Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b4b16d1c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b4b16d1c
编写于
8月 21, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into dist_unittest
上级
2893205c
d04ef276
变更
64
隐藏空白更改
内联
并排
Showing
64 changed file
with
1771 addition
and
346 deletion
+1771
-346
CMakeLists.txt
CMakeLists.txt
+5
-4
cmake/configure.cmake
cmake/configure.cmake
+10
-7
cmake/cudnn.cmake
cmake/cudnn.cmake
+19
-2
cmake/external/anakin.cmake
cmake/external/anakin.cmake
+7
-6
cmake/flags.cmake
cmake/flags.cmake
+5
-0
cmake/simd.cmake
cmake/simd.cmake
+13
-1
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-2
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+2
-1
paddle/fluid/framework/ir/graph_test.cc
paddle/fluid/framework/ir/graph_test.cc
+3
-1
paddle/fluid/framework/program_desc.cc
paddle/fluid/framework/program_desc.cc
+21
-13
paddle/fluid/framework/program_desc.h
paddle/fluid/framework/program_desc.h
+2
-0
paddle/fluid/framework/program_desc_test.cc
paddle/fluid/framework/program_desc_test.cc
+25
-1
paddle/fluid/inference/api/high_level_api_cn.md
paddle/fluid/inference/api/high_level_api_cn.md
+3
-3
paddle/fluid/inference/tensorrt/CMakeLists.txt
paddle/fluid/inference/tensorrt/CMakeLists.txt
+1
-1
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+4
-1
paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc
paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc
+136
-0
paddle/fluid/inference/tensorrt/convert/test_batch_norm_op.cc
...le/fluid/inference/tensorrt/convert/test_batch_norm_op.cc
+71
-0
paddle/fluid/inference/tensorrt/convert/ut_helper.h
paddle/fluid/inference/tensorrt/convert/ut_helper.h
+14
-1
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+15
-4
paddle/fluid/operators/conditional_block_op.cc
paddle/fluid/operators/conditional_block_op.cc
+42
-30
paddle/fluid/operators/crf_decoding_op.h
paddle/fluid/operators/crf_decoding_op.h
+194
-0
paddle/fluid/operators/distributed/request_handler_impl.cc
paddle/fluid/operators/distributed/request_handler_impl.cc
+3
-2
paddle/fluid/operators/elementwise_mul_op.h
paddle/fluid/operators/elementwise_mul_op.h
+37
-3
paddle/fluid/operators/elementwise_op_function.h
paddle/fluid/operators/elementwise_op_function.h
+3
-0
paddle/fluid/operators/fc_op.cc
paddle/fluid/operators/fc_op.cc
+7
-24
paddle/fluid/operators/fusion_lstm_op.cc
paddle/fluid/operators/fusion_lstm_op.cc
+354
-0
paddle/fluid/operators/fusion_lstm_op.h
paddle/fluid/operators/fusion_lstm_op.h
+42
-0
paddle/fluid/operators/load_op.cc
paddle/fluid/operators/load_op.cc
+1
-0
paddle/fluid/operators/math/blas.h
paddle/fluid/operators/math/blas.h
+8
-0
paddle/fluid/operators/math/blas_impl.h
paddle/fluid/operators/math/blas_impl.h
+25
-0
paddle/fluid/operators/math/fc_compute.h
paddle/fluid/operators/math/fc_compute.h
+43
-0
paddle/fluid/operators/nccl/CMakeLists.txt
paddle/fluid/operators/nccl/CMakeLists.txt
+1
-1
paddle/fluid/operators/save_op.cc
paddle/fluid/operators/save_op.cc
+2
-0
paddle/fluid/operators/scatter_op.cc
paddle/fluid/operators/scatter_op.cc
+3
-3
paddle/fluid/operators/scatter_op.h
paddle/fluid/operators/scatter_op.h
+3
-3
paddle/fluid/operators/squeeze_op.cc
paddle/fluid/operators/squeeze_op.cc
+2
-10
paddle/fluid/operators/unsqueeze_op.cc
paddle/fluid/operators/unsqueeze_op.cc
+2
-11
paddle/fluid/platform/dynload/CMakeLists.txt
paddle/fluid/platform/dynload/CMakeLists.txt
+1
-1
paddle/fluid/platform/dynload/mklml.h
paddle/fluid/platform/dynload/mklml.h
+12
-10
paddle/fluid/platform/enforce.h
paddle/fluid/platform/enforce.h
+3
-3
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+7
-0
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+123
-2
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+2
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+42
-0
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+0
-1
python/paddle/fluid/tests/test_if_else_op.py
python/paddle/fluid/tests/test_if_else_op.py
+15
-3
python/paddle/fluid/tests/unittests/dist_mnist.py
python/paddle/fluid/tests/unittests/dist_mnist.py
+5
-4
python/paddle/fluid/tests/unittests/dist_se_resnext.py
python/paddle/fluid/tests/unittests/dist_se_resnext.py
+9
-6
python/paddle/fluid/tests/unittests/dist_transformer.py
python/paddle/fluid/tests/unittests/dist_transformer.py
+4
-2
python/paddle/fluid/tests/unittests/test_desc_clone.py
python/paddle/fluid/tests/unittests/test_desc_clone.py
+10
-8
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+42
-21
python/paddle/fluid/tests/unittests/test_dist_mnist.py
python/paddle/fluid/tests/unittests/test_dist_mnist.py
+12
-1
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
+11
-0
python/paddle/fluid/tests/unittests/test_dist_transformer.py
python/paddle/fluid/tests/unittests/test_dist_transformer.py
+3
-0
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+56
-10
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
+11
-0
python/paddle/fluid/tests/unittests/test_fc_op.py
python/paddle/fluid/tests/unittests/test_fc_op.py
+27
-7
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
+151
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+19
-0
python/paddle/fluid/tests/unittests/test_squeeze_op.py
python/paddle/fluid/tests/unittests/test_squeeze_op.py
+1
-45
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
+1
-34
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+6
-5
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+41
-23
python/setup.py.in
python/setup.py.in
+27
-23
未找到文件。
CMakeLists.txt
浏览文件 @
b4b16d1c
...
@@ -204,6 +204,11 @@ include(external/snappy) # download snappy
...
@@ -204,6 +204,11 @@ include(external/snappy) # download snappy
include
(
external/snappystream
)
include
(
external/snappystream
)
include
(
external/threadpool
)
include
(
external/threadpool
)
include
(
flags
)
# set paddle compile flags
include
(
cudnn
)
# set cudnn libraries, must before configure
include
(
cupti
)
include
(
configure
)
# add paddle env configuration
if
(
WITH_GPU
)
if
(
WITH_GPU
)
include
(
cuda
)
include
(
cuda
)
include
(
tensorrt
)
include
(
tensorrt
)
...
@@ -212,15 +217,11 @@ elseif()
...
@@ -212,15 +217,11 @@ elseif()
set
(
WITH_ANAKIN OFF CACHE STRING
"Anakin is used in GPU only now."
FORCE
)
set
(
WITH_ANAKIN OFF CACHE STRING
"Anakin is used in GPU only now."
FORCE
)
endif
()
endif
()
include
(
cudnn
)
# set cudnn libraries, must before configure
include
(
cupti
)
include
(
configure
)
# add paddle env configuration
include
(
generic
)
# simplify cmake module
include
(
generic
)
# simplify cmake module
include
(
package
)
# set paddle packages
include
(
package
)
# set paddle packages
include
(
ccache
)
# set ccache for compilation
include
(
ccache
)
# set ccache for compilation
include
(
util
)
# set unittest and link libs
include
(
util
)
# set unittest and link libs
include
(
rdma
)
# set rdma libraries
include
(
rdma
)
# set rdma libraries
include
(
flags
)
# set paddle compile flags
include
(
version
)
# set PADDLE_VERSION
include
(
version
)
# set PADDLE_VERSION
include
(
coveralls
)
# set code coverage
include
(
coveralls
)
# set code coverage
include
(
inference_lib
)
# add paddle fluid inference libraries
include
(
inference_lib
)
# add paddle fluid inference libraries
...
...
cmake/configure.cmake
浏览文件 @
b4b16d1c
...
@@ -50,16 +50,16 @@ if(NOT WITH_PROFILER)
...
@@ -50,16 +50,16 @@ if(NOT WITH_PROFILER)
endif
(
NOT WITH_PROFILER
)
endif
(
NOT WITH_PROFILER
)
if
(
NOT CMAKE_CROSSCOMPILING
)
if
(
NOT CMAKE_CROSSCOMPILING
)
if
(
WITH_AVX AND AVX_FOUND
)
if
(
WITH_AVX AND AVX512F_FOUND
)
set
(
SIMD_FLAG
${
AVX512F_FLAG
}
)
elseif
(
WITH_AVX AND AVX2_FOUND
)
set
(
SIMD_FLAG
${
AVX2_FLAG
}
)
elseif
(
WITH_AVX AND AVX_FOUND
)
set
(
SIMD_FLAG
${
AVX_FLAG
}
)
set
(
SIMD_FLAG
${
AVX_FLAG
}
)
elseif
(
SSE3_FOUND
)
elseif
(
SSE3_FOUND
)
set
(
SIMD_FLAG
${
SSE3_FLAG
}
)
set
(
SIMD_FLAG
${
SSE3_FLAG
}
)
endif
()
endif
()
endif
()
endif
()
if
(
UNIX AND NOT APPLE
)
# except apple from nix*Os family
set
(
LINUX TRUE
)
endif
(
UNIX AND NOT APPLE
)
if
(
NOT WITH_GOLANG
)
if
(
NOT WITH_GOLANG
)
add_definitions
(
-DPADDLE_WITHOUT_GOLANG
)
add_definitions
(
-DPADDLE_WITHOUT_GOLANG
)
...
@@ -112,8 +112,11 @@ if(WITH_GPU)
...
@@ -112,8 +112,11 @@ if(WITH_GPU)
endif
()
endif
()
endif
()
endif
()
if
(
WITH_ANAKIN
)
if
(
WITH_ANAKIN
)
set
(
ENV{CUDNN_INCLUDE_DIR}
${
CUDNN_INCLUDE_DIR
}
)
# NOTICE(minqiyang): the end slash is important because $CUDNN_INCLUDE_DIR
set
(
ENV{CUDNN_LIBRARY}
${
CUDNN_LIBRARY
}
)
# is a softlink to real cudnn.h directory
set
(
ENV{CUDNN_INCLUDE_DIR}
"
${
CUDNN_INCLUDE_DIR
}
/"
)
get_filename_component
(
CUDNN_LIBRARY_DIR
${
CUDNN_LIBRARY
}
DIRECTORY
)
set
(
ENV{CUDNN_LIBRARY}
${
CUDNN_LIBRARY_DIR
}
)
endif
()
endif
()
elseif
(
WITH_AMD_GPU
)
elseif
(
WITH_AMD_GPU
)
add_definitions
(
-DPADDLE_WITH_HIP
)
add_definitions
(
-DPADDLE_WITH_HIP
)
...
...
cmake/cudnn.cmake
浏览文件 @
b4b16d1c
...
@@ -25,8 +25,25 @@ list(APPEND CUDNN_CHECK_LIBRARY_DIRS
...
@@ -25,8 +25,25 @@ list(APPEND CUDNN_CHECK_LIBRARY_DIRS
$ENV{CUDNN_ROOT}
$ENV{CUDNN_ROOT}
$ENV{CUDNN_ROOT}/lib64
$ENV{CUDNN_ROOT}/lib64
$ENV{CUDNN_ROOT}/lib
$ENV{CUDNN_ROOT}/lib
/usr/lib
)
/usr/lib
find_library
(
CUDNN_LIBRARY NAMES libcudnn.so libcudnn.dylib
# libcudnn_static.a
${
CUDA_TOOLKIT_ROOT_DIR
}
${
CUDA_TOOLKIT_ROOT_DIR
}
/lib/x64
)
set
(
CUDNN_LIB_NAME
""
)
if
(
LINUX
)
set
(
CUDNN_LIB_NAME
"libcudnn.so"
)
endif
(
LINUX
)
if
(
WIN32
)
# only support cudnn7
set
(
CUDNN_LIB_NAME
"cudnn.lib"
"cudnn64_7.dll"
)
endif
(
WIN32
)
if
(
Apple
)
set
(
CUDNN_LIB_NAME
"libcudnn.dylib"
"libcudnn.so"
)
endif
(
Apple
)
find_library
(
CUDNN_LIBRARY NAMES
${
CUDNN_LIB_NAME
}
# libcudnn_static.a
PATHS
${
CUDNN_CHECK_LIBRARY_DIRS
}
${
CUDNN_INCLUDE_DIR
}
${
__libpath_hist
}
PATHS
${
CUDNN_CHECK_LIBRARY_DIRS
}
${
CUDNN_INCLUDE_DIR
}
${
__libpath_hist
}
NO_DEFAULT_PATH
NO_DEFAULT_PATH
DOC
"Path to cuDNN library."
)
DOC
"Path to cuDNN library."
)
...
...
cmake/external/anakin.cmake
浏览文件 @
b4b16d1c
...
@@ -19,17 +19,17 @@ execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-cer
...
@@ -19,17 +19,17 @@ execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-cer
include_directories
(
${
ANAKIN_INCLUDE
}
)
include_directories
(
${
ANAKIN_INCLUDE
}
)
include_directories
(
${
ANAKIN_INCLUDE
}
/saber/
)
include_directories
(
${
ANAKIN_INCLUDE
}
/saber/
)
set
(
ANAKIN_COMPILE_EXTRA_FLAGS
set
(
ANAKIN_COMPILE_EXTRA_FLAGS
-Wno-error=unused-but-set-variable -Wno-unused-but-set-variable
-Wno-error=unused-but-set-variable -Wno-unused-but-set-variable
-Wno-error=unused-variable -Wno-unused-variable
-Wno-error=unused-variable -Wno-unused-variable
-Wno-error=format-extra-args -Wno-format-extra-args
-Wno-error=format-extra-args -Wno-format-extra-args
-Wno-error=comment -Wno-comment
-Wno-error=comment -Wno-comment
-Wno-error=format -Wno-format
-Wno-error=format -Wno-format
-Wno-error=switch -Wno-switch
-Wno-error=switch -Wno-switch
-Wno-error=return-type -Wno-return-type
-Wno-error=return-type -Wno-return-type
-Wno-error=non-virtual-dtor -Wno-non-virtual-dtor
-Wno-error=non-virtual-dtor -Wno-non-virtual-dtor
-Wno-sign-compare
-Wno-sign-compare
-Wno-reorder
-Wno-reorder
-Wno-error=cpp
)
-Wno-error=cpp
)
ExternalProject_Add
(
ExternalProject_Add
(
...
@@ -47,6 +47,7 @@ ExternalProject_Add(
...
@@ -47,6 +47,7 @@ ExternalProject_Add(
-DPROTOBUF_ROOT=
${
THIRD_PARTY_PATH
}
/install/protobuf
-DPROTOBUF_ROOT=
${
THIRD_PARTY_PATH
}
/install/protobuf
-DMKLML_ROOT=
${
THIRD_PARTY_PATH
}
/install/mklml
-DMKLML_ROOT=
${
THIRD_PARTY_PATH
}
/install/mklml
-DCUDNN_ROOT=
${
CUDNN_ROOT
}
-DCUDNN_ROOT=
${
CUDNN_ROOT
}
-DCUDNN_INCLUDE_DIR=
${
CUDNN_INCLUDE_DIR
}
${
EXTERNAL_OPTIONAL_ARGS
}
${
EXTERNAL_OPTIONAL_ARGS
}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=
${
ANAKIN_INSTALL_DIR
}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=
${
ANAKIN_INSTALL_DIR
}
)
)
...
...
cmake/flags.cmake
浏览文件 @
b4b16d1c
...
@@ -142,6 +142,11 @@ else()
...
@@ -142,6 +142,11 @@ else()
${
GPU_COMMON_FLAGS
}
)
${
GPU_COMMON_FLAGS
}
)
endif
()
endif
()
if
(
UNIX AND NOT APPLE
)
# except apple from nix*Os family
set
(
LINUX TRUE
)
endif
(
UNIX AND NOT APPLE
)
foreach
(
flag
${
COMMON_FLAGS
}
)
foreach
(
flag
${
COMMON_FLAGS
}
)
safe_set_cflag
(
CMAKE_C_FLAGS
${
flag
}
)
safe_set_cflag
(
CMAKE_C_FLAGS
${
flag
}
)
...
...
cmake/simd.cmake
浏览文件 @
b4b16d1c
...
@@ -10,6 +10,7 @@ if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID
...
@@ -10,6 +10,7 @@ if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID
set
(
SSE3_FLAG
"-msse3"
)
set
(
SSE3_FLAG
"-msse3"
)
set
(
AVX_FLAG
"-mavx"
)
set
(
AVX_FLAG
"-mavx"
)
set
(
AVX2_FLAG
"-mavx2"
)
set
(
AVX2_FLAG
"-mavx2"
)
set
(
AVX512F_FLAG
"-mavx512f"
)
elseif
(
MSVC
)
elseif
(
MSVC
)
set
(
MMX_FLAG
"/arch:MMX"
)
set
(
MMX_FLAG
"/arch:MMX"
)
set
(
SSE2_FLAG
"/arch:SSE2"
)
set
(
SSE2_FLAG
"/arch:SSE2"
)
...
@@ -81,5 +82,16 @@ int main()
...
@@ -81,5 +82,16 @@ int main()
return 0;
return 0;
}"
AVX2_FOUND
)
}"
AVX2_FOUND
)
# Check AVX512F
set
(
CMAKE_REQUIRED_FLAGS
${
AVX512F_FLAG
}
)
set
(
AVX512F_FOUND_EXITCODE 1 CACHE STRING
"Result from TRY_RUN"
FORCE
)
CHECK_CXX_SOURCE_RUNS
(
"
#include <immintrin.h>
int main()
{
__m512i a = _mm512_undefined_epi32();
return 0;
}"
AVX512F_FOUND
)
set
(
CMAKE_REQUIRED_FLAGS
${
CMAKE_REQUIRED_FLAGS_RETAINED
}
)
set
(
CMAKE_REQUIRED_FLAGS
${
CMAKE_REQUIRED_FLAGS_RETAINED
}
)
mark_as_advanced
(
MMX_FOUND SSE2_FOUND SSE3_FOUND AVX_FOUND AVX2_FOUND
)
mark_as_advanced
(
MMX_FOUND SSE2_FOUND SSE3_FOUND AVX_FOUND AVX2_FOUND
AVX512F_FOUND
)
paddle/fluid/API.spec
浏览文件 @
b4b16d1c
...
