Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b556b0f1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2306
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b556b0f1
编写于
4月 22, 2020
作者:
G
GaoWei8
提交者:
GitHub
4月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry-Pick] [2.0-beta] add paddle.where interface and error enhancement (#23972)
上级
2c8a9181
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
221 addition
and
136 deletion
+221
-136
paddle/fluid/operators/concat_op.h
paddle/fluid/operators/concat_op.h
+16
-14
paddle/fluid/operators/lod_reset_op.cc
paddle/fluid/operators/lod_reset_op.cc
+3
-3
paddle/fluid/operators/lod_reset_op.h
paddle/fluid/operators/lod_reset_op.h
+13
-16
paddle/fluid/operators/where_op.cu
paddle/fluid/operators/where_op.cu
+6
-6
python/paddle/__init__.py
python/paddle/__init__.py
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+19
-12
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+1
-1
python/paddle/fluid/tests/unittests/test_lod_append_op.py
python/paddle/fluid/tests/unittests/test_lod_append_op.py
+80
-0
python/paddle/fluid/tests/unittests/test_lod_reset_op.py
python/paddle/fluid/tests/unittests/test_lod_reset_op.py
+18
-19
python/paddle/fluid/tests/unittests/test_where_op.py
python/paddle/fluid/tests/unittests/test_where_op.py
+62
-61
python/paddle/tensor/search.py
python/paddle/tensor/search.py
+2
-3
未找到文件。
paddle/fluid/operators/concat_op.h
浏览文件 @
b556b0f1
...
...
@@ -47,13 +47,13 @@ static inline framework::DDim ComputeAndCheckShape(
is_runtime
||
(
out_dims
[
j
]
>
0
&&
inputs_dims
[
i
][
j
]
>
0
);
if
(
check_shape
)
{
// check all shape in run time
PADDLE_ENFORCE_EQ
(
inputs_dims
[
0
][
j
],
inputs_dims
[
i
][
j
],
platform
::
errors
::
InvalidArgument
(
"The shape of input[%d] must be equal to input[0].
"
"But received input[0]'s shape = "
"[%s], input[%d]'s shape = [%s]."
,
i
,
inputs_dims
[
0
],
i
,
inputs_dims
[
i
]));
PADDLE_ENFORCE_EQ
(
inputs_dims
[
0
][
j
],
inputs_dims
[
i
][
j
],
platform
::
errors
::
InvalidArgument
(
"The %d-th dimension of input[0] and input[%d] "
"is expected to be equal.
"
"But received input[0]'s shape = "
"[%s], input[%d]'s shape = [%s]."
,
j
,
i
,
inputs_dims
[
0
],
i
,
inputs_dims
[
i
]));
}
}
}
...
...
@@ -79,9 +79,9 @@ class ConcatKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
ins
=
ctx
.
MultiInput
<
framework
::
LoDTensor
>
(
"X"
);
framework
::
LoDTensor
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
PADDLE_ENFORCE_NOT_NULL
(
ins
[
0
],
platform
::
errors
::
NotFound
(
" The first input of concat should not be null
."
));
PADDLE_ENFORCE_NOT_NULL
(
ins
[
0
],
platform
::
errors
::
NotFound
(
"The first input tensor is not initalized
."
));
auto
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
bool
need_resize_out_dims
=
false
;
if
(
ctx
.
HasInput
(
"AxisTensor"
))
{
...
...
@@ -116,7 +116,9 @@ class ConcatKernel : public framework::OpKernel<T> {
platform
::
errors
::
Unimplemented
(
"The lod level of all input LoDTensors should be same. "
"Maybe different lod level of input LoDTensors can concat,"
" it is not supported currently."
));
"it is not supported currently. The lod level of %dth input "
"is %d and first input is %d."
,
i
,
ins
[
i
]
->
lod
().
size
(),
lod_size_0
));
}
else
{
lod_size
=
0
;
break
;
...
...
@@ -181,9 +183,9 @@ class ConcatGradKernel : public framework::OpKernel<T> {
}
}
}
PADDLE_ENFORCE_NOT_NULL
(
ins
[
0
],
platform
::
errors
::
NotFound
(
"The first input of concat should not be null
."
));
PADDLE_ENFORCE_NOT_NULL
(
ins
[
0
],
platform
::
errors
::
NotFound
(
"The first input tensor is not initalized
."
