未验证 提交 b547c4ac 编写于 作者: S Sanbu 提交者: GitHub

Support static graph code-gen for bincount (#54686)

上级 733eca85
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/binary.h"
namespace paddle {
namespace operators {
class BincountOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext &ctx) const {
auto data_type =
ctx.HasInput("Weights")
? OperatorWithKernel::IndicateVarDataType(ctx, "Weights")
: OperatorWithKernel::IndicateVarDataType(ctx, "X");
return phi::KernelKey(data_type, ctx.device_context().GetPlace());
}
};
class BincountOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) The input tensor of Bincount op,");
AddInput("Weights", "(Tensor) The weights tensor of Bincount op,")
.AsDispensable();
AddOutput("Out", "(Tensor) The output tensor of Bincount op,");
AddAttr<int>("minlength", "(int) The minimal numbers of bins")
.SetDefault(0)
.EqualGreaterThan(0)
.SupportTensor();
AddComment(R"DOC(
Bincount Operator.
Computes frequency of each value in the input tensor.
Elements of input tensor should be non-negative ints.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(bincount,
BincountInferShapeFunctor,
PD_INFER_META(phi::BincountInferMeta));
REGISTER_OPERATOR(
bincount,
ops::BincountOp,
ops::BincountOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
BincountInferShapeFunctor);
...@@ -410,5 +410,14 @@ phi::KernelKey GetConvExpectedKernelType( ...@@ -410,5 +410,14 @@ phi::KernelKey GetConvExpectedKernelType(
return phi::KernelKey(input_data_type, ctx.GetPlace()); return phi::KernelKey(input_data_type, ctx.GetPlace());
} }
phi::KernelKey GetBincountExpectedKernelType(
const framework::ExecutionContext& ctx,
const framework::OperatorWithKernel* op_ptr) {
auto data_type = ctx.HasInput("Weights")
? op_ptr->IndicateVarDataType(ctx, "Weights")
: op_ptr->IndicateVarDataType(ctx, "X");
return phi::KernelKey(data_type, ctx.device_context().GetPlace());
}
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -100,5 +100,9 @@ phi::KernelKey GetConvExpectedKernelType( ...@@ -100,5 +100,9 @@ phi::KernelKey GetConvExpectedKernelType(
const framework::ExecutionContext& ctx, const framework::ExecutionContext& ctx,
const framework::OperatorWithKernel* op_ptr); const framework::OperatorWithKernel* op_ptr);
phi::KernelKey GetBincountExpectedKernelType(
const framework::ExecutionContext& ctx,
const framework::OperatorWithKernel* op_ptr);
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -121,15 +121,6 @@ ...@@ -121,15 +121,6 @@
view : (mean -> mean_out), (variance -> variance_out) view : (mean -> mean_out), (variance -> variance_out)
backward : batch_norm_grad backward : batch_norm_grad
- op : bincount
args: (Tensor x, Tensor weights, Scalar(int) minlength = 0)
output: Tensor(out)
infer_meta:
func: BincountInferMeta
kernel:
func: bincount
optional: weights
- op : cast - op : cast
args : (Tensor x, DataType dtype) args : (Tensor x, DataType dtype)
output : Tensor output : Tensor
......
...@@ -372,6 +372,18 @@ ...@@ -372,6 +372,18 @@
extra : extra :
attrs : [bool use_mkldnn = false] attrs : [bool use_mkldnn = false]
- op : bincount
inputs :
{x : X, weights : Weights}
outputs :
out : Out
scalar:
minlength:
data_type : int
support_tensor : true
get_expected_kernel_type :
bincount : GetBincountExpectedKernelType
- op : bitwise_and - op : bitwise_and
inputs : inputs :
{x : X, y : Y} {x : X, y : Y}
......
...@@ -294,6 +294,15 @@ ...@@ -294,6 +294,15 @@
data_transform : data_transform :
skip_transform : out_size, size_tensor, scale_tensor skip_transform : out_size, size_tensor, scale_tensor
- op : bincount
args: (Tensor x, Tensor weights, Scalar(int) minlength = 0)
output: Tensor(out)
infer_meta:
func: BincountInferMeta
kernel:
func: bincount
optional: weights
- op : bitwise_and - op : bitwise_and
args : (Tensor x, Tensor y) args : (Tensor x, Tensor y)
output : Tensor(out) output : Tensor(out)
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature BincountOpArgumentMapping(
const ArgumentMappingContext& ctx UNUSED) {
return KernelSignature("bincount", {"X", "Weights"}, {"minlength"}, {"Out"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(bincount, phi::BincountOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册