@@ -78,7 +78,7 @@ paddle.fluid.io.load_vars ArgSpec(args=['executor', 'dirname', 'main_program', '
...
@@ -78,7 +78,7 @@ paddle.fluid.io.load_vars ArgSpec(args=['executor', 'dirname', 'main_program', '
paddle.fluid.io.load_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.load_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.load_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.load_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_inference_model ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment'], varargs=None, keywords=None, defaults=(None, None, None, True))
paddle.fluid.io.save_inference_model ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment'], varargs=None, keywords=None, defaults=(None, None, None, True))
paddle.fluid.io.load_inference_model ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename'
], varargs=None, keywords=None, defaults=(
None, None))
paddle.fluid.io.load_inference_model ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename'
, 'pserver_endpoints'], varargs=None, keywords=None, defaults=(None,
None, None))
paddle.fluid.io.get_inference_program ArgSpec(args=['target_vars', 'main_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.io.get_inference_program ArgSpec(args=['target_vars', 'main_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.initializer.ConstantInitializer.__init__ ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False))
paddle.fluid.initializer.ConstantInitializer.__init__ ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False))
paddle.fluid.initializer.UniformInitializer.__init__ ArgSpec(args=['self', 'low', 'high', 'seed'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0))
paddle.fluid.initializer.UniformInitializer.__init__ ArgSpec(args=['self', 'low', 'high', 'seed'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0))
...
@@ -153,6 +153,7 @@ paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'n
...
@@ -153,6 +153,7 @@ paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'n
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.random_crop ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.random_crop ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mean_iou ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.mean_iou ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
...
@@ -250,7 +251,6 @@ paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwarg
...
@@ -250,7 +251,6 @@ paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwarg
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.scatter ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sum ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sum ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.slice ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.slice ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.shape ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.shape ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
...
...
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
b4b16d1c
...
@@ -99,12 +99,13 @@ else()
...
@@ -99,12 +99,13 @@ else()
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method
)
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method
)
endif
()
endif
()
if
(
NOT WIN32
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph graph_viz_pass multi_devices_graph_pass
graph graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fast_threaded_ssa_graph_executor
)
fast_threaded_ssa_graph_executor
)
endif
()
# NOT WIN32
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
...
...
paddle/fluid/framework/ir/graph_test.cc
浏览文件 @
b4b16d1c
...
@@ -200,9 +200,11 @@ TEST(GraphTest, WriteAfterWrite) {
...
@@ -200,9 +200,11 @@ TEST(GraphTest, WriteAfterWrite) {
ASSERT_TRUE
(
ir
::
IsControlDepVar
(
*
n
->
inputs
[
1
]));
ASSERT_TRUE
(
ir
::
IsControlDepVar
(
*
n
->
inputs
[
1
]));
control_dep2
=
n
->
inputs
[
1
];
control_dep2
=
n
->
inputs
[
1
];
ASSERT_EQ
(
n
->
inputs
.
size
(),
2
);
ASSERT_EQ
(
n
->
inputs
.
size
(),
2
);
ASSERT_EQ
(
control_dep1
,
control_dep2
);
}
}
}
}
ASSERT_NE
(
control_dep1
,
nullptr
);
ASSERT_NE
(
control_dep2
,
nullptr
);
ASSERT_EQ
(
control_dep1
,
control_dep2
);
}
}
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/framework/program_desc.cc
浏览文件 @
b4b16d1c
...
@@ -55,11 +55,20 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
...
@@ -55,11 +55,20 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
auto
all_ops
=
blocks_
[
block_id
]
->
AllOps
();
auto
all_ops
=
blocks_
[
block_id
]
->
AllOps
();
for
(
size_t
op_id
=
0
;
op_id
<
all_ops
.
size
();
++
op_id
)
{
for
(
size_t
op_id
=
0
;
op_id
<
all_ops
.
size
();
++
op_id
)
{
auto
&
op
=
all_ops
[
op_id
];
auto
&
op
=
all_ops
[
op_id
];
for
(
const
std
::
string
&
attr_name
:
op
->
AttrNames
())
{
for
(
const
std
::
string
&
attr_name
:
op
->
AttrNames
())
{
if
(
op
->
GetAttrType
(
attr_name
)
==
proto
::
AttrType
::
BLOCK
)
{
if
(
op
->
GetAttrType
(
attr_name
)
==
proto
::
AttrType
::
BLOCK
)
{
int
sub_block_id
=
int
sub_block_id
=
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlockAttrId
(
attr_name
);
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlockAttrId
(
attr_name
);
op
->
SetBlockAttr
(
attr_name
,
MutableBlock
(
sub_block_id
));
op
->
SetBlockAttr
(
attr_name
,
MutableBlock
(
sub_block_id
));
}
else
if
(
op
->
GetAttrType
(
attr_name
)
==
proto
::
AttrType
::
BLOCKS
)
{
std
::
vector
<
int
>
sub_block_ids
=
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlocksAttrIds
(
attr_name
);
std
::
vector
<
BlockDesc
*>
block_descs
;
for
(
int
block_id
:
sub_block_ids
)
{
block_descs
.
push_back
(
MutableBlock
(
block_id
));
}
op
->
SetBlocksAttr
(
attr_name
,
block_descs
);
}
}
}
}
}
}
...
@@ -68,24 +77,16 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
...
@@ -68,24 +77,16 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
ProgramDesc
::
ProgramDesc
(
const
proto
::
ProgramDesc
&
desc
)
{
ProgramDesc
::
ProgramDesc
(
const
proto
::
ProgramDesc
&
desc
)
{
desc_
=
desc
;
desc_
=
desc
;
for
(
auto
&
block_desc
:
*
desc_
.
mutable_blocks
())
{
InitFromProto
();
blocks_
.
emplace_back
(
new
BlockDesc
(
this
,
&
block_desc
));
}
for
(
auto
&
block
:
blocks_
)
{
for
(
auto
*
op
:
block
->
AllOps
())
{
for
(
const
auto
&
attr
:
op
->
Proto
()
->
attrs
())
{
if
(
attr
.
type
()
==
proto
::
AttrType
::
BLOCK
)
{
size_t
blk_idx
=
attr
.
block_idx
();
op
->
SetBlockAttr
(
attr
.
name
(),
this
->
MutableBlock
(
blk_idx
));
}
}
}
}
}
}
ProgramDesc
::
ProgramDesc
(
const
std
::
string
&
binary_str
)
{
ProgramDesc
::
ProgramDesc
(
const
std
::
string
&
binary_str
)
{
PADDLE_ENFORCE
(
desc_
.
ParseFromString
(
binary_str
),
PADDLE_ENFORCE
(
desc_
.
ParseFromString
(
binary_str
),
"Fail to parse program_desc from binary string."
);
"Fail to parse program_desc from binary string."
);
InitFromProto
();
}
void
ProgramDesc
::
InitFromProto
()
{
for
(
auto
&
block_desc
:
*
desc_
.
mutable_blocks
())
{
for
(
auto
&
block_desc
:
*
desc_
.
mutable_blocks
())
{
blocks_
.
emplace_back
(
new
BlockDesc
(
this
,
&
block_desc
));
blocks_
.
emplace_back
(
new
BlockDesc
(
this
,
&
block_desc
));
}
}
...
@@ -95,6 +96,13 @@ ProgramDesc::ProgramDesc(const std::string &binary_str) {
...
@@ -95,6 +96,13 @@ ProgramDesc::ProgramDesc(const std::string &binary_str) {
if
(
attr
.
type
()
==
proto
::
AttrType
::
BLOCK
)
{
if
(
attr
.
type
()
==
proto
::
AttrType
::
BLOCK
)
{
size_t
blk_idx
=
attr
.
block_idx
();
size_t
blk_idx
=
attr
.
block_idx
();
op
->
SetBlockAttr
(
attr
.
name
(),
this
->
MutableBlock
(
blk_idx
));
op
->
SetBlockAttr
(
attr
.
name
(),
this
->
MutableBlock
(
blk_idx
));
}
else
if
(
attr
.
type
()
==
proto
::
AttrType
::
BLOCKS
)
{
auto
blks_idx
=
attr
.
blocks_idx
();
std
::
vector
<
BlockDesc
*>
block_descs
;
for
(
int
blk_idx
:
blks_idx
)
{
block_descs
.
push_back
(
this
->
MutableBlock
(
blk_idx
));
}
op
->
SetBlocksAttr
(
attr
.
name
(),
block_descs
);
}
}
}
}
}
}
...
...
paddle/fluid/framework/program_desc.h
浏览文件 @
b4b16d1c
...
@@ -76,6 +76,8 @@ class ProgramDesc {
...
@@ -76,6 +76,8 @@ class ProgramDesc {
void
SetFetchHolderName
(
const
std
::
string
&
fetch_holder_name
);
void
SetFetchHolderName
(
const
std
::
string
&
fetch_holder_name
);
private:
private:
void
InitFromProto
();
proto
::
ProgramDesc
desc_
;
proto
::
ProgramDesc
desc_
;
std
::
vector
<
std
::
unique_ptr
<
BlockDesc
>>
blocks_
;
std
::
vector
<
std
::
unique_ptr
<
BlockDesc
>>
blocks_
;
...
...
paddle/fluid/framework/program_desc_test.cc
浏览文件 @
b4b16d1c
...
@@ -42,6 +42,19 @@ TEST(ProgramDesc, copy_ctor) {
...
@@ -42,6 +42,19 @@ TEST(ProgramDesc, copy_ctor) {
out
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
out
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
op
->
SetOutput
(
"Y"
,
{
out
->
Name
()});
op
->
SetOutput
(
"Y"
,
{
out
->
Name
()});
BlockDesc
*
new_block
=
program
.
AppendBlock
(
*
global_block
);
op
=
new_block
->
AppendOp
();
op
->
SetType
(
"mul"
);
op
=
global_block
->
AppendOp
();
op
->
SetType
(
"op_with_subblock"
);
op
->
SetAttr
(
"sub_block"
,
new_block
);
std
::
vector
<
BlockDesc
*>
sub_blocks
;
sub_blocks
.
push_back
(
program
.
AppendBlock
(
*
global_block
));
sub_blocks
.
push_back
(
program
.
AppendBlock
(
*
global_block
));
op
->
SetAttr
(
"sub_blocks"
,
sub_blocks
);
ProgramDesc
program_copy
(
program
);
ProgramDesc
program_copy
(
program
);
auto
*
global_block_copy
=
program_copy
.
MutableBlock
(
0
);
auto
*
global_block_copy
=
program_copy
.
MutableBlock
(
0
);
...
@@ -64,6 +77,8 @@ TEST(ProgramDesc, copy_ctor) {
...
@@ -64,6 +77,8 @@ TEST(ProgramDesc, copy_ctor) {
assert_same_var
(
"Y"
,
y
);
assert_same_var
(
"Y"
,
y
);
assert_same_var
(
"Out"
,
out
);
assert_same_var
(
"Out"
,
out
);
bool
found_sub_block
=
false
;
bool
found_sub_blocks
=
false
;
for
(
size_t
i
=
0
;
i
<
global_block
->
OpSize
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
global_block
->
OpSize
();
++
i
)
{
auto
op_origin
=
global_block
->
Op
(
i
);
auto
op_origin
=
global_block
->
Op
(
i
);
auto
op_copy
=
global_block_copy
->
Op
(
i
);
auto
op_copy
=
global_block_copy
->
Op
(
i
);
...
@@ -74,8 +89,17 @@ TEST(ProgramDesc, copy_ctor) {
...
@@ -74,8 +89,17 @@ TEST(ProgramDesc, copy_ctor) {
ASSERT_EQ
(
op_copy
->
Proto
()
->
SerializeAsString
(),
ASSERT_EQ
(
op_copy
->
Proto
()
->
SerializeAsString
(),
op_origin
->
Proto
()
->
SerializeAsString
());
op_origin
->
Proto
()
->
SerializeAsString
());
}
if
(
op
->
Type
()
==
"op_with_subblock"
)
{
ASSERT_EQ
(
1
,
op
->
GetBlockAttrId
(
"sub_block"
));
found_sub_block
=
true
;
ASSERT_EQ
(
2
,
op
->
GetBlocksAttrIds
(
"sub_blocks"
).
size
());
found_sub_blocks
=
true
;
}
}
ASSERT_TRUE
(
found_sub_block
);
ASSERT_TRUE
(
found_sub_blocks
);
// Not check block's protostr are same it because the order of vars could be
// Not check block's protostr are same it because the order of vars could be
// different and it is correct.
// different and it is correct.
}
}
...
...
paddle/fluid/inference/api/high_level_api_cn.md
浏览文件 @
b4b16d1c
...
@@ -65,13 +65,13 @@ config.model_dir = "xxx";
...
@@ -65,13 +65,13 @@ config.model_dir = "xxx";
config
.
use_gpu
=
false
;
config
.
use_gpu
=
false
;
// 创建一个原生的 PaddlePredictor
// 创建一个原生的 PaddlePredictor
auto
predictor
=
auto
predictor
=
paddle
::
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
paddle
::
CreatePaddlePredictor
<
paddle
::
NativeConfig
,
paddle
::
PaddleEngineKind
::
kNative
>
(
config
);
// 创建输入 tensor
// 创建输入 tensor
int64_t
data
[
4
]
=
{
1
,
2
,
3
,
4
};
int64_t
data
[
4
]
=
{
1
,
2
,
3
,
4
};
paddle
::
PaddleTensor
tensor
{.
name
=
""
,
paddle
::
PaddleTensor
tensor
{.
name
=
""
,
.
shape
=
std
::
vector
<
int
>
({
4
,
1
}),
.
shape
=
std
::
vector
<
int
>
({
4
,
1
}),
.
data
=
PaddleBuf
(
data
,
sizeof
(
data
)),
.
data
=
paddle
::
PaddleBuf
(
data
,
sizeof
(
data
)),
.
dtype
=
PaddleDType
::
INT64
};
.
dtype
=
paddle
::
PaddleDType
::
INT64
};
// 创建输出 tensor,输出 tensor 的内存可以复用
// 创建输出 tensor,输出 tensor 的内存可以复用
std
::
vector
<
paddle
::
PaddleTensor
>
outputs
;
std
::
vector
<
paddle
::
PaddleTensor
>
outputs
;
// 执行预测
// 执行预测
...
...
paddle/fluid/inference/tensorrt/CMakeLists.txt
浏览文件 @
b4b16d1c
nv_library
(
tensorrt_engine SRCS engine.cc DEPS framework_proto
)
nv_library
(
tensorrt_engine SRCS engine.cc DEPS framework_proto
device_context
)
nv_test
(
test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader
)
nv_test
(
test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader
)
nv_test
(
test_tensorrt_engine SRCS test_engine.cc DEPS dynload_cuda tensorrt_engine
)
nv_test
(
test_tensorrt_engine SRCS test_engine.cc DEPS dynload_cuda tensorrt_engine
)
add_subdirectory
(
convert
)
add_subdirectory
(
convert
)
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
b4b16d1c
# Add TRT tests
# Add TRT tests
nv_library
(
tensorrt_converter
nv_library
(
tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
activation_op.cc softmax_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc
DEPS tensorrt_engine operator scope framework_proto op_registry
)
DEPS tensorrt_engine operator scope framework_proto op_registry
)
nv_test
(
test_op_converter SRCS test_op_converter.cc DEPS
nv_test
(
test_op_converter SRCS test_op_converter.cc DEPS
...
@@ -24,3 +24,6 @@ nv_test(test_trt_elementwise_op SRCS test_elementwise_op.cc elementwise_op.cc
...
@@ -24,3 +24,6 @@ nv_test(test_trt_elementwise_op SRCS test_elementwise_op.cc elementwise_op.cc
nv_test
(
test_trt_softmax_op SRCS test_softmax_op.cc softmax_op.cc
nv_test
(
test_trt_softmax_op SRCS test_softmax_op.cc softmax_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine softmax_op SERIAL
)
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine softmax_op SERIAL
)
nv_test
(
test_trt_batch_norm_op SRCS test_batch_norm_op.cc batch_norm_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine batch_norm_op SERIAL
)
paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc
0 → 100644
浏览文件 @
b4b16d1c
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <math.h>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
BatchNormOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
LOG
(
INFO
)
<<
"convert a fluid batch norm op to tensorrt batch_norm"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"X"
).
size
(),
1
);
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"Bias"
).
size
(),
1
);
// Bias is a weight
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"Mean"
).
size
(),
1
);
// Mean is a weight
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"Scale"
).
size
(),
1
);
// Scale is a weight
PADDLE_ENFORCE_EQ
(
op_desc
.
Input
(
"Variance"
).
size
(),
1
);
// Variance is a weight
PADDLE_ENFORCE_EQ
(
op_desc
.
Output
(
"Y"
).
size
(),
1
);
auto
*
X
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
).
front
());
// Declare weights
auto
*
Bias_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Bias"
).
front
());
auto
*
Mean_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Mean"
).
front
());
auto
*
Scale_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Scale"
).
front
());
auto
*
Variance_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Variance"
).
front
());
const
float
eps
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"epsilon"
));
PADDLE_ENFORCE_NOT_NULL
(
Bias_v
);
PADDLE_ENFORCE_NOT_NULL
(
Mean_v
);
PADDLE_ENFORCE_NOT_NULL
(
Scale_v
);
PADDLE_ENFORCE_NOT_NULL
(
Variance_v
);
// get tensor
auto
*
Bias_t
=
Bias_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
Mean_t
=
Mean_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
Scale_t
=
Scale_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
Variance_t
=
Variance_v
->
GetMutable
<
framework
::
LoDTensor
>
();
// create temp tensor for weights
framework
::
LoDTensor
bias_tensor
;
framework
::
LoDTensor
mean_tensor
;
framework
::
LoDTensor
scale_tensor
;
framework
::
LoDTensor
variance_tensor
;
bias_tensor
.