));
auto
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
ctx
.
HasInput
(
"AxisTensor"
))
{
...
...
paddle/fluid/operators/lod_reset_op.cc
浏览文件 @
b556b0f1
...
...
@@ -32,9 +32,9 @@ class LoDResetOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GT
(
static_cast
<
int64_t
>
(
level0
.
size
()),
0
,
platform
::
errors
::
InvalidArgument
(
"If Input(Y)
not provided, the target lod
should be "
"specified by attribute
`target_lod`
. But the size of "
"
`target_lod`
is 0."
));
"If Input(Y)
is not provided, the output's LoD
should be "
"specified by attribute
'target_lod'
. But the size of "
"
'target_lod'
is 0."
));
}
else
if
(
ctx
->
IsRuntime
())
{
ctx
->
ShareLoD
(
"Y"
,
"Out"
);
}
...
...
paddle/fluid/operators/lod_reset_op.h
浏览文件 @
b556b0f1
...
...
@@ -41,10 +41,10 @@ class LoDResetKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
static_cast
<
int64_t
>
(
last_level
.
back
()),
in
->
dims
()[
0
],
platform
::
errors
::
InvalidArgument
(
"The last value of
`Y`
's last level LoD should be equal "
"to the first dimension of
`X`. But received the last value of
"
"
`Y`'s last level LoD is %d, the first dimension of `X` is
"
"
%d.
"
,
"The last value of
Input(Y)
's last level LoD should be equal "
"to the first dimension of
Input(X). But received the last
"
"
value of Input(Y)'s last level LoD is %d, the first dimension
"
"
of Input(X) is %d.
"
,
static_cast
<
int64_t
>
(
last_level
.
back
()),
in
->
dims
()[
0
]));
out
->
set_lod
(
y_lod
);
return
;
// early return, since lod already set
...
...
@@ -75,19 +75,16 @@ class LoDResetKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
static_cast
<
int64_t
>
(
level0
.
back
()),
in
->
dims
()[
0
],
platform
::
errors
::
InvalidArgument
(
"The last value of `Target LoD`'s last level LoD should be equal "
"to the first dimension of `X`. But received the last value of "
"`Target LoD`'s last level LoD is %d, the first dimension of `X` "
"is "
"%d. "
,
static_cast
<
int64_t
>
(
level0
.
back
()),
in
->
dims
()[
0
]));
"The last value of 'Target LoD''s last level LoD should be equal "
"to the first dimension of Input(X). But received the 'Target LoD' "
"is %s, Input(X)'s shape is is %s."
,
framework
::
make_ddim
(
level0
),
in
->
dims
()));
for
(
size_t
i
=
0
;
i
<
level0
.
size
()
-
1
;
++
i
)
{
PADDLE_ENFORCE_GE
(
level0
[
i
+
1
],
level0
[
i
],
platform
::
errors
::
InvalidArgument
(
"Target LoD should be an ascending vector. But the %s element is "
"%s and the %s element of Target LoD is %s."
,
i
+
1
,
level0
[
i
+
1
],
i
,
level0
[
i
]));
PADDLE_ENFORCE_GE
(
level0
[
i
+
1
],
level0
[
i
],
platform
::
errors
::
InvalidArgument
(
"'Target LoD' should be an ascending "
"vector. But received the Target LoD is %s."
,
framework
::
make_ddim
(
level0
)));
}
// cast level0 to size_t
...
...
paddle/fluid/operators/where_op.cu
浏览文件 @
b556b0f1
...
...
@@ -30,15 +30,15 @@ __global__ void WhereCUDAKernel(const int N, const bool* cond, const T* x,
}
template
<
typename
T
>
__global__
void
WhereGradCUDAKernel
(
const
int
N
,
const
T
*
out
,
const
bool
*
cond
,
T
*
x
,
T
*
y
)
{
__global__
void
WhereGradCUDAKernel
(
const
int
N
,
const
T
*
dout
,
const
bool
*
cond
,
T
*
dx
,
T
*
d
y
)
{
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(;
idx
<
N
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
x
!=
nullptr
)
{
x
[
idx
]
=
out
[
idx
]
*
(
cond
[
idx
]
?
1.
:
0.
)
;
if
(
d
x
!=
nullptr
)
{
dx
[
idx
]
=
cond
[
idx
]
?
dout
[
idx
]
:
0.
