
loss
.
_numpy
()
self
.
assertEqual
(
static_loss
,
dy_loss
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative_gan.py
浏览文件 @
b55dd32e
...
...
@@ -51,7 +51,7 @@ class Generator(fluid.imperative.Layer):
return
self
.
_fc3
(
x
)
class
TestImperative
Mnist
(
unittest
.
TestCase
):
class
TestImperative
GAN
(
unittest
.
TestCase
):
def
test_gan_float32
(
self
):
seed
=
90
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录