Resize
(
Bias_t
->
dims
());
mean_tensor
.
Resize
(
Mean_t
->
dims
());
scale_tensor
.
Resize
(
Scale_t
->
dims
());
variance_tensor
.
Resize
(
Variance_t
->
dims
());
platform
::
CPUPlace
cpu_place
;
// copy data from gpu to cpu
TensorCopySync
((
*
Bias_t
),
cpu_place
,
&
bias_tensor
);
TensorCopySync
((
*
Mean_t
),
cpu_place
,
&
mean_tensor
);
TensorCopySync
((
*
Scale_t
),
cpu_place
,
&
scale_tensor
);
TensorCopySync
((
*
Variance_t
),
cpu_place
,
&
variance_tensor
);
auto
*
bias_data
=
bias_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
auto
*
mean_data
=
mean_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
auto
*
scale_data
=
scale_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
auto
*
variance_data
=
variance_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
std
::
unique_ptr
<
framework
::
LoDTensor
>
combile_scale_tensor
(
new
framework
::
LoDTensor
());
std
::
unique_ptr
<
framework
::
LoDTensor
>
combile_bias_tensor
(
new
framework
::
LoDTensor
());
combile_scale_tensor
->
Resize
(
scale_tensor
.
dims
());
combile_bias_tensor
->
Resize
(
bias_tensor
.
dims
());
auto
*
combile_scale_data
=
combile_scale_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
auto
*
combile_bias_data
=
combile_bias_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
size_t
ele_num
=
combile_scale_tensor
->
memory_size
()
/
sizeof
(
float
);
for
(
size_t
i
=
0
;
i
<
ele_num
;
i
++
)
{
float
scale
=
scale_data
[
i
];
float
bias
=
bias_data
[
i
];
float
mean
=
mean_data
[
i
];
float
variance
=
variance_data
[
i
];
combile_scale_data
[
i
]
=
scale
/
sqrtf
(
variance
+
eps
);
combile_bias_data
[
i
]
=
bias
-
mean
*
combile_scale_data
[
i
];
}
TensorRTEngine
::
Weight
scale_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
combile_scale_data
),
combile_scale_tensor
->
memory_size
()
/
sizeof
(
float
)};
TensorRTEngine
::
Weight
shift_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
combile_bias_data
),
combile_bias_tensor
->
memory_size
()
/
sizeof
(
float
)};
TensorRTEngine
::
Weight
power_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
nvinfer1
::
IScaleLayer
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Scale
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
X
),
nvinfer1
::
ScaleMode
::
kCHANNEL
,
shift_weights
.
get
(),
scale_weights
.
get
(),
power_weights
.
get
());
auto
output_name
=
op_desc
.
Output
(
"Y"
).
front
();
engine_
->
weight_map
[
op_desc
.
Input
(
"Bias"
).
front
()]
=
std
::
move
(
combile_bias_tensor
);
engine_
->
weight_map
[
op_desc
.
Input
(
"Scale"
).
front
()]
=
std
::
move
(
combile_scale_tensor
);
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_name
);
}
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
batch_norm
,
BatchNormOpConverter
);
paddle/fluid/inference/tensorrt/convert/test_batch_norm_op.cc
0 → 100644
浏览文件 @
b4b16d1c
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
TEST
(
batch_norm_op
,
test
)
{
std
::
unordered_set
<
std
::
string
>
parameters
(
{
"batch_norm_scale"
,
"batch_norm_bias"
,
"batch_norm_mean"
,
"batch_norm_variance"
});
framework
::
Scope
scope
;
TRTConvertValidation
validator
(
5
,
parameters
,
scope
,
1
<<
15
);
std
::
vector
<
int
>
param_shape
{
2
};
validator
.
DeclInputVar
(
"batch_norm_X"
,
nvinfer1
::
DimsCHW
(
2
,
5
,
5
));
validator
.
DeclParamVar
(
"batch_norm_scale"
,
param_shape
);
validator
.
DeclParamVar
(
"batch_norm_bias"
,
param_shape
);
validator
.
DeclParamVar
(
"batch_norm_mean"
,
param_shape
);
validator
.
DeclParamVar
(
"batch_norm_variance"
,
param_shape
);
validator
.
DeclOutputVar
(
"batch_norm_Y"
,
nvinfer1
::
DimsCHW
(
2
,
5
,
5
));
validator
.
DeclOutputVar
(
"batch_norm_save_mean"
,
param_shape
);
validator
.
DeclOutputVar
(
"batch_norm_save_variance"
,
param_shape
);
// Prepare Op description
framework
::
OpDesc
desc
;
desc
.
SetType
(
"batch_norm"
);
desc
.
SetInput
(
"X"
,
{
"batch_norm_X"
});
desc
.
SetInput
(
"Scale"
,
{
"batch_norm_scale"
});
desc
.
SetInput
(
"Bias"
,
{
"batch_norm_bias"
});
desc
.
SetInput
(
"Mean"
,
{
"batch_norm_mean"
});
desc
.
SetInput
(
"Variance"
,
{
"batch_norm_variance"
});
desc
.
SetOutput
(
"Y"
,
{
"batch_norm_Y"
});
desc
.
SetOutput
(
"MeanOut"
,
{
"batch_norm_mean"
});
desc
.
SetOutput
(
"VarianceOut"
,
{
"batch_norm_variance"
});
desc
.
SetOutput
(
"SavedMean"
,
{
"batch_norm_save_mean"
});
desc
.
SetOutput
(
"SavedVariance"
,
{
"batch_norm_save_variance"
});
float
eps
=
1e-5
f
;
bool
is_test
=
true
;
desc
.
SetAttr
(
"epsilon"
,
eps
);
desc
.
SetAttr
(
"is_test"
,
is_test
);
validator
.
SetOp
(
*
desc
.
Proto
());
std
::
unordered_set
<
std
::
string
>
neglected_output
=
{
"batch_norm_save_mean"
,
"batch_norm_save_variance"
,
"batch_norm_mean"
,
"batch_norm_variance"
};
validator
.
Execute
(
3
,
neglected_output
);
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
USE_OP
(
batch_norm
);
paddle/fluid/inference/tensorrt/convert/ut_helper.h
浏览文件 @
b4b16d1c
...
@@ -98,11 +98,19 @@ class TRTConvertValidation {
...
@@ -98,11 +98,19 @@ class TRTConvertValidation {
engine_
->
DeclareInput
(
name
,
nvinfer1
::
DataType
::
kFLOAT
,
dims
);
engine_
->
DeclareInput
(
name
,
nvinfer1
::
DataType
::
kFLOAT
,
dims
);
}
}
void
DeclParamVar
(
const
std
::
string
&
name
,
const
std
::
vector
<
int
>
dim_vec
)
{
DeclVar
(
name
,
dim_vec
);
}
// Declare a parameter varaible in the scope.
// Declare a parameter varaible in the scope.
void
DeclParamVar
(
const
std
::
string
&
name
,
const
nvinfer1
::
Dims
&
dims
)
{
void
DeclParamVar
(
const
std
::
string
&
name
,
const
nvinfer1
::
Dims
&
dims
)
{
DeclVar
(
name
,
dims
,
true
);
DeclVar
(
name
,
dims
,
true
);
}
}
void
DeclOutputVar
(
const
std
::
string
&
name
,
const
std
::
vector
<
int
>
dim_vec
)
{
DeclVar
(
name
,
dim_vec
);
}
void
DeclOutputVar
(
const
std
::
string
&
name
,
const
nvinfer1
::
Dims
&
dims
)
{
void
DeclOutputVar
(
const
std
::
string
&
name
,
const
nvinfer1
::
Dims
&
dims
)
{
DeclVar
(
name
,
dims
);
DeclVar
(
name
,
dims
);
}
}
...
@@ -155,7 +163,11 @@ class TRTConvertValidation {
...
@@ -155,7 +163,11 @@ class TRTConvertValidation {
}
}
}
}
void
Execute
(
int
batch_size
)
{
// We use the set 'neglected_output' here, because some Ops like batch norm,
// the outputs specified in the op des are only used during training,
// so we should neglect those output during inference.
void
Execute
(
int
batch_size
,
std
::
unordered_set
<
std
::
string
>
neglected_output
=
{})
{
// Execute Fluid Op
// Execute Fluid Op
PADDLE_ENFORCE_LE
(
batch_size
,
max_batch_size_
);
PADDLE_ENFORCE_LE
(
batch_size
,
max_batch_size_
);
platform
::
CUDAPlace
place
;
platform
::
CUDAPlace
place
;
...
@@ -168,6 +180,7 @@ class TRTConvertValidation {
...
@@ -168,6 +180,7 @@ class TRTConvertValidation {
ASSERT_FALSE
(
op_desc_
->
OutputArgumentNames
().
empty
());
ASSERT_FALSE
(
op_desc_
->
OutputArgumentNames
().
empty
());
const
size_t
output_space_size
=
3000
;
const
size_t
output_space_size
=
3000
;
for
(
const
auto
&
output
:
op_desc_
->
OutputArgumentNames
())
{
for
(
const
auto
&
output
:
op_desc_
->
OutputArgumentNames
())
{
if
(
neglected_output
.
count
(
output
))
continue
;
std
::
vector
<
float
>
fluid_out
;
std
::
vector
<
float
>
fluid_out
;
std
::
vector
<
float
>
trt_out
(
output_space_size
);
std
::
vector
<
float
>
trt_out
(
output_space_size
);
engine_
->
GetOutputInCPU
(
output
,
&
trt_out
[
0
],
output_space_size
);
engine_
->
GetOutputInCPU
(
output
,
&
trt_out
[
0
],
output_space_size
);
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
b4b16d1c
...
@@ -84,6 +84,15 @@ function(op_library TARGET)
...
@@ -84,6 +84,15 @@ function(op_library TARGET)
message
(
FATAL_ERROR
"The op library
${
TARGET
}
should contains at least one .cc file"
)
message
(
FATAL_ERROR
"The op library
${
TARGET
}
should contains at least one .cc file"
)
endif
()
endif
()
#remove windows unsupported op
if
(
WIN32
)
foreach
(
windows_unsupport_op
"nccl_op"
"gen_nccl_id_op"
)
if
(
"
${
TARGET
}
"
STREQUAL
"
${
windows_unsupport_op
}
"
)
return
()
endif
()
endforeach
()
endif
(
WIN32
)
list
(
LENGTH op_library_DEPS op_library_DEPS_len
)
list
(
LENGTH op_library_DEPS op_library_DEPS_len
)
if
(
${
op_library_DEPS_len
}
GREATER 0
)
if
(
${
op_library_DEPS_len
}
GREATER 0
)
set
(
DEPS_OPS
${
TARGET
}
${
DEPS_OPS
}
PARENT_SCOPE
)
set
(
DEPS_OPS
${
TARGET
}
${
DEPS_OPS
}
PARENT_SCOPE
)
...
@@ -181,19 +190,19 @@ function(op_library TARGET)
...
@@ -181,19 +190,19 @@ function(op_library TARGET)
endfunction
()
endfunction
()
add_subdirectory
(
math
)
add_subdirectory
(
math
)
if
(
NOT WIN32
)
add_subdirectory
(
nccl
)
add_subdirectory
(
nccl
)
if
(
WITH_GPU
)
if
(
WITH_GPU
)
op_library
(
nccl_op DEPS nccl_common
)
op_library
(
nccl_op DEPS nccl_common
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(ncclAllReduce);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(ncclAllReduce);
\n
"
)
else
()
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
nccl_op
)
set
(
DEPS_OPS
${
DEPS_OPS
}
nccl_op
)
endif
()
endif
()
endif
()
# NOT WIN32
set
(
DISTRIBUTE_DEPS
""
)
set
(
DISTRIBUTE_DEPS
""
)
if
(
WITH_DISTRIBUTE
)
if
(
WITH_DISTRIBUTE
)
add_subdirectory
(
distributed
)
add_subdirectory
(
distributed
)
set
(
DISTRIBUTE_DEPS
""
)
set
(
DISTRIBUTE_DEPS
""
)
if
(
WITH_GRPC
)
if
(
WITH_GRPC
)
set
(
DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf node
)
set
(
DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf node
)
...
@@ -222,7 +231,7 @@ if(WITH_DISTRIBUTE)
...
@@ -222,7 +231,7 @@ if(WITH_DISTRIBUTE)
#set_source_files_properties(send_recv_op_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
#set_source_files_properties(send_recv_op_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
#cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op
#cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op
# listen_and_serv_op sum_op executor SERIAL)
# listen_and_serv_op sum_op executor SERIAL)
if
(
WITH_GPU
)
if
(
WITH_GPU
AND NOT WIN32
)
set_source_files_properties
(
test_send_nccl_id.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
set_source_files_properties
(
test_send_nccl_id.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
cc_test
(
test_send_nccl_id SRCS test_send_nccl_id.cc DEPS listen_and_serv_op
${
DISTRIBUTE_DEPS
}
executor SERIAL
)
cc_test
(
test_send_nccl_id SRCS test_send_nccl_id.cc DEPS listen_and_serv_op
${
DISTRIBUTE_DEPS
}
executor SERIAL
)
if
(
WITH_GRPC
)
if
(
WITH_GRPC
)
...
@@ -233,7 +242,7 @@ if(WITH_DISTRIBUTE)
...
@@ -233,7 +242,7 @@ if(WITH_DISTRIBUTE)
set_source_files_properties
(
gen_nccl_id_op.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
set_source_files_properties
(
gen_nccl_id_op.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
else
()
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
gen_nccl_id_op
)
set
(
DEPS_OPS
${
DEPS_OPS
}
gen_nccl_id_op
)
endif
()
endif
()
# WITH_GPU AND NOT WIN32
else
()
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
checkpoint_notify_op prefetch_op recv_op listen_and_serv_op send_op send_barrier_op fetch_barrier_op gen_nccl_id_op
)
set
(
DEPS_OPS
${
DEPS_OPS
}
checkpoint_notify_op prefetch_op recv_op listen_and_serv_op send_op send_barrier_op fetch_barrier_op gen_nccl_id_op
)
endif
()
endif
()
...
@@ -331,5 +340,7 @@ cc_test(beam_search_op_test SRCS beam_search_op_test.cc DEPS lod_tensor beam_sea
...
@@ -331,5 +340,7 @@ cc_test(beam_search_op_test SRCS beam_search_op_test.cc DEPS lod_tensor beam_sea
cc_test
(
strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor memory
)
cc_test
(
strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor memory
)
cc_test
(
save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op
)
cc_test
(
save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op
)
cc_test
(
save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op
)
cc_test
(
save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op
)
if
(
NOT WIN32
)
nv_test
(
nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context
)
nv_test
(
nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context
)
endif
()
nv_test
(
dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor
)
nv_test
(
dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor
)
paddle/fluid/operators/conditional_block_op.cc
浏览文件 @
b4b16d1c
...
@@ -29,9 +29,9 @@ class ConditionalOp : public framework::OperatorBase {
...
@@ -29,9 +29,9 @@ class ConditionalOp : public framework::OperatorBase {
protected:
protected:
std
::
vector
<
const
framework
::
LoDTensor
*>
InputTensors
(
std
::
vector
<
const
framework
::
LoDTensor
*>
InputTensors
(
const
framework
::
Scope
&
scope
)
const
{
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_name
)
const
{
std
::
vector
<
const
framework
::
LoDTensor
*>
retv
;
std
::
vector
<
const
framework
::
LoDTensor
*>
retv
;
auto
xs
=
Inputs
(
"X"
);
auto
xs
=
Inputs
(
in_name
);
retv
.
resize
(
xs
.
size
(),
nullptr
);
retv
.
resize
(
xs
.
size
(),
nullptr
);
std
::
transform
(
std
::
transform
(
xs
.
begin
(),
xs
.
end
(),
retv
.
begin
(),
xs
.
begin
(),
xs
.
end
(),
retv
.
begin
(),
...
@@ -81,12 +81,18 @@ class ConditionalBlockOp : public ConditionalOp {
...
@@ -81,12 +81,18 @@ class ConditionalBlockOp : public ConditionalOp {
private:
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
const
platform
::
Place
&
dev_place
)
const
override
{
auto
xs
=
InputTensors
(
scope
);
bool
need_run
;
bool
need_run
;
if
(
Attr
<
bool
>
(
"is_scalar_condition"
))
{
if
(
Attr
<
bool
>
(
"is_scalar_condition"
))
{
// When is_scalar_condition is True, the conditional variable is a scalar,
// whether need to execute the operators in sub-block depends on the
// conditional variable (Cond).
auto
xs
=
InputTensors
(
scope
,
"Cond"
);
need_run
=
ScalarCondition
(
xs
);
need_run
=
ScalarCondition
(
xs
);
}
else
{
}
else
{
// When is_scalar_condition is False, the conditional variable maybe a
// vector or tensor, whether need to execute the operators in sub-block
// depends on the input variables (Input).
auto
xs
=
InputTensors
(
scope
,
"Input"
);
need_run
=
std
::
all_of
(
need_run
=
std
::
all_of
(
xs
.
begin
(),
xs
.
end
(),
xs
.
begin
(),
xs
.
end
(),
[](
const
framework
::
LoDTensor
*
t
)
{
return
t
->
numel
()
!=
0
;
});
[](
const
framework
::
LoDTensor
*
t
)
{
return
t
->
numel
()
!=
0
;
});
...
@@ -110,11 +116,11 @@ class ConditionalBlockOp : public ConditionalOp {
...
@@ -110,11 +116,11 @@ class ConditionalBlockOp : public ConditionalOp {
class
ConditionalBlockOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
ConditionalBlockOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
public:
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"
X
"
,
AddInput
(
"
Cond
"
,
"The conditional variable of this operator. If
X
is empty, the "
"The conditional variable of this operator. If
Cond
is empty, the "
"whole sub-block will not be executed."
)
"whole sub-block will not be executed."
)
.
AsDuplicable
();
.
AsDuplicable
();
AddInput
(
"
Params
"
,
"The input variables of the sub-block."
).