;
}
if
(
y
!=
nullptr
)
{
y
[
idx
]
=
out
[
idx
]
*
(
cond
[
idx
]
?
0.
:
1.
)
;
if
(
d
y
!=
nullptr
)
{
dy
[
idx
]
=
cond
[
idx
]
?
0.
:
dout
[
idx
]
;
}
}
}
...
...
python/paddle/__init__.py
浏览文件 @
b556b0f1
...
...
@@ -194,7 +194,7 @@ from .tensor.search import argmax #DEFINE_ALIAS
# from .tensor.search import has_nan #DEFINE_ALIAS
# from .tensor.search import masked_select #DEFINE_ALIAS
# from .tensor.search import topk #DEFINE_ALIAS
# from .tensor.search import where
#DEFINE_ALIAS
from
.tensor.search
import
where
#DEFINE_ALIAS
from
.tensor.search
import
index_select
#DEFINE_ALIAS
from
.tensor.search
import
index_sample
#DEFINE_ALIAS
from
.tensor.search
import
nonzero
#DEFINE_ALIAS
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b556b0f1
...
...
@@ -6196,10 +6196,12 @@ def lod_reset(x, y=None, target_lod=None):
out.dims = [6, 1]
Args:
x (Variable): Input variable which could be a Tensor or LoDTensor.
y (Variable|None): If provided, output's LoD would be derived
from :attr:`y`.
target_lod (list|tuple|None): One level LoD which should be considered
x (Variable): Input variable which could be a Tensor or LoDTensor.
The data type should be int32, int64, float32 or float64.
y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
If y's lod level>0, the data type can be any type.
If y's lod level=0, the data type should be int32.
target_lod (list|tuple, optional): One level LoD which should be considered
as target LoD when :attr:`y` not provided.
Returns:
...
...
@@ -6221,11 +6223,9 @@ def lod_reset(x, y=None, target_lod=None):
helper = LayerHelper("lod_reset", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
if y is not None:
if y.lod_level > 0:
check_variable_and_dtype(
y, 'y', ['float32', 'float64', 'int32', 'int64'], 'lod_reset')
else:
check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'lod_reset')
check_type(y, 'y', (Variable), 'lod_reset')
if y.lod_level == 0:
check_variable_and_dtype(y, 'y', ['int32'], 'lod_reset')
helper.append_op(
type="lod_reset", inputs={'X': x,
'Y': y}, outputs={'Out': out})
...
...
@@ -6261,9 +6261,11 @@ def lod_append(x, level):
x.dims = [6, 1]
Args:
x (Variable): Input variable which could be a tensor or LoDTensor.
level (list|tuple|Variable): The LoD level to be appended into LoD of x.
x (Variable): Input variable which could be a tensor or LoDTensor.
The data type should be int32, int64, float32 or float64.
level (list|tuple|Variable, optional): The LoD level to be appended into LoD of x.
If level is variable and its lod level>0, the data type can be any type.
If level is variable and its lod level=0, the data type should be int32.
Returns:
Variable: Output variable with new LoD level.
...
...
@@ -6283,6 +6285,9 @@ def lod_append(x, level):
if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
raise ValueError("Input(level) must be list, tuple or Variable.")
check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
'lod_append')
helper = LayerHelper("lod_append", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
...
...
@@ -6291,6 +6296,8 @@ def lod_append(x, level):
if isinstance(level, Variable):
inputs['Y'] = level
if level.lod_level == 0:
check_variable_and_dtype(level, 'level', ['int32'], 'lod_append')
else:
attrs['target_lod'] = level
helper.append_op(
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
b556b0f1
...
...
@@ -3033,7 +3033,7 @@ class TestBook(LayerTest):
z
=
layers
.
lod_reset
(
x
=
x
,
y
=
y
)
self
.
assertTrue
(
z
.
lod_level
==
2
)
# case 2
lod_tensor_in
=
layers
.
data
(
name
=
'lod_in'
,
shape
=
[
1
],
dtype
=
'int
64
'
)
lod_tensor_in
=
layers
.
data
(
name
=
'lod_in'
,
shape
=
[
1
],
dtype
=
'int
32
'
)
z
=
layers
.
lod_reset
(
x
=
x
,
y
=
lod_tensor_in
)
self
.
assertTrue
(
z
.
lod_level
==
1
)
# case 3
...
...
python/paddle/fluid/tests/unittests/test_lod_append_op.py
0 → 100644
浏览文件 @
b556b0f1
#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
paddle.fluid.op
import
Operator
from
paddle.fluid.backward
import
append_backward
class
TestLoDAppendAPI
(
unittest
.
TestCase
):
def
test_api
(
self
,
use_cuda
=
False
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
6
],
dtype
=
'float32'
)
level
=
fluid
.
layers
.
data
(
name
=
'level'
,
shape
=
[
3
],
dtype
=
'int32'
,
lod_level
=
0
)
result
=
fluid
.
layers
.
lod_append
(
x
,
level
)
x_i
=
np
.
array
([
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
]).
astype
(
"float32"
)
level_i
=
np
.
array
([
0
,
2
,
6
]).
astype
(
"int32"
)
for
use_cuda
in
[
False
,
True
]:
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
[
out
]
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'level'
:
level_i
},
fetch_list
=
[
result
],
return_numpy
=
False
)
self
.
assertEqual
(
out
.
recursive_sequence_lengths
(),
[[
2
,
4
]])
class
TestLodAppendOpError
(
unittest
.
TestCase
):
def
test_error
(
self
):
# The input(x) must be Variable.
x1
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
"float64"
)
level1
=
[
0
,
2
,
4
]
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
lod_append
,
x1
,
level1
)
#The input(level) must be Variable or list.
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
4
],
dtype
=
'float32'
)
self
.
assertRaises
(
ValueError
,
fluid
.
layers
.
lod_append
,
x2
,
2
)
# Input(x) dtype must be float32 or float64 or int32 or int64
for
dtype
in
[
"bool"
,
"float16"
]:
x3
=
fluid
.
layers
.
data
(
name
=
'x3_'
+
dtype
,
shape
=
[
4
],
dtype
=
dtype
)
level3
=
fluid
.
layers
.
data
(
name
=
'level3'
+
dtype
,
shape
=
[
4
],
dtype
=
'int32'
,
lod_level
=
2
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
lod_append
,
x3
,
level3
)
# Input(level) dtype must be int32 when lod_level=0
for
dtype
in
[
"bool"
,
"float16"
,
"float32"
,
"float64"
,
"int64"
]:
x4
=
fluid
.
layers
.
data
(
name
=
'x4'
+
dtype
,
shape
=
[
4
],
dtype
=
'float32'
)
level4
=
fluid
.
layers
.
data
(
name
=
'level4_'
+
dtype
,
shape
=
[
4
],
dtype
=
dtype
,
lod_level
=
0
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
lod_append
,
x4
,
level4
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_lod_reset_op.py
浏览文件 @
b556b0f1
...
...
@@ -16,6 +16,7 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
from
op_test
import
OpTest
from
paddle.fluid
import
Program
,
program_guard
...
...
@@ -136,28 +137,26 @@ class TestLodAppendOpByAttr(OpTest):
class
TestLodResetOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
def
test_Variable
():
# The input must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
ones
([
6
]),
[
3
,
3
],
fluid
.
CPUPlace
())
y1
=
fluid
.
create_lod_tensor
(
np
.
ones
([
6
]),
[
2
,
2
,
2
],
fluid
.
CPUPlace
())
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
lod_reset
,
[
x1
,
y1
])
def
test_type
():
# dtype must be float32 or float64 or int32 or int64
x2
=
fluid
.
layers
.
data
(
shape
=
[
4
],
dtype
=
'uint8'
,
name
=
'x2'
)
# The input must be Variable.
x1
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
"float64"
)
target_lod
=
[
2
,
2
]
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
lod_reset
,
x1
,
target_lod
)
# Input(x) dtype must be float32 or float64 or int32 or int64
for
dtype
in
[
"bool"
,
"float16"
]:
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
+
dtype
,
shape
=
[
4
],
dtype
=
dtype
)
y2
=
fluid
.
layers
.
data
(
shape
=
[
4
],
dtype
=
'uint8'
,
name
=
'x
2'
,
lod_level
=
2
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
lod_reset
,
[
x2
,
y2
]
)
name
=
'y2'
+
dtype
,
shape
=
[
4
],
dtype
=
'int3
2'
,
lod_level
=
2
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
lod_reset
,
x2
,
y2
)
def
test_type2
():
# dtype must be int32 or int64
x3
=
fluid
.