AsDuplicable
();
AddInput
(
"
Input
"
,
"The input variables of the sub-block."
).
AsDuplicable
();
AddOutput
(
"Out"
,
"The output variables of the sub-block."
).
AsDuplicable
();
AddOutput
(
"Out"
,
"The output variables of the sub-block."
).
AsDuplicable
();
AddOutput
(
"Scope"
,
AddOutput
(
"Scope"
,
"(std::vector<Scope*>) The step scope of conditional block. To "
"(std::vector<Scope*>) The step scope of conditional block. To "
...
@@ -123,13 +129,18 @@ class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -123,13 +129,18 @@ class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
framework
::
BlockDesc
*>
(
AddAttr
<
framework
::
BlockDesc
*>
(
"sub_block"
,
"The step block of conditional block operator"
);
"sub_block"
,
"The step block of conditional block operator"
);
AddAttr
<
bool
>
(
"is_scalar_condition"
,
AddAttr
<
bool
>
(
"is_scalar_condition"
,
"
the input X
is used as scalar "
"
The conditional variable (Cond)
is used as scalar "
"condition"
)
"condition
.
"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddComment
(
R"DOC(Conditional block operator
AddComment
(
R"DOC(Conditional block operator
Run the sub-block if X is not empty. Params is the other inputs and Out is the
If `is_scalar_condition` is True, the conditional variable (Cond) is a scalar,
outputs of the sub-block.
run the operators in sub-block if Cond is True.
If `is_scalar_condition` is False, the conditional variable (Cond) is a vector or
tensor, run the operators in sub-block if all of input variables are not empty.
)DOC"
);
)DOC"
);
}
}
};
};
...
@@ -145,12 +156,12 @@ class ConditionalBlockGradOp : public ConditionalOp {
...
@@ -145,12 +156,12 @@ class ConditionalBlockGradOp : public ConditionalOp {
private:
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
const
platform
::
Place
&
dev_place
)
const
override
{
auto
xs
=
this
->
InputTensors
(
scope
);
bool
need_run
;
bool
need_run
;
if
(
Attr
<
bool
>
(
"is_scalar_condition"
))
{
if
(
Attr
<
bool
>
(
"is_scalar_condition"
))
{
auto
xs
=
this
->
InputTensors
(
scope
,
"Cond"
);
need_run
=
ScalarCondition
(
xs
);
need_run
=
ScalarCondition
(
xs
);
}
else
{
}
else
{
auto
xs
=
this
->
InputTensors
(
scope
,
"Input"
);
need_run
=
std
::
all_of
(
need_run
=
std
::
all_of
(
xs
.
begin
(),
xs
.
end
(),
xs
.
begin
(),
xs
.
end
(),
[](
const
framework
::
LoDTensor
*
t
)
{
return
t
->
numel
()
!=
0
;
});
[](
const
framework
::
LoDTensor
*
t
)
{
return
t
->
numel
()
!=
0
;
});
...
@@ -166,11 +177,11 @@ class ConditionalBlockGradOp : public ConditionalOp {
...
@@ -166,11 +177,11 @@ class ConditionalBlockGradOp : public ConditionalOp {
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
"sub_block"
);
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
"sub_block"
);
exec
.
Run
(
*
block
->
Program
(),
&
cur_scope
,
block
->
ID
(),
false
);
exec
.
Run
(
*
block
->
Program
(),
&
cur_scope
,
block
->
ID
(),
false
);
AssignLocalGradientToGlobal
(
dev_place
,
cur_scope
,
Inputs
(
"
Params
"
),
AssignLocalGradientToGlobal
(
dev_place
,
cur_scope
,
Inputs
(
"
Input
"
),
Outputs
(
framework
::
GradVarName
(
"
Params
"
)));
Outputs
(
framework
::
GradVarName
(
"
Input
"
)));
AssignLocalGradientToGlobal
(
dev_place
,
cur_scope
,
Inputs
(
"
X
"
),
AssignLocalGradientToGlobal
(
dev_place
,
cur_scope
,
Inputs
(
"
Cond
"
),
Outputs
(
framework
::
GradVarName
(
"
X
"
)));
Outputs
(
framework
::
GradVarName
(
"
Cond
"
)));
}
}
}
}
...
@@ -199,15 +210,15 @@ class ConditionalBlockGradOp : public ConditionalOp {
...
@@ -199,15 +210,15 @@ class ConditionalBlockGradOp : public ConditionalOp {
class
ConditionalBlockGradInferShape
:
public
framework
::
InferShapeBase
{
class
ConditionalBlockGradInferShape
:
public
framework
::
InferShapeBase
{
public:
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInputs
(
"
X
"
));
PADDLE_ENFORCE
(
context
->
HasInputs
(
"
Cond
"
));
if
(
context
->
HasInputs
(
"
Params
"
))
{
if
(
context
->
HasInputs
(
"
Input
"
))
{
PADDLE_ENFORCE
(
context
->
HasOutputs
(
framework
::
GradVarName
(
"
Params
"
)));
PADDLE_ENFORCE
(
context
->
HasOutputs
(
framework
::
GradVarName
(
"
Input
"
)));
context
->
SetOutputsDim
(
framework
::
GradVarName
(
"
Params
"
),
context
->
SetOutputsDim
(
framework
::
GradVarName
(
"
Input
"
),
context
->
GetInputsDim
(
"
Params
"
));
context
->
GetInputsDim
(
"
Input
"
));
}
}
if
(
context
->
HasOutputs
(
framework
::
GradVarName
(
"
X
"
)))
{
if
(
context
->
HasOutputs
(
framework
::
GradVarName
(
"
Cond
"
)))
{
context
->
SetOutputsDim
(
framework
::
GradVarName
(
"
X
"
),
context
->
SetOutputsDim
(
framework
::
GradVarName
(
"
Cond
"
),
context
->
GetInputsDim
(
"
X
"
));
context
->
GetInputsDim
(
"
Cond
"
));
}
}
}
}
};
};
...
@@ -220,14 +231,15 @@ class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
...
@@ -220,14 +231,15 @@ class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
grad_op
=
new
framework
::
OpDesc
();
auto
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"conditional_block_grad"
);
grad_op
->
SetType
(
"conditional_block_grad"
);
grad_op
->
SetInput
(
"
X"
,
Input
(
"X
"
));
grad_op
->
SetInput
(
"
Cond"
,
Input
(
"Cond
"
));
grad_op
->
SetInput
(
"
Params"
,
Input
(
"Params
"
));
grad_op
->
SetInput
(
"
Input"
,
Input
(
"Input
"
));
grad_op
->
SetInput
(
"Out"
,
Output
(
"Out"
));
grad_op
->
SetInput
(
"Out"
,
Output
(
"Out"
));
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
grad_op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
grad_op
->
SetInput
(
"Scope"
,
Output
(
"Scope"
));
grad_op
->
SetInput
(
"Scope"
,
Output
(
"Scope"
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
,
false
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"Cond"
),
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"Params"
),
InputGrad
(
"Cond"
,
false
));
InputGrad
(
"Params"
,
false
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"Input"
),
InputGrad
(
"Input"
,
false
));
grad_op
->
SetBlockAttr
(
"sub_block"
,
this
->
grad_block_
[
0
]);
grad_op
->
SetBlockAttr
(
"sub_block"
,
this
->
grad_block_
[
0
]);
grad_op
->
SetAttr
(
"is_scalar_condition"
,
GetAttr
(
"is_scalar_condition"
));
grad_op
->
SetAttr
(
"is_scalar_condition"
,
GetAttr
(
"is_scalar_condition"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
...
...
paddle/fluid/operators/crf_decoding_op.h
浏览文件 @
b4b16d1c
...
@@ -85,6 +85,199 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
...
@@ -85,6 +85,199 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
int
*
track_value
=
int
*
track_value
=
track
.
mutable_data
<
int
>
(
emission_dims
,
platform
::
CPUPlace
());
track
.
mutable_data
<
int
>
(
emission_dims
,
platform
::
CPUPlace
());
#ifdef __AVX__
// It use the AVX or AVX512 instruction to deal the data as the vector of 8 or
// 16 elements per iteration. Then it can implement the parallel processing.
// Only optimize for float type.
#ifdef __AVX512F__
size_t
step_size
=
16
;
#else
size_t
step_size
=
8
;
#endif
if
(
std
::
is_same
<
T
,
float
>::
value
&&
(
tag_num
>=
step_size
))
{
size_t
steps
=
tag_num
/
step_size
;
size_t
remain
=
tag_num
%
step_size
;
int
last_offset
=
static_cast
<
int
>
(
remain
)
-
static_cast
<
int
>
(
step_size
);
// Setup the alpha initial value.
size_t
i_offset
=
0
;
for
(
size_t
i
=
0
;
i
<=
steps
;
++
i
)
{
#ifdef __AVX512F__
// Declare the variable for the content of weights, input and alpha
// values.
__m512
w_content
,
x_content
,
alpha_content
;
// Load the relevant data into the variables from un-aligned address.
w_content
=
_mm512_loadu_ps
((
const
float
*
)(
w
+
i_offset
));
x_content
=
_mm512_loadu_ps
((
const
float
*
)(
x
+
i_offset
));
alpha_content
=
_mm512_add_ps
(
w_content
,
x_content
);
// Save the alpha value.
_mm512_storeu_ps
(
reinterpret_cast
<
float
*>
(
alpha_value
+
i_offset
),
alpha_content
);
#else
// Declare the variable for the content of weights, input and alpha
// values.
__m256
w_content
,
x_content
,
alpha_content
;
// Load the relevant data into the variables from un-aligned address.
w_content
=
_mm256_loadu_ps
((
const
float
*
)(
w
+
i_offset
));
x_content
=
_mm256_loadu_ps
((
const
float
*
)(
x
+
i_offset
));
alpha_content
=
_mm256_add_ps
(
w_content
,
x_content
);
// Save the alpha value.
_mm256_storeu_ps
(
reinterpret_cast
<
float
*>
(
alpha_value
+
i_offset
),
alpha_content
);
#endif
i_offset
+=
step_size
;
if
(
i
==
steps
-
1
)
{
if
(
remain
>
0
)
{
i_offset
+=
last_offset
;
}
else
{
break
;
}
}
}
// Use the column-major strategy to get the location of maximum score.
size_t
seq_offset
=
0
;
for
(
size_t
k
=
1
;
k
<
seq_len
;
++
k
)
{
size_t
j_offset
=
0
;
for
(
size_t
j
=
0
;
j
<=
steps
;
++
j
)
{
#ifdef __AVX512F__
// Initialize the variables of maximum score and location.
__m512
max_score
=
_mm512_set1_ps
(
-
std
::
numeric_limits
<
T
>::
max
());
__m512i
max_j
=
_mm512_setzero_si512
();
#else
// Initialize the variables of maximum score and location.
__m256
max_score
=
_mm256_set1_ps
(
-
std
::
numeric_limits
<
T
>::
max
());
__m256i
max_j
=
_mm256_set1_epi32
(
0
);
#endif
// Calculate the offset of transition_weights.
size_t
trans_offset
=
state_trans_base_idx
*
tag_num
+
j_offset
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
#ifdef __AVX512F__
// Initalize the content of alpha variable with related offset.
__m512
alpha_content
=
_mm512_set1_ps
(
*
(
const
float
*
)(
alpha_value
+
seq_offset
+
i
));
// Obtain the content of weights from un-aligned address.
__m512
w_content
=
_mm512_loadu_ps
((
const
float
*
)(
w
+
trans_offset
));
__m512
score_v
=
_mm512_add_ps
(
alpha_content
,
w_content
);
__mmask16
mask
=
_mm512_cmp_ps_mask
(
score_v
,
max_score
,
_CMP_GT_OS
);
// According to the mask value, it update the index of the max_score
// location.
max_j
=
_mm512_mask_set1_epi32
(
max_j
,
mask
,
i
);
// Update the max_score value.
max_score
=
_mm512_max_ps
(
max_score
,
score_v
);
#else
// Initalize the content of alpha variable with related offset.
__m256
alpha_content
=
_mm256_broadcast_ss
(
(
const
float
*
)(
alpha_value
+
seq_offset
+
i
));
// Obtain the content of weights from un-aligned address.
__m256
w_content
=
_mm256_loadu_ps
((
const
float
*
)(
w
+
trans_offset
));
__m256
score_v
=
_mm256_add_ps
(
alpha_content
,
w_content
);
__m256
mask
=
_mm256_cmp_ps
(
score_v
,
max_score
,
_CMP_GT_OS
);
#ifdef __AVX2__
// According to the mask value, it update the index of the max_score
// location.
max_j
=
_mm256_or_si256
(
_mm256_andnot_si256
((
__m256i
)
mask
,
max_j
),
_mm256_and_si256
((
__m256i
)
mask
,
_mm256_set1_epi32
(
i
)));
#else
__m128i
lo_max_j
=
_mm256_extractf128_si256
(
max_j
,
0
);
__m128i
hi_max_j
=
_mm256_extractf128_si256
(
max_j
,
1
);
__m128i
lo_mask
=
_mm256_extractf128_si256
((
__m256i
)
mask
,
0
);
__m128i
hi_mask
=
_mm256_extractf128_si256
((
__m256i
)
mask
,
1
);
lo_max_j
=
_mm_andnot_si128
(
lo_mask
,
lo_max_j
);
hi_max_j
=
_mm_andnot_si128
(
hi_mask
,
hi_max_j
);
lo_mask
=
_mm_and_si128
(
lo_mask
,
_mm_set1_epi32
(
i
));
hi_mask
=
_mm_and_si128
(
hi_mask
,
_mm_set1_epi32
(
i
));
lo_max_j
=
_mm_or_si128
(
lo_mask
,
lo_max_j
);
hi_max_j
=
_mm_or_si128
(
hi_mask
,
hi_max_j
);
// According to the mask value, it update the index of the max_score
// location.
max_j
=
_mm256_insertf128_si256
(
max_j
,
lo_max_j
,
0
);
max_j
=
_mm256_insertf128_si256
(
max_j
,
hi_max_j
,
1
);
#endif
// Update the max_score value.
max_score
=
_mm256_max_ps
(
max_score
,
score_v
);
#endif
trans_offset
+=
tag_num
;
}
#ifdef __AVX512F__
// Update the alpha and track values.
__m512
x_content
=
_mm512_loadu_ps
(
(
const
float
*
)(
x
+
seq_offset
+
tag_num
+
j_offset
));
max_score
=
_mm512_add_ps
(
max_score
,
x_content
);
_mm512_storeu_ps
(
reinterpret_cast
<
float
*>
(
alpha_value
+
seq_offset
+
tag_num
+
j_offset
),
max_score
);
_mm512_storeu_si512
(
reinterpret_cast
<
__m512i
*>
(
track_value
+
seq_offset
+
tag_num
+
j_offset
),
max_j
);
#else
// Update the alpha and track values.
__m256
x_content
=
_mm256_loadu_ps
(
(
const
float
*
)(
x
+
seq_offset
+
tag_num
+
j_offset
));
max_score
=
_mm256_add_ps
(
max_score
,
x_content
);
_mm256_storeu_ps
(
reinterpret_cast
<
float
*>
(
alpha_value
+
seq_offset
+
tag_num
+
j_offset
),
max_score
);
_mm256_storeu_si256
(
reinterpret_cast
<
__m256i
*>
(
track_value
+
seq_offset
+
tag_num
+
j_offset
),
max_j
);
#endif
// Calculate the offset of next step
j_offset
+=
step_size
;
if
(
j
==
steps
-
1
)
{
if
(
remain
>
0
)
{
j_offset
+=
last_offset
;
}
else
{
break
;
}
}
}
seq_offset
+=
tag_num
;
}
}
else
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
alpha_value
[
i
]
=
w
[
i
]
+
x
[
i
];
for
(
size_t
k
=
1
;
k
<
seq_len
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
max_score
=
-
std
::
numeric_limits
<
T
>::
max
();
int
max_j
=
0
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
T
score
=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
+
w
[(
j
+
state_trans_base_idx
)
*
tag_num
+
i
];
if
(
score
>
max_score
)
{
max_score
=
score
;
max_j
=
j
;
}
}
alpha_value
[
k
*
tag_num
+
i
]
=
max_score
+
x
[
k
*
tag_num
+
i
];
track_value
[
k
*
tag_num
+
i
]
=
max_j
;
}
}
}
#else
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
alpha_value
[
i
]
=
w
[
i
]
+
x
[
i
];
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
alpha_value
[
i
]
=
w
[
i
]
+
x
[
i
];
for
(
size_t
k
=
1
;
k
<
seq_len
;
++
k
)
{
for
(
size_t
k
=
1
;
k
<
seq_len
;
++
k
)
{
...
@@ -105,6 +298,7 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
...
@@ -105,6 +298,7 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
}
}
}
}
#endif
T
max_score
=
-
std
::
numeric_limits
<
T
>::
max
();
T
max_score
=
-
std
::
numeric_limits
<
T
>::
max
();
int
max_i
=
0
;
int
max_i
=
0
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
...
...
paddle/fluid/operators/distributed/request_handler_impl.cc
浏览文件 @
b4b16d1c
...
@@ -130,12 +130,13 @@ bool RequestCheckpointHandler::Handle(const std::string& varname,
...
@@ -130,12 +130,13 @@ bool RequestCheckpointHandler::Handle(const std::string& varname,
checkpoint_notify_id
!=
-
1
,
checkpoint_notify_id
!=
-
1
,
"when checkpoint_notify_id = -1, there should be no RPC invoke."
);
"when checkpoint_notify_id = -1, there should be no RPC invoke."
);
auto
*
lt_var
=
scope
->
FindVar
(
LOOKUP_TABLE_PATH
)
->
GetMutable
<
std
::
string
>
();
// TODO(tangwei12): find out why scope will be error.
auto
*
lt_var
=
scope_
->
FindVar
(
LOOKUP_TABLE_PATH
)
->
GetMutable
<
std
::
string
>
();
lt_var
->
clear
();
lt_var
->
clear
();
lt_var
->
append
(
out_var_name
);
lt_var
->
append
(
out_var_name
);
VLOG
(
4
)
<<
"RequestCheckpointHandler update var kLookupTablePath to: "
VLOG
(
4
)
<<
"RequestCheckpointHandler update var kLookupTablePath to: "
<<
out_var_name
;
<<
out_var_name
;
executor_
->
RunPreparedContext
(
checkpoint_prepared_ctx_
.
get
(),
scope
);
executor_
->
RunPreparedContext
(
checkpoint_prepared_ctx_
.
get
(),
scope
_
);
return
true
;
return
true
;
}
}
...
...
paddle/fluid/operators/elementwise_mul_op.h
浏览文件 @
b4b16d1c
...
@@ -14,6 +14,7 @@ limitations under the License. */
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#pragma once
#include "paddle/fluid/operators/elementwise_op_function.h"
#include "paddle/fluid/operators/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -23,6 +24,37 @@ struct MulFunctor {
...
@@ -23,6 +24,37 @@ struct MulFunctor {
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
*
b
;
}
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
*
b
;
}
};
};
template
<
typename
DeviceContext
,
typename
T
>
void
default_elementwise_mul
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
MulFunctor
<
T
>
(),
z
);
}
template
<
typename
DeviceContext
,
typename
T
>
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
&&
std
::
is_same
<
DeviceContext
,
platform
::
CPUDeviceContext
>::
value
>::
type
elementwise_mul
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
blas
.
VMUL
(
x
->
numel
(),
x
->
data
<
T
>
(),
y
->
data
<
T
>
(),
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
}
template
<
typename
DeviceContext
,
typename
T
>
typename
std
::
enable_if
<
!
std
::
is_floating_point
<
T
>::
value
||
!
std
::
is_same
<
DeviceContext
,
platform
::
CPUDeviceContext
>::
value
>::
type
elementwise_mul
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
z
);
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMulKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ElementwiseMulKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -33,9 +65,11 @@ class ElementwiseMulKernel : public framework::OpKernel<T> {
...
@@ -33,9 +65,11 @@ class ElementwiseMulKernel : public framework::OpKernel<T> {
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
x
->
numel
()
==
y
->
numel
())
{
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
z
);
MulFunctor
<
T
>
(),
z
);
}
else
{
default_elementwise_mul
<
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
z
);
}
}
}
};
};
...
...
paddle/fluid/operators/elementwise_op_function.h
浏览文件 @
b4b16d1c
...
@@ -80,6 +80,9 @@ inline framework::DDim trim_trailing_singular_dims(
...
@@ -80,6 +80,9 @@ inline framework::DDim trim_trailing_singular_dims(
for
(
int
i
=
0
;
i
<
actual_dims_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
actual_dims_size
;
++
i
)
{
trim_dims
[
i
]
=
dims
[
i
];
trim_dims
[
i
]
=
dims
[
i
];
}
}
if
(
trim_dims
.
size
()
==
0
)
{
return
framework
::
DDim
(
framework
::
make_dim
());
}
framework
::
DDim
actual_dims
=
framework
::
make_ddim
(
trim_dims
);
framework
::
DDim
actual_dims
=
framework
::
make_ddim
(
trim_dims
);
return
actual_dims
;
return
actual_dims
;
}
}
...
...
paddle/fluid/operators/fc_op.cc
浏览文件 @
b4b16d1c
...
@@ -15,8 +15,7 @@ limitations under the License. */
...
@@ -15,8 +15,7 @@ limitations under the License. */
#include "paddle/fluid/operators/fc_op.h"
#include "paddle/fluid/operators/fc_op.h"
#include <vector>
#include <vector>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc_compute.h"
DECLARE_int32
(
paddle_num_threads
);
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -110,13 +109,8 @@ void FCOpMaker::Make() {
...
@@ -110,13 +109,8 @@ void FCOpMaker::Make() {
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Fully Connected Operator.
Fully Connected Operator.
The fully connected operation calculates the output based on the input, weights and bias
attribute
.
The fully connected operation calculates the output based on the input, weights and bias.
The size of each dimension of the parameters checked in the infer-shape.
The size of each dimension of the parameters checked in the infer-shape.
The matrix of bias is generated by the mkldnn framework, when the bias_attr is True.
Additional parametrs are use_mkldnn and bias_attr.
The input(X) size and output(Out) size may be diffrent.
The fully connected layer only supports MKLDNN version
)DOC"
);
)DOC"
);
}
}
...
@@ -133,26 +127,15 @@ class FCOpKernel : public framework::OpKernel<T> {
...
@@ -133,26 +127,15 @@ class FCOpKernel : public framework::OpKernel<T> {
auto
in_dims
=
input
->
dims
();
auto
in_dims
=
input
->
dims
();
auto
w_dims
=
w
->
dims
();
auto
w_dims
=
w
->
dims
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
dev_ctx
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
w_data
=
w
->
data
<
T
>
();
const
T
*
w_data
=
w
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
ctx
);
math
::
FCCompute
<
platform
::
CPUDeviceContext
,
T
>
(
blas
,
in_dims
[
0
],
w_dims
[
1
],
w_dims
[
0
],
input_data
,
w_data
,
output_data
,
bias
?
bias
->
data
<
T
>
()
:
NULL
);
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
in_dims
[
0
],
w_dims
[
1
],
w_dims
[
0
],
// TODO(TJ): fuse act
static_cast
<
T
>
(
1
),
input_data
,
w_data
,
static_cast
<
T
>
(
0
),
output_data
);
if
(
bias
)
{
const
T
*
bias_data
=
bias
->
data
<
T
>
();
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for if (FLAGS_paddle_num_threads > 1)
#endif
for
(
int
bs
=
0
;
bs
<
in_dims
[
0
];
bs
++
)
{
blas
.
AXPY
(
w_dims
[
1
],
static_cast
<
T
>
(
1
),
bias_data
,
output_data
+
bs
*
w_dims
[
1
]);
}
}
}
}
};
};
...
...
paddle/fluid/operators/fusion_lstm_op.cc
0 → 100644
浏览文件 @
b4b16d1c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
namespace
paddle
{
namespace
operators
{
void
FusionLSTMOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"WeightX"
),
"Input(WeightX) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"WeightH"
),
"Input(WeightH) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
"Input(Bias) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XX"
),
"Output(XX) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(Hidden) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Output(Cell) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedGate"
),
"Output(BatchedGate) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchCellPreAct"
),
"Output(BatchedGate) of LSTM should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
if
(
ctx
->
HasInput
(
"H0"
))
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
"Input(Cell) and Input(Hidden) of LSTM should not "
"be null at the same time."
);
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
"should be the same."
);
}
auto
wx_dims
=
ctx
->
GetInputDim
(
"WeightX"
);
PADDLE_ENFORCE_EQ
(
wx_dims
.
size
(),
2
,
"The rank of Input(WeightX) should be 2."
);
PADDLE_ENFORCE_EQ
(
wx_dims
[
0
],
x_dims
[
1
],
"The first dimension of Input(WeightX) "
"should be %d."
,
x_dims
[
1
]);
int
frame_size
=
wx_dims
[
1
]
/
4
;
auto
wh_dims
=
ctx
->
GetInputDim
(
"WeightH"
);
PADDLE_ENFORCE_EQ
(
wh_dims
.
size
(),
2
,
"The rank of Input(WeightH) should be 2."
);
PADDLE_ENFORCE_EQ
(
wh_dims
[
0
],
frame_size
,
"The first dimension of Input(WeightH) "
"should be %d."
,
frame_size
);
PADDLE_ENFORCE_EQ
(
wh_dims
[
1
],
4
*
frame_size
,
"The second dimension of Input(WeightH) "
"should be 4 * %d."
,
frame_size
);
auto
b_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"The rank of Input(Bias) should be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"The first dimension of Input(Bias) should be 1."
);
PADDLE_ENFORCE
(
!
ctx
->
Attrs
().
Get
<
bool
>
(
"use_peepholes"
),
"Do not support peephole yet."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
4
*
frame_size
,
"The second dimension of Input(Bias) should be "
"4 * %d if disable peepholes connection"
,
frame_size
);
framework
::
DDim
out_dims
({
x_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchedGate"
,
{
x_dims
[
0
],
wx_dims
[
1
]});
ctx
->
SetOutputDim
(
"BatchCellPreAct"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
ctx
->
ShareLoD
(
"X"
,
"Cell"
);
int
xx_width
=
x_dims
[
1
]
>
wx_dims
[
1
]
?
wx_dims
[
1
]
:
x_dims
[
1
];
ctx
->
SetOutputDim
(
"XX"
,
{
x_dims
[
0
],
xx_width
});
ctx
->
ShareLoD
(
"X"
,
"XX"
);
}
framework
::
OpKernelType
FusionLSTMOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
void
FusionLSTMOpMaker
::
Make
()
{
AddInput
(
"X"
,
"(LoDTensor) the input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X M), where T is the "
"total time steps in this mini-batch, M is the dim size of x."
);
AddInput
(
"WeightX"
,
"(Tensor) the learnable weights of X."
" - The shape is (M x 4D), where M is the dim size of x, D is the "
"hidden size. "
" - Weight = {W_cx, W_ix, W_fx, W_ox}"
);
AddInput
(
"WeightH"
,
"(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
" - The shape is (D x 4D), where D is the hidden size. "
" - Weight = {W_ch, W_ih, W_fh, W_oh}"
);
AddInput
(
"Bias"
,
"(Tensor) the learnable weights. Almost same as LSTMOp"
"Note: we should add the fc bias into this (1x4D) in bias."
"input-hidden bias weight and peephole connections weight if "
"setting `use_peepholes` True. "
"1. `use_peepholes = False` "
" - The shape is (1 x 4D). "
" - Bias = {b_c, b_i, b_f, b_o}."
"2. `use_peepholes = True` "
" - The shape is (1 x 7D). "
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}."
);
AddInput
(
"H0"
,
"(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
"optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size and D is the hidden size."
)
.
AsDispensable
();
AddInput
(
"C0"
,
"(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
"optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size. `H0` and `C0` can be NULL but only at the same time."
)
.
AsDispensable
();
AddOutput
(
"Hidden"
,
"(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`."
);
AddOutput
(
"Cell"
,
"(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`."
);
AddOutput
(
"XX"
,
"(LoDTensor) the result after X * WeightX (size is T x 4D)"
" or batched_X (size is T x M), this will be automatically chosen,"
" where T is the total time steps in this mini-batch,"
" D is the hidden size, M is the dim size of x input."
)
.
AsIntermediate
();
AddOutput
(
"BatchedGate"
,
"(LoDTensor) (same as LSTMOp)."
).
AsIntermediate
();
AddOutput
(
"BatchCellPreAct"
,
"(LoDTensor) (same as LSTMOp)."
)
.
AsIntermediate
();
AddAttr
<
bool
>
(
"use_peepholes"
,
"(bool, defalut: True) "
"whether to enable diagonal/peephole connections."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"is_reverse"
,
"(bool, defalut: False) "
"whether to compute reversed LSTM."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"gate_activation"
,
"(string, default: sigmoid)"
"The activation for input gate, forget gate and output "
"gate, `sigmoid` by default."
)
.
SetDefault
(
"sigmoid"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
std
::
string
>
(
"cell_activation"
,
"(string, default: tanh)"
"The activation for cell output, `tanh` by defalut."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
std
::
string
>
(
"candidate_activation"
,
"(string, default: tanh)"
"The activation for candidate hidden state, "
"`tanh` by default."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddComment
(
R"DOC(
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
)DOC"
);
}
template
<
typename
DeviceContext
,
typename
T
>
inline
void
ReorderInitState
(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
src
,
framework
::
Vector
<
size_t
>
index_lod
,
framework
::
Tensor
*
dst
,
bool
indexed_src
)
{
math
::
CopyMatrixRowsFunctor
<
DeviceContext
,
T
>
row_shuffle
;
dst
->
mutable_data
<
T
>
(
src
.
dims
(),
ctx
.
GetPlace
());
// TODO(TJ): check mem copy perf
row_shuffle
(
ctx
,
src
,
index_lod
,
dst
,
indexed_src
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
FuisonLSTMKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
wx
=
ctx
.
Input
<
Tensor
>
(
"WeightX"
);
auto
*
wh
=
ctx
.
Input
<
Tensor
>
(
"WeightH"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
hidden_t0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
cell_t0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
xx
=
ctx
.
Output
<
LoDTensor
>
(
"XX"
);
auto
*
batched_gate
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedGate"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"is_reverse"
);
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_gate_data
=
batched_gate
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
cell_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
wx_data
=
wx
->
data
<
T
>
();
auto
x_dims
=
x
->
dims
();
auto
wx_dims
=
wx
->
dims
();
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
if
(
x_dims
[
1
]
>
wx_dims
[
1
])
{
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
x_dims
[
0
],
wx_dims
[
1
],
x_dims
[
1
],
x_data
,
wx_data
,
xx_data
,
bias
->
data
<
T
>
());
to_batch
(
dev_ctx
,
*
xx
,
batched_gate
,
true
,
is_reverse
);
}
else
{
to_batch
(
dev_ctx
,
*
x
,
xx
,
true
,
is_reverse
);
batched_gate
->
set_lod
(
xx
->
lod
());
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
x_dims
[
0
],
wx_dims
[
1
],
x_dims
[
1
],
xx_data
,
wx_data
,
batched_gate_data
,
bias
->
data
<
T
>
());
}
int
frame_size
=
static_cast
<
int
>
(
wx_dims
[
1
]
/
4
);
framework
::
DDim
out_dims
({
x_dims
[
0
],
frame_size
});
math
::
LstmMetaValue
<
T
>
lstm_value
;
// no peephole
lstm_value
.
check_ig
=
nullptr
;
lstm_value
.
check_fg
=
nullptr
;
lstm_value
.
check_og
=
nullptr
;
lstm_value
.
prev_state_value
=
nullptr
;
Tensor
ordered_c0
;
framework
::
Vector
<
size_t
>
order
(
batched_gate
->
lod
()[
2
]);
if
(
cell_t0
)
{
// Since the batch computing for LSTM reorders the input sequence
// according to their length. The initialized cell state also needs
// to reorder.
ReorderInitState
<
DeviceContext
,
T
>
(
dev_ctx
,
*
cell_t0
,
order
,
&
ordered_c0
,
true
);
lstm_value
.
prev_state_value
=
ordered_c0
.
data
<
T
>
();
}
// Use the local variable as here.
LoDTensor
batch_hidden
,
batch_cell
;
auto
*
batch_cell_pre_act
=
ctx
.
Output
<
LoDTensor
>
(
"BatchCellPreAct"
);
batch_hidden
.
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
batch_cell
.
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
batch_cell_pre_act
->
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
auto
batch_starts
=
batched_gate
->
lod
()[
0
];
size_t
max_seq_len
=
batch_starts
.
size
()
-
1
;
auto
gate_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
));
auto
cell_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
));
auto
cand_act
=
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
));
for
(
size_t
n
=
0
;
n
<
max_seq_len
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
Tensor
gate_t
=
batched_gate
->
Slice
(
bstart
,
bend
);
Tensor
out_t
=
batch_hidden
.
Slice
(
bstart
,
bend
);
Tensor
cell_t
=
batch_cell
.
Slice
(
bstart
,
bend
);
Tensor
cell_pre_act_t
=
batch_cell_pre_act
->
Slice
(
bstart
,
bend
);
int
cur_batch_size
=
bend
-
bstart
;
if
(
n
>
0
)
{
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
int
pre_h_end
=
pre_h_start
+
cur_batch_size
;
auto
pre_hidden_t
=
batch_hidden
.
Slice
(
pre_h_start
,
pre_h_end
);
// TODO(TJ): use gemm directly
blas
.
MatMul
(
pre_hidden_t
,
false
,
*
wh
,
false
,
static_cast
<
T
>
(
1.0
),
&
gate_t
,
static_cast
<
T
>
(
1.0
));
}
else
if
(
hidden_t0
)
{
// TODO(TJ): move h0 outside for
// If n == 0 and there is no initialized hidden state, that is to say
// the H0 is zeros, the calculation W_h * H0 will be skiped.
// If n == 0 and there is initialized hidden state, calculate W_h * H0.
// Since the batch computing for LSTM reorders the input sequence
// according to their length. The initialized hidden state also needs
// to reorder.
Tensor
ordered_h0
;
ReorderInitState
<
DeviceContext
,
T
>
(
dev_ctx
,
*
hidden_t0
,
order
,
&
ordered_h0
,
true
);
// TODO(TJ): use gemm directly
blas
.
MatMul
(
ordered_h0
,
false
,
*
wh
,
false
,
static_cast
<
T
>
(
1.0
),
&
gate_t
,
static_cast
<
T
>
(
1.0
));
}
lstm_value
.
gate_value
=
gate_t
.
data
<
T
>
();
lstm_value
.
output_value
=
out_t
.
data
<
T
>
();
lstm_value
.
state_value
=
cell_t
.
data
<
T
>
();
lstm_value
.
state_active_value
=
cell_pre_act_t
.
data
<
T
>
();
math
::
LstmUnitFunctor
<
DeviceContext
,
T
>::
compute
(
dev_ctx
,
lstm_value
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
lstm_value
.
prev_state_value
=
lstm_value
.
state_value
;
}
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
batch_hidden
.
set_lod
(
batched_gate
->
lod
());
// restore the output hidden in LoDTensor from the batch hidden
to_seq
(
dev_ctx
,
batch_hidden
,
hidden_out
);
batch_cell
.
set_lod
(
batched_gate
->
lod
());
// restore the output cell state in LoDTensor from the batch cell
to_seq
(
dev_ctx
,
batch_cell
,
cell_out
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fusion_lstm
,
ops
::
FusionLSTMOp
,
ops
::
FusionLSTMOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OP_CPU_KERNEL
(
fusion_lstm
,
ops
::
FuisonLSTMKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
FuisonLSTMKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/fusion_lstm_op.h
0 → 100644
浏览文件 @
b4b16d1c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
// #include <string>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
class
FusionLSTMOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
FusionLSTMOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/load_op.cc
浏览文件 @
b4b16d1c
...
@@ -92,6 +92,7 @@ class LoadOp : public framework::OperatorBase {
...
@@ -92,6 +92,7 @@ class LoadOp : public framework::OperatorBase {
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
place
);
auto
&
dev_ctx
=
*
pool
.