layers
.
data
(
shape
=
[
4
],
dtype
=
'float32'
,
name
=
'x3'
)
# Input(y) dtype must be int32 when lod_level=0
for
dtype
in
[
"bool"
,
"float16"
,
"float32"
,
"float64"
,
"int64"
]:
x3
=
fluid
.
layers
.
data
(
name
=
'x3'
+
dtype
,
shape
=
[
4
],
dtype
=
'float32'
)
y3
=
fluid
.
layers
.
data
(
shape
=
[
4
],
dtype
=
'float32'
,
name
=
'x3'
,
lod_level
=
0
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
lod_reset
,
[
x3
,
y3
]
)
name
=
'y3'
+
dtype
,
shape
=
[
4
],
dtype
=
dtype
,
lod_level
=
0
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
lod_reset
,
x3
,
y3
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_where_op.py
浏览文件 @
b556b0f1
...
...
@@ -16,9 +16,9 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.tensor
as
tensor
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
paddle.fluid
import
compiler
,
Program
,
program_guard
...
...
@@ -60,61 +60,64 @@ class TestWhereOp3(TestWhereOp):
class
TestWhereAPI
(
unittest
.
TestCase
):
def
test_api
(
self
,
use_cuda
=
False
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
],
dtype
=
'float32'
)
x_i
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
"float32"
)
y_i
=
np
.
array
([
1.0
,
1.0
,
1.0
,
1.0
]).
astype
(
"float32"
)
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
"bool"
)
result
=
tensor
.
where
(
x
>
1
,
x
=
x
,
y
=
y
)
def
setUp
(
self
):
self
.
init_data
()
for
use_cuda
in
[
False
,
True
]:
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
])
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
def
init_data
(
self
):
self
.
shape
=
[
10
,
15
]
self
.
cond
=
np
.
array
(
np
.
random
.
randint
(
2
,
size
=
self
.
shape
),
dtype
=
bool
)
self
.
x
=
np
.
random
.
uniform
(
-
2
,
3
,
self
.
shape
).
astype
(
np
.
float32
)
self
.
y
=
np
.
random
.
uniform
(
-
2
,
3
,
self
.
shape
).
astype
(
np
.
float32
)
self
.
out
=
np
.
where
(
self
.
cond
,
self
.
x
,
self
.
y
)
def
test_grad
(
self
,
use_cuda
=
False
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
],
dtype
=
'float32'
)
for
x_stop_gradient
,
y_stop_gradient
in
[[
False
,
False
],
[
True
,
False
],
[
False
,
True
]]:
x
.
stop_gradient
=
x_stop_gradient
y
.
stop_gradient
=
y_stop_gradient
x_i
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
"float32"
)
y_i
=
np
.
array
([
1.0
,
1.0
,
1.0
,
1.0
]).
astype
(
"float32"
)
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
"bool"
)
result
=
tensor
.
where
(
x
>
1
,
x
=
x
,
y
=
y
)
x_mean
=
layers
.
mean
(
x
)
append_backward
(
x_mean
)
y_mean
=
layers
.
mean
(
y
)
append_backward
(
y_mean
)
for
use_cuda
in
[
False
,
True
]:
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
,
x
.
grad_name
,
y
.
grad_name
])
x_grad
=
[
0.25
]
*
4
y_grad
=
[
0.25
]
*
4
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
assert
np
.
array_equal
(
out
[
1
],
x_grad
)
assert
np
.
array_equal
(
out
[
2
],
y_grad
)
def
ref_x_backward
(
self
,
dout
):
return
np
.
where
(
self
.
cond
==
True
,
dout
,
0
)
def
ref_y_backward
(
self
,
dout
):
return
np
.
where
(
self
.
cond
==
False
,
dout
,
0
)
def
test_api
(
self
,
use_cuda
=
False
):
for
x_stop_gradient
in
[
False
,
True
]:
for
y_stop_gradient
in
[
False
,
True
]:
with
fluid
.
program_guard
(
Program
(),
Program
()):
cond
=
fluid
.
layers
.
data
(
name
=
'cond'
,
shape
=
self
.
shape
,
dtype
=
'bool'
)
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
self
.
shape
,
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
self
.
shape
,
dtype
=
'float32'
)
x
.
stop_gradient
=
x_stop_gradient
y
.
stop_gradient
=
y_stop_gradient
result
=
paddle
.