Get
(
place
);
framework
::
DeserializeFromStream
(
fin
,
selectedRows
,
dev_ctx
);
framework
::
DeserializeFromStream
(
fin
,
selectedRows
,
dev_ctx
);
selectedRows
->
SyncIndex
();
}
}
};
};
...
...
paddle/fluid/operators/math/blas.h
浏览文件 @
b4b16d1c
...
@@ -134,6 +134,9 @@ class Blas {
...
@@ -134,6 +134,9 @@ class Blas {
template
<
typename
T
>
template
<
typename
T
>
void
VADD
(
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
;
void
VADD
(
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
;
template
<
typename
T
>
void
VMUL
(
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
;
template
<
typename
T
>
template
<
typename
T
>
void
VCOPY
(
int
n
,
const
T
*
x
,
T
*
y
)
const
;
void
VCOPY
(
int
n
,
const
T
*
x
,
T
*
y
)
const
;
...
@@ -202,6 +205,11 @@ class BlasT : private Blas<DeviceContext> {
...
@@ -202,6 +205,11 @@ class BlasT : private Blas<DeviceContext> {
Base
()
->
template
VADD
<
T
>(
args
...);
Base
()
->
template
VADD
<
T
>(
args
...);
}
}
template
<
typename
...
ARGS
>
void
VMUL
(
ARGS
...
args
)
const
{
Base
()
->
template
VMUL
<
T
>(
args
...);
}
template
<
typename
...
ARGS
>
template
<
typename
...
ARGS
>
void
VCOPY
(
ARGS
...
args
)
const
{
void
VCOPY
(
ARGS
...
args
)
const
{
Base
()
->
template
VCOPY
<
T
>(
args
...);
Base
()
->
template
VCOPY
<
T
>(
args
...);
...
...
paddle/fluid/operators/math/blas_impl.h
浏览文件 @
b4b16d1c
...
@@ -82,6 +82,11 @@ struct CBlas<float> {
...
@@ -82,6 +82,11 @@ struct CBlas<float> {
static
void
VADD
(
ARGS
...
args
)
{
static
void
VADD
(
ARGS
...
args
)
{
platform
::
dynload
::
vsAdd
(
args
...);
platform
::
dynload
::
vsAdd
(
args
...);
}
}
template
<
typename
...
ARGS
>
static
void
VMUL
(
ARGS
...
args
)
{
platform
::
dynload
::
vsMul
(
args
...);
}
};
};
template
<
>
template
<
>
...
@@ -142,6 +147,11 @@ struct CBlas<double> {
...
@@ -142,6 +147,11 @@ struct CBlas<double> {
static
void
VADD
(
ARGS
...
args
)
{
static
void
VADD
(
ARGS
...
args
)
{
platform
::
dynload
::
vdAdd
(
args
...);
platform
::
dynload
::
vdAdd
(
args
...);
}
}
template
<
typename
...
ARGS
>
static
void
VMUL
(
ARGS
...
args
)
{
platform
::
dynload
::
vdMul
(
args
...);
}
};
};
#else
#else
...
@@ -199,6 +209,7 @@ struct CBlas<platform::float16> {
...
@@ -199,6 +209,7 @@ struct CBlas<platform::float16> {
static
void
SMM_GEMM
(...)
{
static
void
SMM_GEMM
(...)
{
PADDLE_THROW
(
"float16 SMM_GEMM not supported on CPU"
);
PADDLE_THROW
(
"float16 SMM_GEMM not supported on CPU"
);
}
}
static
void
VMUL
(...)
{
PADDLE_THROW
(
"float16 VMUL not supported on CPU"
);
}
#ifdef PADDLE_WITH_MKLML
#ifdef PADDLE_WITH_MKLML
static
void
GEMM_BATCH
(...)
{
static
void
GEMM_BATCH
(...)
{
PADDLE_THROW
(
"float16 GEMM_BATCH not supported on CPU"
);
PADDLE_THROW
(
"float16 GEMM_BATCH not supported on CPU"
);
...
@@ -374,6 +385,20 @@ void Blas<platform::CPUDeviceContext>::VADD(int n, const T *x, const T *y,
...
@@ -374,6 +385,20 @@ void Blas<platform::CPUDeviceContext>::VADD(int n, const T *x, const T *y,
#endif
#endif
}
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
VMUL
(
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
{
#ifdef PADDLE_WITH_MKLML
CBlas
<
T
>::
VMUL
(
n
,
x
,
y
,
z
);
#else
// try to find if openblas support vmul
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
z
[
i
]
=
x
[
i
]
*
y
[
i
];
}
#endif
}
template
<
>
template
<
>
template
<
typename
T
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
GEMV
(
bool
trans_a
,
int
M
,
int
N
,
T
alpha
,
void
Blas
<
platform
::
CPUDeviceContext
>::
GEMV
(
bool
trans_a
,
int
M
,
int
N
,
T
alpha
,
...
...
paddle/fluid/operators/math/fc_compute.h
0 → 100644
浏览文件 @
b4b16d1c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/operators/math/blas.h"
DECLARE_int32
(
paddle_num_threads
);
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
DeviceContext
,
typename
T
>
inline
void
FCCompute
(
const
BlasT
<
DeviceContext
,
T
>&
blas
,
const
int
M
,
const
int
N
,
const
int
K
,
const
T
*
X
,
const
T
*
W
,
T
*
Y
,
const
T
*
B
=
NULL
)
{
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
M
,
N
,
K
,
static_cast
<
T
>
(
1
),
X
,
W
,
static_cast
<
T
>
(
0
),
Y
);
if
(
B
)
{
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for if (FLAGS_paddle_num_threads > 1)
#endif
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
blas
.
AXPY
(
N
,
static_cast
<
T
>
(
1
),
B
,
Y
+
i
*
N
);
}
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/nccl/CMakeLists.txt
浏览文件 @
b4b16d1c
if
(
WITH_GPU
)
if
(
WITH_GPU
AND NOT WIN32
)
nv_library
(
nccl_common SRCS nccl_gpu_common.cc DEPS device_context operator
)
nv_library
(
nccl_common SRCS nccl_gpu_common.cc DEPS device_context operator
)
endif
()
endif
()
paddle/fluid/operators/save_op.cc
浏览文件 @
b4b16d1c
...
@@ -142,6 +142,8 @@ class SaveOp : public framework::OperatorBase {
...
@@ -142,6 +142,8 @@ class SaveOp : public framework::OperatorBase {
std
::
string
filename
=
lt_var
->
data
();
std
::
string
filename
=
lt_var
->
data
();
VLOG
(
4
)
<<
"SaveSelectedRows get File name: "
<<
filename
;
VLOG
(
4
)
<<
"SaveSelectedRows get File name: "
<<
filename
;
MkDirRecursively
(
DirName
(
filename
).
c_str
());
auto
&
selectedRows
=
var
->
Get
<
framework
::
SelectedRows
>
();
auto
&
selectedRows
=
var
->
Get
<
framework
::
SelectedRows
>
();
// get device context from pool
// get device context from pool
...
...
paddle/fluid/operators/scatter_op.cc
浏览文件 @
b4b16d1c
...
@@ -81,8 +81,8 @@ class ScatterOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -81,8 +81,8 @@ class ScatterOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"X"
,
"The source input of scatter op"
);
AddInput
(
"X"
,
"The source input of scatter op"
);
AddInput
(
"Ids"
,
"The index input of scatter op where X will be updated"
);
AddInput
(
"Ids"
,
"The index input of scatter op where X will be updated"
);
AddInput
(
"Updates"
,
"The updated value of
updates
op"
);
AddInput
(
"Updates"
,
"The updated value of
scatter
op"
);
AddOutput
(
"Out"
,
"The output of
add
op"
);
AddOutput
(
"Out"
,
"The output of
scatter
op"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Scatter Operator.
Scatter Operator.
...
@@ -90,7 +90,7 @@ This operator obtains output by updating the input on selected indices on the fi
...
@@ -90,7 +90,7 @@ This operator obtains output by updating the input on selected indices on the fi
$$
$$
Out = X \\
Out = X \\
Out[Ids] =
X[Ids] +
Updates
Out[Ids] = Updates
$$
$$
)DOC"
);
)DOC"
);
...
...
paddle/fluid/operators/scatter_op.h
浏览文件 @
b4b16d1c
...
@@ -34,9 +34,9 @@ class ScatterOpKernel : public framework::OpKernel<T> {
...
@@ -34,9 +34,9 @@ class ScatterOpKernel : public framework::OpKernel<T> {
auto
*
Updates
=
ctx
.
Input
<
Tensor
>
(
"Updates"
);
auto
*
Updates
=
ctx
.
Input
<
Tensor
>
(
"Updates"
);
auto
*
Out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
Out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
// In place output: Out = X, Out[Ids]
+
= Updates
// In place output: Out = X, Out[Ids] = Updates
framework
::
TensorCopySync
(
*
X
,
ctx
.
GetPlace
(),
Out
);
framework
::
TensorCopySync
(
*
X
,
ctx
.
GetPlace
(),
Out
);
// Apply ScatterUpdate: Out[index]
+
= Updates[:]
// Apply ScatterUpdate: Out[index] = Updates[:]
ScatterAssign
<
T
>
(
ctx
.
device_context
(),
*
Updates
,
*
Ids
,
Out
);
ScatterAssign
<
T
>
(
ctx
.
device_context
(),
*
Updates
,
*
Ids
,
Out
);
}
}
};
};
...
@@ -55,7 +55,7 @@ class ScatterGradientOpKernel : public framework::OpKernel<T> {
...
@@ -55,7 +55,7 @@ class ScatterGradientOpKernel : public framework::OpKernel<T> {
// In place gradient: dX = dO
// In place gradient: dX = dO
framework
::
TensorCopySync
(
*
dOut
,
ctx
.
GetPlace
(),
dX
);
framework
::
TensorCopySync
(
*
dOut
,
ctx
.
GetPlace
(),
dX
);
dUpdates
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dUpdates
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Gradient by Gather: dUpdates
+
= dO[Ids]
// Gradient by Gather: dUpdates = dO[Ids]
CPUGather
<
T
>
(
ctx
.
device_context
(),
*
dOut
,
*
Ids
,
dUpdates
);
CPUGather
<
T
>
(
ctx
.
device_context
(),
*
dOut
,
*
Ids
,
dUpdates
);
}
}
};
};
...
...
paddle/fluid/operators/squeeze_op.cc
浏览文件 @
b4b16d1c
...
@@ -23,9 +23,9 @@ class SqueezeOpInferShape : public framework::InferShapeBase {
...
@@ -23,9 +23,9 @@ class SqueezeOpInferShape : public framework::InferShapeBase {
public:
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of Squeeze
Op
should not be null."
);
"Input(X) of Squeeze
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of Squeeze
Op
should not be null."
);
"Output(Out) of Squeeze
operator
should not be null."
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
// Check input tensor dims (<6) Eigen limit.
// Check input tensor dims (<6) Eigen limit.
...
@@ -107,7 +107,6 @@ class SqueezeOp : public framework::OperatorBase {
...
@@ -107,7 +107,6 @@ class SqueezeOp : public framework::OperatorBase {
framework
::
AttributeMap
attrs
;
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
out_dims
);
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
out_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
// Invoke Reshape Op
// Invoke Reshape Op
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
"reshape"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
...
@@ -125,12 +124,6 @@ class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -125,12 +124,6 @@ class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
"(std::vector<int>). List of integers,"
"(std::vector<int>). List of integers,"
" indicating the dimensions to squeeze."
)
" indicating the dimensions to squeeze."
)
.
SetDefault
({});
.
SetDefault
({});
AddAttr
<
bool
>
(
"inplace"
,
"(default: false) Squeeze the source tensor's shape without "
"memory copy. When Attr(inplace) is set true, the output "
"tensor shares memory with Input(X), otherwise, a new output "
"tensor is created, and its data are copied from Input(x)."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Squeeze Operator.
Squeeze Operator.
...
@@ -180,7 +173,6 @@ class SqueezeGradOp : public framework::OperatorBase {
...
@@ -180,7 +173,6 @@ class SqueezeGradOp : public framework::OperatorBase {
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
framework
::
AttributeMap
attrs
;
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
x_dims
);
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
x_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}}},
"reshape"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}}},
...
...
paddle/fluid/operators/unsqueeze_op.cc
浏览文件 @
b4b16d1c
...
@@ -23,9 +23,9 @@ class UnsqueezeOpInferShape : public framework::InferShapeBase {
...
@@ -23,9 +23,9 @@ class UnsqueezeOpInferShape : public framework::InferShapeBase {
public:
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of Unsqueeze
Op
should not be null."
);
"Input(X) of Unsqueeze
operator
should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of Unsqueeze
Op
should not be null."
);
"Output(Out) of Unsqueeze
operator
should not be null."
);
const
auto
&
axes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axes"
);
const
auto
&
axes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axes"
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
...
@@ -95,7 +95,6 @@ class UnsqueezeOp : public framework::OperatorBase {
...
@@ -95,7 +95,6 @@ class UnsqueezeOp : public framework::OperatorBase {
framework
::
AttributeMap
attrs
;
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
out_dims
);
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
out_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
// Invoke Reshape op.
// Invoke Reshape op.
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
"reshape"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Shape"
,
{}}},
...
@@ -126,13 +125,6 @@ class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -126,13 +125,6 @@ class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
" within [1, 6] dimensions (Eigen limit)."
);
" within [1, 6] dimensions (Eigen limit)."
);
}
}
});
});
AddAttr
<
bool
>
(
"inplace"
,
"(default: false) Unsqueeze the source tensor's shape without "
"memory copy. When Attr(inplace) is set true, the output "
"tensor shares memory with Input(X), otherwise, a new output "
"tensor is created, and its data are copied from Input(x)."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Unsqueeze Operator.
Unsqueeze Operator.
...
@@ -168,7 +160,6 @@ class UnsqueezeGradOp : public framework::OperatorBase {
...
@@ -168,7 +160,6 @@ class UnsqueezeGradOp : public framework::OperatorBase {
framework
::
AttributeMap
attrs
;
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
x_dims
);
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
x_dims
);
attrs
[
"inplace"
]
=
Attr
<
bool
>
(
"inplace"
);
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
auto
reshape_op
=
framework
::
OpRegistry
::
CreateOp
(
"reshape"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}}},
"reshape"
,
{{
"X"
,
{
dout_name
}},
{
"Shape"
,
{}}},
{{
"Out"
,
{
dx_name
}}},
...
...
paddle/fluid/platform/dynload/CMakeLists.txt
浏览文件 @
b4b16d1c
...
@@ -3,7 +3,7 @@ cc_library(dynamic_loader SRCS dynamic_loader.cc DEPS glog gflags enforce)
...
@@ -3,7 +3,7 @@ cc_library(dynamic_loader SRCS dynamic_loader.cc DEPS glog gflags enforce)
list
(
APPEND CUDA_SRCS cublas.cc cudnn.cc curand.cc
)
list
(
APPEND CUDA_SRCS cublas.cc cudnn.cc curand.cc
)
# There is no macOS version of NCCL.
# There is no macOS version of NCCL.
if
(
NOT APPLE
)
if
(
NOT APPLE
AND NOT WIN32
)
list
(
APPEND CUDA_SRCS nccl.cc
)
list
(
APPEND CUDA_SRCS nccl.cc
)
endif
()
endif
()
...
...
paddle/fluid/platform/dynload/mklml.h
浏览文件 @
b4b16d1c
...
@@ -49,25 +49,27 @@ extern void* mklml_dso_handle;
...
@@ -49,25 +49,27 @@ extern void* mklml_dso_handle;
#define MKLML_ROUTINE_EACH(__macro) \
#define MKLML_ROUTINE_EACH(__macro) \
__macro(cblas_sgemm); \
__macro(cblas_sgemm); \
__macro(cblas_saxpy); \
__macro(cblas_scopy); \
__macro(cblas_sgemv); \
__macro(cblas_sgemm_batch); \
__macro(cblas_dgemm); \
__macro(cblas_dgemm); \
__macro(cblas_saxpy); \
__macro(cblas_daxpy); \
__macro(cblas_daxpy); \
__macro(cblas_scopy); \
__macro(cblas_dcopy); \
__macro(cblas_dcopy); \
__macro(cblas_sgemv); \
__macro(cblas_dgemv); \
__macro(cblas_dgemv); \
__macro(cblas_dgemm_batch); \
__macro(vsAdd); \
__macro(vdAdd); \
__macro(cblas_sgemm_alloc); \
__macro(cblas_sgemm_alloc); \
__macro(cblas_sgemm_pack); \
__macro(cblas_sgemm_compute); \
__macro(cblas_sgemm_free); \
__macro(cblas_dgemm_alloc); \
__macro(cblas_dgemm_alloc); \
__macro(cblas_sgemm_pack); \
__macro(cblas_dgemm_pack); \
__macro(cblas_dgemm_pack); \
__macro(cblas_sgemm_compute); \
__macro(cblas_dgemm_compute); \
__macro(cblas_dgemm_compute); \
__macro(cblas_sgemm_free); \
__macro(cblas_dgemm_free); \
__macro(cblas_dgemm_free); \
__macro(cblas_sgemm_batch); \
__macro(cblas_dgemm_batch); \
__macro(vsAdd); \
__macro(vdAdd); \
__macro(vsMul); \
__macro(vdMul); \
__macro(MKL_Set_Num_Threads)
__macro(MKL_Set_Num_Threads)
MKLML_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_MKLML_WRAP
);
MKLML_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_MKLML_WRAP
);
...
...
paddle/fluid/platform/enforce.h
浏览文件 @
b4b16d1c
...
@@ -44,7 +44,7 @@ limitations under the License. */
...
@@ -44,7 +44,7 @@ limitations under the License. */
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/dynload/curand.h"
#include "paddle/fluid/platform/dynload/curand.h"
#if
ndef __APPLE__
#if
!defined(__APPLE__) and !defined(_WIN32)
#include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/dynload/nccl.h"
#endif // __APPLE__
#endif // __APPLE__
#endif // PADDLE_WITH_CUDA
#endif // PADDLE_WITH_CUDA
...
@@ -205,7 +205,7 @@ inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
...
@@ -205,7 +205,7 @@ inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
#endif
#endif
}
}
#if
ndef __APPLE__
#if
!defined(__APPLE__) and !defined(_WIN32)
template
<
typename
...
Args
>
template
<
typename
...
Args
>
inline
typename
std
::
enable_if
<
sizeof
...(
Args
)
!=
0
,
void
>::
type
throw_on_error
(
inline
typename
std
::
enable_if
<
sizeof
...(
Args
)
!=
0
,
void
>::
type
throw_on_error
(
ncclResult_t
stat
,
const
Args
&
...
args
)
{
ncclResult_t
stat
,
const
Args
&
...
args
)
{
...
@@ -221,7 +221,7 @@ inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
...
@@ -221,7 +221,7 @@ inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
#endif
#endif
}
}
}
}
#endif // __APPLE__
#endif // __APPLE__
and windows
#endif // PADDLE_WITH_CUDA
#endif // PADDLE_WITH_CUDA
template
<
typename
T
>
template
<
typename
T
>
...
...
python/paddle/fluid/framework.py
浏览文件 @
b4b16d1c
...
@@ -1363,6 +1363,13 @@ class Program(object):
...
@@ -1363,6 +1363,13 @@ class Program(object):
self
.
_current_role
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
self
.
_current_role
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
self
.
_op_role_var
=
[]
self
.
_op_role_var
=
[]
# for distribute
self
.
_is_distributed
=
False
self
.
_is_chief
=
False
self
.
_slice_vars_and_attrs
=
[]
self
.
_endpoints
=
[]
self
.
_distributed_lookup_table
=
None
@
property
@
property
def
op_role
(
self
):
def
op_role
(
self
):
"""
"""
...
...
python/paddle/fluid/io.py
浏览文件 @
b4b16d1c
...
@@ -372,6 +372,7 @@ def load_vars(executor,
...
@@ -372,6 +372,7 @@ def load_vars(executor,
load_vars
(
load_vars
(
executor
,
executor
,
dirname
=
dirname
,
dirname
=
dirname
,
main_program
=
main_program
,
vars
=
list
(
filter
(
predicate
,
main_program
.
list_vars
())),
vars
=
list
(
filter
(
predicate
,
main_program
.
list_vars
())),
filename
=
filename
)
filename
=
filename
)
else
:
else
:
...
@@ -403,9 +404,12 @@ def load_vars(executor,
...
@@ -403,9 +404,12 @@ def load_vars(executor,
inputs
=
{},
inputs
=
{},
outputs
=
{
"Out"
:
load_var_list
},
outputs
=
{
"Out"
:
load_var_list
},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
filename
)})
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
filename
)})
executor
.
run
(
load_prog
)
executor
.
run
(
load_prog
)
# load slice vars on pserver, if have it.
_load_slice_up_vars
(
executor
,
dirname
,
main_program
.
_slice_vars_and_attrs
)
def
load_params
(
executor
,
dirname
,
main_program
=
None
,
filename
=
None
):
def
load_params
(
executor
,
dirname
,
main_program
=
None
,
filename
=
None
):
"""
"""
...
@@ -659,11 +663,19 @@ def save_inference_model(dirname,
...
@@ -659,11 +663,19 @@ def save_inference_model(dirname,
save_persistables
(
executor
,
dirname
,
inference_program
,
params_filename
)
save_persistables
(
executor
,
dirname
,
inference_program
,
params_filename
)
# if there is lookup table, the trainer 0 will notify all pserver to save.
if
main_program
.
_is_distributed
and
main_program
.
_is_chief
and
main_program
.
_distributed_lookup_table
:
lookup_table_filename
=
os
.
path
.
join
(
dirname
,
"__lookup_table__"
)
_save_lookup_tables_by_notify
(
executor
,
lookup_table_filename
,
main_program
.
_distributed_lookup_table
,
main_program
.
_endpoints
)
def
load_inference_model
(
dirname
,
def
load_inference_model
(
dirname
,
executor
,
executor
,
model_filename
=
None
,
model_filename
=
None
,
params_filename
=
None
):
params_filename
=
None
,
pserver_endpoints
=
None
):
"""
"""
Load inference model from a directory
Load inference model from a directory
...
@@ -679,6 +691,10 @@ def load_inference_model(dirname,
...
@@ -679,6 +691,10 @@ def load_inference_model(dirname,
parameters were saved in a single binary
parameters were saved in a single binary
file. If parameters were saved in separate
file. If parameters were saved in separate
files, set it as 'None'.
files, set it as 'None'.
pserver_endpoints(list|None): This only need by distributed inference.
When use distributed look up table in training,
We also need it in inference.The parameter is
a list of pserver endpoints.
Returns:
Returns:
tuple: The return of this function is a tuple with three elements:
tuple: The return of this function is a tuple with three elements:
...
@@ -697,12 +713,16 @@ def load_inference_model(dirname,
...
@@ -697,12 +713,16 @@ def load_inference_model(dirname,
exe = fluid.Executor(fluid.CPUPlace())
exe = fluid.Executor(fluid.CPUPlace())
path = "./infer_model"
path = "./infer_model"
endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
[inference_program, feed_target_names, fetch_targets] =
[inference_program, feed_target_names, fetch_targets] =
fluid.io.load_inference_model(dirname=path, executor=exe)
fluid.io.load_inference_model(dirname=path, executor=exe)
results = exe.run(inference_program,
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
fetch_list=fetch_targets)
# if we need lookup table, we will use:
fluid.io.load_inference_model(dirname=path, executor=exe, pserver_endpoints=endpoints)
# In this exsample, the inference program was saved in the
# In this exsample, the inference program was saved in the
# "./infer_model/__model__" and parameters were saved in
# "./infer_model/__model__" and parameters were saved in
# separate files in ""./infer_model".
# separate files in ""./infer_model".
...
@@ -729,6 +749,9 @@ def load_inference_model(dirname,
...
@@ -729,6 +749,9 @@ def load_inference_model(dirname,
program
=
Program
.
parse_from_string
(
program_desc_str
)
program
=
Program
.
parse_from_string
(
program_desc_str
)
load_persistables
(
executor
,
dirname
,
program
,
params_filename
)
load_persistables
(
executor
,
dirname
,
program
,
params_filename
)
if
pserver_endpoints
:
program
=
_endpoints_replacement
(
program
,
pserver_endpoints
)
feed_target_names
=
program
.
desc
.
get_feed_target_names
()
feed_target_names
=
program
.
desc
.
get_feed_target_names
()
fetch_target_names
=
program
.
desc
.
get_fetch_target_names
()
fetch_target_names
=
program
.
desc
.
get_fetch_target_names
()
fetch_targets
=
[
fetch_targets
=
[
...
@@ -738,6 +761,61 @@ def load_inference_model(dirname,
...
@@ -738,6 +761,61 @@ def load_inference_model(dirname,
return
[
program
,
feed_target_names
,
fetch_targets
]
return
[
program
,
feed_target_names
,
fetch_targets
]
def
_save_lookup_tables_by_notify
(
executor
,
dirname
,
lookup_table
,
pserver_endpoints
):
"""
This function will send checkpoint notify message from Trainer 0
to all the pservers.
The checkpoint notify message contains lookup table name,
the absolute path on pserver to save lookup_table.
Args:
executor(Executor): The executor to run for send checkpoint notify.
dirname(str): The folder where to save.
lookup_table(string): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
ps_endpoint_list(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by
distribute arguments.
Return:
None
Examples:
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
table_name = "share_w"
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
_save_pserver_vars_by_notify(executor=exe,
dirname=param_path, lookup_table=table_name,
pserver_endpoints=ps_endpoints)
"""
pserver_notify_program
=
Program
()
pserver_notify_block
=
pserver_notify_program
.
global_block
()
attrs
=
{}
attrs
[
'epmap'
]
=
pserver_endpoints
attrs
[
'dir'
]
=
dirname
attrs
[
'lookup_table'
]
=
lookup_table
pserver_notify_block
.
append_op
(
type
=
'checkpoint_notify'
,
inputs
=
{},
outputs
=
{},
attrs
=
attrs
)
executor
.
run
(
pserver_notify_program
)
def
_endpoints_replacement
(
program
,
endpoints
):
ENDPOINT_MAP
=
"epmap"
for
op
in
program
.
global_block
().
ops
:
if
op
.
has_attr
(
ENDPOINT_MAP
):
op
.
set_attr
(
ENDPOINT_MAP
,
endpoints
)
program
.
_sync_with_cpp
()
return
program
def
get_parameter_value
(
para
,
executor
):
def
get_parameter_value
(
para
,
executor
):
"""
"""
Get the LoDTensor value of the given parameter.
Get the LoDTensor value of the given parameter.
...
@@ -799,3 +877,46 @@ def get_parameter_value_by_name(name, executor, program=None):
...
@@ -799,3 +877,46 @@ def get_parameter_value_by_name(name, executor, program=None):
program
=
default_main_program
()
program
=
default_main_program
()
var
=
program
.
global_block
().
var
(
name
)
var
=
program
.
global_block
().
var
(
name
)
return
get_parameter_value
(
var
,
executor
)
return
get_parameter_value
(
var
,
executor
)
def
_load_slice_up_vars
(
executor
,
dirname
,
slice_vars_and_attrs
):
if
not
slice_vars_and_attrs
:
return
load_prog
=
Program
()
load_block
=
load_prog
.
global_block
()
for
var_tuple
in
slice_vars_and_attrs
:
orig_var
=
var_tuple
[
0
]
start
=
var_tuple
[
1
]
slice_var
=
var_tuple
[
2
]
end
=
start
+
reduce
(
lambda
x
,
y
:
x
*
y
,
slice_var
.
shape
)
clone_orig_var
=
load_block
.
create_var
(
name
=
orig_var
.
name
,
type
=
orig_var
.
type
,
shape
=
orig_var
.
shape
,
dtype
=
orig_var
.
dtype
,
persistable
=
True
)
clone_slice_var
=
load_block
.
create_var
(
name
=
slice_var
.
name
,
type
=
slice_var
.
type
,
shape
=
slice_var
.
shape
,
dtype
=
slice_var
.
dtype
,
persistable
=
True
)
load_block
.
append_op
(
type
=
'load'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
clone_orig_var
]},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
clone_orig_var
.
name
)})
load_block
.
append_op
(
type
=
"slice"
,
inputs
=
{
'Input'
:
clone_orig_var
},
outputs
=
{
'Out'
:
clone_slice_var
},
attrs
=
{
'axes'
:
[
0
],
'starts'
:
[
start
],
'ends'
:
[
end
]})
executor
.
run
(
load_prog
)
python/paddle/fluid/layers/control_flow.py
浏览文件 @
b4b16d1c
...
@@ -1272,8 +1272,8 @@ class ConditionalBlock(object):
...
@@ -1272,8 +1272,8 @@ class ConditionalBlock(object):
parent_block
.
append_op
(
parent_block
.
append_op
(
type
=
'conditional_block'
,
type
=
'conditional_block'
,
inputs
=
{
inputs
=
{
'
X
'
:
self
.
inputs
,
'
Cond
'
:
self
.
inputs
,
'
Params
'
:
param_list
,
'
Input
'
:
param_list
,
},
},
outputs
=
{
'Out'
:
out_list
,
outputs
=
{
'Out'
:
out_list
,
'Scope'
:
[
step_scope
]},
'Scope'
:
[
step_scope
]},
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b4b16d1c
...
@@ -94,6 +94,7 @@ __all__ = [
...
@@ -94,6 +94,7 @@ __all__ = [
'image_resize_short'
,
'image_resize_short'
,
'resize_bilinear'
,
'resize_bilinear'
,
'gather'
,
'gather'
,
'scatter'
,
'random_crop'
,
'random_crop'
,
'mean_iou'
,
'mean_iou'
,
'relu'
,
'relu'
,
...
@@ -5036,6 +5037,47 @@ def gather(input, index):
...
@@ -5036,6 +5037,47 @@ def gather(input, index):
return
out
return
out
def
scatter
(
input
,
index
,
updates
,
name
=
None
):
"""
**Scatter Layer**
Output is obtained by updating the input on selected indices on the first
axis.
.. math::
Out = X
Out[Ids] = Updates
Args:
input (Variable): The source input with rank>=1.
index (Variable): The index input with rank=1. Its dtype should be
int32 or int64 as it is used as indexes.
updates (Variable): The updated value of scatter op.
name (str|None): The output variable name. Default None.
Returns:
output (Variable): The output is a tensor with the same shape as input.
Examples:
.. code-block:: python
output = fluid.layers.scatter(input, index, updates)
"""
helper
=
LayerHelper
(
'scatter'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"scatter"
,
inputs
=
{
"X"
:
input
,
"Ids"
:
index
,
"Updates"
:
updates
},
outputs
=
{
"Out"
:
out
})
return
out
@
templatedoc
()
@
templatedoc
()
def
random_crop
(
x
,
shape
,
seed
=
None
):
def
random_crop
(
x
,
shape
,
seed
=
None
):
"""
"""
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
b4b16d1c
...
@@ -65,7 +65,6 @@ __all__ = [
...
@@ -65,7 +65,6 @@ __all__ = [
'uniform_random_batch_size_like'
,
'uniform_random_batch_size_like'
,
'gaussian_random'
,
'gaussian_random'
,
'gaussian_random_batch_size_like'
,
'gaussian_random_batch_size_like'
,
'scatter'
,
'sum'
,
'sum'
,
'slice'
,
'slice'
,
'shape'
,
'shape'
,
...
...
python/paddle/fluid/tests/test_if_else_op.py
浏览文件 @
b4b16d1c
...
@@ -30,7 +30,8 @@ import numpy as np
...
@@ -30,7 +30,8 @@ import numpy as np
class
TestMNISTIfElseOp
(
unittest
.
TestCase
):
class
TestMNISTIfElseOp
(
unittest
.
TestCase
):
def
test_raw_api
(
self
):
# FIXME: https://github.com/PaddlePaddle/Paddle/issues/12245#issuecomment-406462379
def
not_test_raw_api
(
self
):
prog
=
Program
()
prog
=
Program
()
startup_prog
=
Program
()
startup_prog
=
Program
()
with
program_guard
(
prog
,
startup_prog
):
with
program_guard
(
prog
,
startup_prog
):
...
@@ -91,7 +92,8 @@ class TestMNISTIfElseOp(unittest.TestCase):
...
@@ -91,7 +92,8 @@ class TestMNISTIfElseOp(unittest.TestCase):
return
return
self
.
assertFalse
(
True
)
self
.
assertFalse
(
True
)
def
test_ifelse
(
self
):
# FIXME: https://github.com/PaddlePaddle/Paddle/issues/12245#issuecomment-406462379
def
not_test_ifelse
(
self
):
prog
=
Program
()
prog
=
Program
()
startup_prog
=
Program
()
startup_prog
=
Program
()
with
program_guard
(
prog
,
startup_prog
):
with
program_guard
(
prog
,
startup_prog
):
...
@@ -153,6 +155,13 @@ class TestIfElse(unittest.TestCase):
...
@@ -153,6 +155,13 @@ class TestIfElse(unittest.TestCase):
self
.
cond_value
=
0.5
self
.
cond_value
=
0.5
self
.
data
=
np
.
random
.
rand
(
25
,
1
).
astype
(
np
.
float32
)
self
.
data
=
np
.
random
.
rand
(
25
,
1
).
astype
(
np
.
float32
)
def
numpy_cal
(
self
):
s1
=
self
.
data
[
np
.
where
(
self
.
data
<
self
.
cond_value
)]
res
=
np
.
sum
(
np
.
exp
(
s1
))
s2
=
self
.
data
[
np
.
where
(
self
.
data
>=
self
.
cond_value
)]
res
+=
np
.
sum
(
np
.
tanh
(
s2
))
return
res
def
compare_ifelse_op_and_numpy
(
self
,
place
):
def
compare_ifelse_op_and_numpy
(
self
,
place
):
self
.
set_test_case
()
self
.
set_test_case
()
...
@@ -166,10 +175,12 @@ class TestIfElse(unittest.TestCase):
...
@@ -166,10 +175,12 @@ class TestIfElse(unittest.TestCase):
ie
=
layers
.
IfElse
(
ifcond
)
ie
=
layers
.
IfElse
(
ifcond
)
with
ie
.
true_block
():
with
ie
.
true_block
():
true_target
=
ie
.
input
(
src
)
true_target
=
ie
.
input
(
src
)
true_target
=
fluid
.
layers
.
exp
(
true_target
)
ie
.
output
(
true_target
)
ie
.
output
(
true_target
)
with
ie
.
false_block
():
with
ie
.
false_block
():
false_target
=
ie
.
input
(
src
)
false_target
=
ie
.
input
(
src
)
false_target
=
fluid
.
layers
.
tanh
(
false_target
)
ie
.
output
(
false_target
)
ie
.
output
(
false_target
)
if_out
=
ie
()
if_out
=
ie
()
out
=
layers
.
reduce_sum
(
if_out
)
out
=
layers
.
reduce_sum
(
if_out
)
...
@@ -180,7 +191,8 @@ class TestIfElse(unittest.TestCase):
...
@@ -180,7 +191,8 @@ class TestIfElse(unittest.TestCase):
o1
,
=
exe
.
run
(
fluid
.
default_main_program
(),
o1
,
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'data'
:
self
.
data
},
feed
=
{
'data'
:
self
.
data
},
fetch_list
=
[
out
])
fetch_list
=
[
out
])
o2
=
np
.
sum
(
self
.
data
)
o2
=
self
.
numpy_cal
()
self
.
assertTrue
(
self
.
assertTrue
(
np
.
allclose
(
np
.
allclose
(
o1
,
o2
,
atol
=
1e-8
),
o1
,
o2
,
atol
=
1e-8
),
...
...
python/paddle/fluid/tests/unittests/dist_mnist.py
浏览文件 @
b4b16d1c
...
@@ -46,7 +46,8 @@ def cnn_model(data):
...
@@ -46,7 +46,8 @@ def cnn_model(data):
pool_size
=
2
,
pool_size
=
2
,
pool_stride
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
act
=
"relu"
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
()))
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.3
)))
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
input
=
conv_pool_1
,
filter_size
=
5
,
filter_size
=
5
,
...