where
(
cond
,
x
,
y
)
append_backward
(
layers
.
mean
(
result
))
for
use_cuda
in
[
False
,
True
]:
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
break
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
fetch_list
=
[
result
,
result
.
grad_name
]
if
x_stop_gradient
is
False
:
fetch_list
.
append
(
x
.
grad_name
)
if
y_stop_gradient
is
False
:
fetch_list
.
append
(
y
.
grad_name
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'cond'
:
self
.
cond
,
'x'
:
self
.
x
,
'y'
:
self
.
y
},
fetch_list
=
fetch_list
)
assert
np
.
array_equal
(
out
[
0
],
self
.
out
)
if
x_stop_gradient
is
False
:
assert
np
.
array_equal
(
out
[
2
],
self
.
ref_x_backward
(
out
[
1
]))
if
y
.
stop_gradient
is
False
:
assert
np
.
array_equal
(
out
[
3
],
self
.
ref_y_backward
(
out
[
1
]))
elif
y
.
stop_gradient
is
False
:
assert
np
.
array_equal
(
out
[
2
],
self
.
ref_y_backward
(
out
[
1
]))
def
test_api_broadcast
(
self
,
use_cuda
=
False
):
main_program
=
Program
()
...
...
@@ -124,9 +127,7 @@ class TestWhereAPI(unittest.TestCase):
x_i
=
np
.
array
([[
0.9383
,
0.1983
,
3.2
,
1.2
]]).
astype
(
"float32"
)
y_i
=
np
.
array
([[
1.0
,
1.0
,
1.0
,
1.0
],
[
1.0
,
1.0
,
1.0
,
1.0
]]).
astype
(
"float32"
)
cond_i
=
np
.
array
([[
False
,
False
,
True
,
True
],
[
False
,
False
,
True
,
True
]]).
astype
(
"bool"
)
result
=
tensor
.
where
(
x
>
1
,
x
=
x
,
y
=
y
)
result
=
paddle
.
where
(
x
>
1
,
x
=
x
,
y
=
y
)
for
use_cuda
in
[
False
,
True
]:
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
...
...
@@ -137,7 +138,7 @@ class TestWhereAPI(unittest.TestCase):
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
])
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
x_i
>
1
,
x_i
,
y_i
))
class
TestWhereDygraphAPI
(
unittest
.
TestCase
):
...
...
@@ -149,7 +150,7 @@ class TestWhereDygraphAPI(unittest.TestCase):
x
=
fluid
.
dygraph
.
to_variable
(
x_i
)
y
=
fluid
.
dygraph
.
to_variable
(
y_i
)
cond
=
fluid
.
dygraph
.
to_variable
(
cond_i
)
out
=
tensor
.
where
(
cond
,
x
,
y
)
out
=
paddle
.
where
(
cond
,
x
,
y
)
assert
np
.
array_equal
(
out
.
numpy
(),
np
.
where
(
cond_i
,
x_i
,
y_i
))
...
...
@@ -161,7 +162,7 @@ class TestWhereOpError(unittest.TestCase):
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
"bool"
)
def
test_Variable
():
tensor
.
where
(
cond_i
,
x_i
,
y_i
)
paddle
.
where
(
cond_i
,
x_i
,
y_i
)
self
.
assertRaises
(
TypeError
,
test_Variable
)
...
...
@@ -169,7 +170,7 @@ class TestWhereOpError(unittest.TestCase):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'bool'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
],
dtype
=
'float16'
)
cond
=
fluid
.
layers
.
data
(
name
=
'cond'
,
shape
=
[
4
],
dtype
=
'int32'
)
tensor
.
where
(
cond
,
x
,
y
)
paddle
.
where
(
cond
,
x
,
y
)
self
.
assertRaises
(
TypeError
,
test_type
)
...
...
python/paddle/tensor/search.py
浏览文件 @
b556b0f1
...
...
@@ -388,9 +388,9 @@ def where(condition, x, y, name=None):
Examples:
.. code-block:: python
import paddle
import numpy as np
import paddle.fluid as fluid
import paddle.tensor as paddle
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
...
...
@@ -417,8 +417,7 @@ def where(condition, x, y, name=None):
return
core
.
ops
.
where
(
condition
,
x
,
y
)
else
:
helper
=
LayerHelper
(
"where"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'where'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录