@@ -54,7 +55,8 @@ def cnn_model(data):
...
@@ -54,7 +55,8 @@ def cnn_model(data):
pool_size
=
2
,
pool_size
=
2
,
pool_stride
=
2
,
pool_stride
=
2
,
act
=
"relu"
,
act
=
"relu"
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
()))
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.2
)))
SIZE
=
10
SIZE
=
10
input_shape
=
conv_pool_2
.
shape
input_shape
=
conv_pool_2
.
shape
...
@@ -66,8 +68,7 @@ def cnn_model(data):
...
@@ -66,8 +68,7 @@ def cnn_model(data):
size
=
SIZE
,
size
=
SIZE
,
act
=
"softmax"
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
loc
=
0.0
,
scale
=
scale
,
seed
=
1
)))
return
predict
return
predict
...
...
python/paddle/fluid/tests/unittests/dist_se_resnext.py
浏览文件 @
b4b16d1c
...
@@ -129,7 +129,12 @@ class SE_ResNeXt():
...
@@ -129,7 +129,12 @@ class SE_ResNeXt():
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
drop
=
fluid
.
layers
.
dropout
(
x
=
pool
,
dropout_prob
=
0.2
)
drop
=
fluid
.
layers
.
dropout
(
x
=
pool
,
dropout_prob
=
0.2
)
stdv
=
1.0
/
math
.
sqrt
(
drop
.
shape
[
1
]
*
1.0
)
stdv
=
1.0
/
math
.
sqrt
(
drop
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
class_dim
,
act
=
'softmax'
)
out
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
class_dim
,
act
=
'softmax'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.2
)))
return
out
return
out
def
shortcut
(
self
,
input
,
ch_out
,
stride
):
def
shortcut
(
self
,
input
,
ch_out
,
stride
):
...
@@ -179,7 +184,7 @@ class SE_ResNeXt():
...
@@ -179,7 +184,7 @@ class SE_ResNeXt():
act
=
None
,
act
=
None
,
# avoid pserver CPU init differs from GPU
# avoid pserver CPU init differs from GPU
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
()),
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.2
)),
bias_attr
=
False
)
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
)
...
@@ -228,10 +233,8 @@ class DistSeResneXt2x2(TestDistRunnerBase):
...
@@ -228,10 +233,8 @@ class DistSeResneXt2x2(TestDistRunnerBase):
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
optimizer
=
fluid
.
optimizer
.
Momentum
(
optimizer
=
fluid
.
optimizer
.
Momentum
(
# FIXME(typhoonzero): add back LR decay once ParallelExecutor fixed.
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
#learning_rate=fluid.layers.piecewise_decay(
boundaries
=
bd
,
values
=
lr
),
# boundaries=bd, values=lr),
learning_rate
=
base_lr
,
momentum
=
0.9
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
.
minimize
(
avg_cost
)
optimizer
.
minimize
(
avg_cost
)
...
...
python/paddle/fluid/tests/unittests/dist_transformer.py
浏览文件 @
b4b16d1c
...
@@ -265,9 +265,9 @@ def main(role="pserver",
...
@@ -265,9 +265,9 @@ def main(role="pserver",
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
if
len
(
sys
.
argv
)
!=
7
:
if
len
(
sys
.
argv
)
!=
8
:
print
(
print
(
"Usage: python dist_transformer.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
"Usage: python dist_transformer.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]
[sync_mode]
"
)
)
role
=
sys
.
argv
[
1
]
role
=
sys
.
argv
[
1
]
endpoints
=
sys
.
argv
[
2
]
endpoints
=
sys
.
argv
[
2
]
...
@@ -275,6 +275,8 @@ if __name__ == "__main__":
...
@@ -275,6 +275,8 @@ if __name__ == "__main__":
current_endpoint
=
sys
.
argv
[
4
]
current_endpoint
=
sys
.
argv
[
4
]
trainers
=
int
(
sys
.
argv
[
5
])
trainers
=
int
(
sys
.
argv
[
5
])
is_dist
=
True
if
sys
.
argv
[
6
]
==
"TRUE"
else
False
is_dist
=
True
if
sys
.
argv
[
6
]
==
"TRUE"
else
False
# FIXME(typhoonzero): refine this test.
is_async
=
True
if
sys
.
argv
[
7
]
==
"TRUE"
else
False
main
(
main
(
role
=
role
,
role
=
role
,
endpoints
=
endpoints
,
endpoints
=
endpoints
,
...
...
python/paddle/fluid/tests/unittests/test_desc_clone.py
浏览文件 @
b4b16d1c
...
@@ -27,6 +27,7 @@ import unittest
...
@@ -27,6 +27,7 @@ import unittest
from
multiprocessing
import
Process
from
multiprocessing
import
Process
import
os
import
os
import
signal
import
signal
import
six
import
collections
import
collections
SEED
=
1
SEED
=
1
...
@@ -55,7 +56,8 @@ def cnn_model(data):
...
@@ -55,7 +56,8 @@ def cnn_model(data):
# TODO(dzhwinter) : refine the initializer and random seed settting
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE
=
10
SIZE
=
10
input_shape
=
conv_pool_2
.
shape
input_shape
=
conv_pool_2
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)]
+
[
SIZE
]
param_shape
=
[
six
.
moves
.
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)
]
+
[
SIZE
]
scale
=
(
2.0
/
(
param_shape
[
0
]
**
2
*
SIZE
))
**
0.5
scale
=
(
2.0
/
(
param_shape
[
0
]
**
2
*
SIZE
))
**
0.5
predict
=
fluid
.
layers
.
fc
(
predict
=
fluid
.
layers
.
fc
(
...
@@ -108,7 +110,7 @@ def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
...
@@ -108,7 +110,7 @@ def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
def
operator_equal
(
a
,
b
):
def
operator_equal
(
a
,
b
):
for
k
,
v
in
a
.
__dict__
.
iteritems
(
):
for
k
,
v
in
six
.
iteritems
(
a
.
__dict__
):
if
isinstance
(
v
,
fluid
.
framework
.
Program
)
or
\
if
isinstance
(
v
,
fluid
.
framework
.
Program
)
or
\
isinstance
(
v
,
fluid
.
framework
.
Block
):
isinstance
(
v
,
fluid
.
framework
.
Block
):
continue
continue
...
@@ -118,8 +120,8 @@ def operator_equal(a, b):
...
@@ -118,8 +120,8 @@ def operator_equal(a, b):
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
elif
isinstance
(
v
,
collections
.
OrderedDict
):
elif
isinstance
(
v
,
collections
.
OrderedDict
):
v0
=
sorted
(
v
.
iteritems
(
),
key
=
lambda
x
:
x
[
0
])
v0
=
sorted
(
six
.
iteritems
(
v
),
key
=
lambda
x
:
x
[
0
])
v1
=
sorted
(
b
.
__dict__
[
k
].
iteritems
(
),
key
=
lambda
x
:
x
[
0
])
v1
=
sorted
(
six
.
iteritems
(
b
.
__dict__
[
k
]
),
key
=
lambda
x
:
x
[
0
])
if
v0
!=
v1
:
if
v0
!=
v1
:
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
...
@@ -131,7 +133,7 @@ def operator_equal(a, b):
...
@@ -131,7 +133,7 @@ def operator_equal(a, b):
def
block_equal
(
a
,
b
):
def
block_equal
(
a
,
b
):
for
k
,
v
in
a
.
__dict__
.
iteritems
(
):
for
k
,
v
in
six
.
iteritems
(
a
.
__dict__
):
if
isinstance
(
v
,
core
.
ProgramDesc
)
or
isinstance
(
if
isinstance
(
v
,
core
.
ProgramDesc
)
or
isinstance
(
v
,
fluid
.
framework
.
Program
)
or
isinstance
(
v
,
core
.
BlockDesc
):
v
,
fluid
.
framework
.
Program
)
or
isinstance
(
v
,
core
.
BlockDesc
):
continue
continue
...
@@ -143,8 +145,8 @@ def block_equal(a, b):
...
@@ -143,8 +145,8 @@ def block_equal(a, b):
assert
(
len
(
a
.
ops
)
==
len
(
b
.
ops
))
assert
(
len
(
a
.
ops
)
==
len
(
b
.
ops
))
elif
isinstance
(
v
,
collections
.
OrderedDict
):
elif
isinstance
(
v
,
collections
.
OrderedDict
):
v0
=
sorted
(
v
.
iteritems
(
),
key
=
lambda
x
:
x
[
0
])
v0
=
sorted
(
six
.
iteritems
(
v
),
key
=
lambda
x
:
x
[
0
])
v1
=
sorted
(
b
.
__dict__
[
k
].
iteritems
(
),
key
=
lambda
x
:
x
[
0
])
v1
=
sorted
(
six
.
iteritems
(
b
.
__dict__
[
k
]
),
key
=
lambda
x
:
x
[
0
])
if
v0
!=
v1
:
if
v0
!=
v1
:
raise
ValueError
(
"In block_equal not equal:{0}
\n
"
.
format
(
k
))
raise
ValueError
(
"In block_equal not equal:{0}
\n
"
.
format
(
k
))
...
@@ -156,7 +158,7 @@ def block_equal(a, b):
...
@@ -156,7 +158,7 @@ def block_equal(a, b):
def
program_equal
(
a
,
b
):
def
program_equal
(
a
,
b
):
for
k
,
v
in
a
.
__dict__
.
iteritems
(
):
for
k
,
v
in
six
.
iteritems
(
a
.
__dict__
):
if
isinstance
(
v
,
core
.
ProgramDesc
):
if
isinstance
(
v
,
core
.
ProgramDesc
):
continue
continue
...
...
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
b4b16d1c
...
@@ -30,7 +30,7 @@ class TestDistRunnerBase(object):
...
@@ -30,7 +30,7 @@ class TestDistRunnerBase(object):
"get_model should be implemented by child classes."
)
"get_model should be implemented by child classes."
)
def
get_transpiler
(
self
,
trainer_id
,
main_program
,
pserver_endpoints
,
def
get_transpiler
(
self
,
trainer_id
,
main_program
,
pserver_endpoints
,
trainers
):
trainers
,
sync_mode
):
# NOTE: import fluid until runtime, or else forking processes will cause error.
# NOTE: import fluid until runtime, or else forking processes will cause error.
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
...
@@ -39,17 +39,22 @@ class TestDistRunnerBase(object):
...
@@ -39,17 +39,22 @@ class TestDistRunnerBase(object):
trainer_id
=
trainer_id
,
trainer_id
=
trainer_id
,
program
=
main_program
,
program
=
main_program
,
pservers
=
pserver_endpoints
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
trainers
=
trainers
,
sync_mode
=
sync_mode
)
return
t
return
t
def
run_pserver
(
self
,
pserver_endpoints
,
trainers
,
current_endpoint
,
def
run_pserver
(
self
,
trainer_id
):
pserver_endpoints
,
trainers
,
current_endpoint
,
trainer_id
,
sync_mode
=
True
):
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
self
.
get_model
(
batch_size
=
2
)
self
.
get_model
(
batch_size
=
2
)
t
=
self
.
get_transpiler
(
trainer_id
,
t
=
self
.
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
pserver_endpoints
,
fluid
.
default_main_program
(),
pserver_endpoints
,
trainers
)
trainers
,
sync_mode
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
place
=
fluid
.
CPUPlace
()
place
=
fluid
.
CPUPlace
()
...
@@ -57,7 +62,13 @@ class TestDistRunnerBase(object):
...
@@ -57,7 +62,13 @@ class TestDistRunnerBase(object):
exe
.
run
(
startup_prog
)
exe
.
run
(
startup_prog
)
exe
.
run
(
pserver_prog
)
exe
.
run
(
pserver_prog
)
def
run_trainer
(
self
,
place
,
endpoints
,
trainer_id
,
trainers
,
is_dist
=
True
):
def
run_trainer
(
self
,
place
,
endpoints
,
trainer_id
,
trainers
,
is_dist
=
True
,
sync_mode
=
True
):
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
test_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
=
\
test_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
=
\
...
@@ -65,7 +76,7 @@ class TestDistRunnerBase(object):
...
@@ -65,7 +76,7 @@ class TestDistRunnerBase(object):
if
is_dist
:
if
is_dist
:
t
=
self
.
get_transpiler
(
trainer_id
,
t
=
self
.
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
endpoints
,
fluid
.
default_main_program
(),
endpoints
,
trainers
)
trainers
,
sync_mode
)
trainer_prog
=
t
.
get_trainer_program
()
trainer_prog
=
t
.
get_trainer_program
()
else
:
else
:
trainer_prog
=
fluid
.
default_main_program
()
trainer_prog
=
fluid
.
default_main_program
()
...
@@ -106,9 +117,9 @@ def runtime_main(test_class):
...
@@ -106,9 +117,9 @@ def runtime_main(test_class):
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
if
len
(
sys
.
argv
)
!=
7
:
if
len
(
sys
.
argv
)
!=
8
:
print
(
print
(
"Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
"Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]
[sync_mode]
"
)
)
role
=
sys
.
argv
[
1
]
role
=
sys
.
argv
[
1
]
endpoints
=
sys
.
argv
[
2
]
endpoints
=
sys
.
argv
[
2
]
...
@@ -116,34 +127,43 @@ def runtime_main(test_class):
...
@@ -116,34 +127,43 @@ def runtime_main(test_class):
current_endpoint
=
sys
.
argv
[
4
]
current_endpoint
=
sys
.
argv
[
4
]
trainers
=
int
(
sys
.
argv
[
5
])
trainers
=
int
(
sys
.
argv
[
5
])
is_dist
=
True
if
sys
.
argv
[
6
]
==
"TRUE"
else
False
is_dist
=
True
if
sys
.
argv
[
6
]
==
"TRUE"
else
False
sync_mode
=
True
if
sys
.
argv
[
7
]
==
"TRUE"
else
False
model
=
test_class
()
model
=
test_class
()
if
role
==
"pserver"
:
if
role
==
"pserver"
:
model
.
run_pserver
(
endpoints
,
trainers
,
current_endpoint
,
trainer_id
)
model
.
run_pserver
(
endpoints
,
trainers
,
current_endpoint
,
trainer_id
,
sync_mode
)
else
:
else
:
p
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
p
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
)
else
fluid
.
CPUPlace
()
model
.
run_trainer
(
p
,
endpoints
,
trainer_id
,
trainers
,
is_dist
)
model
.
run_trainer
(
p
,
endpoints
,
trainer_id
,
trainers
,
is_dist
,
sync_mode
)
import
paddle.compat
as
cpt
import
paddle.compat
as
cpt
class
TestDistBase
(
unittest
.
TestCase
):
class
TestDistBase
(
unittest
.
TestCase
):
def
_setup_config
(
self
):
raise
NotImplementedError
(
"tests should have _setup_config implemented"
)
def
setUp
(
self
):
def
setUp
(
self
):
self
.
_trainers
=
2
self
.
_trainers
=
2
self
.
_pservers
=
2
self
.
_pservers
=
2
self
.
_ps_endpoints
=
"127.0.0.1:9123,127.0.0.1:9124"
self
.
_ps_endpoints
=
"127.0.0.1:9123,127.0.0.1:9124"
self
.
_python_interp
=
"python"
self
.
_python_interp
=
"python"
self
.
_sync_mode
=
True
self
.
_setup_config
()
def
start_pserver
(
self
,
model_file
,
check_error_log
):
def
start_pserver
(
self
,
model_file
,
check_error_log
):
sync_mode_str
=
"TRUE"
if
self
.
_sync_mode
else
"FALSE"
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
ps0_cmd
=
"%s %s pserver %s 0 %s %d TRUE"
%
\
ps0_cmd
=
"%s %s pserver %s 0 %s %d TRUE
%s
"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps0_ep
,
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps0_ep
,
self
.
_trainers
)
self
.
_trainers
,
sync_mode_str
)
ps1_cmd
=
"%s %s pserver %s 0 %s %d TRUE"
%
\
ps1_cmd
=
"%s %s pserver %s 0 %s %d TRUE
%s
"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps1_ep
,
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps1_ep
,
self
.
_trainers
)
self
.
_trainers
,
sync_mode_str
)
ps0_pipe
=
subprocess
.
PIPE
ps0_pipe
=
subprocess
.
PIPE
ps1_pipe
=
subprocess
.
PIPE
ps1_pipe
=
subprocess
.
PIPE
...
@@ -195,9 +215,10 @@ class TestDistBase(unittest.TestCase):
...
@@ -195,9 +215,10 @@ class TestDistBase(unittest.TestCase):
# Run local to get a base line
# Run local to get a base line
env_local
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env_local
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env_local
.
update
(
required_envs
)
env_local
.
update
(
required_envs
)
local_cmd
=
"%s %s trainer %s 0 %s %d FLASE"
%
\
sync_mode_str
=
"TRUE"
if
self
.
_sync_mode
else
"FALSE"
local_cmd
=
"%s %s trainer %s 0 %s %d FLASE %s"
%
\
(
self
.
_python_interp
,
model_file
,
(
self
.
_python_interp
,
model_file
,
"127.0.0.1:1234"
,
"127.0.0.1:1234"
,
1
)
"127.0.0.1:1234"
,
"127.0.0.1:1234"
,
1
,
sync_mode_str
)
if
not
check_error_log
:
if
not
check_error_log
:
local_proc
=
subprocess
.
Popen
(
local_proc
=
subprocess
.
Popen
(
local_cmd
.
split
(
" "
),
local_cmd
.
split
(
" "
),
...
@@ -226,12 +247,12 @@ class TestDistBase(unittest.TestCase):
...
@@ -226,12 +247,12 @@ class TestDistBase(unittest.TestCase):
self
.
_wait_ps_ready
(
ps1
.
pid
)
self
.
_wait_ps_ready
(
ps1
.
pid
)
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
tr0_cmd
=
"%s %s trainer %s 0 %s %d TRUE"
%
\
tr0_cmd
=
"%s %s trainer %s 0 %s %d TRUE
%s
"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps0_ep
,
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps0_ep
,
self
.
_trainers
)
self
.
_trainers
,
sync_mode_str
)
tr1_cmd
=
"%s %s trainer %s 1 %s %d TRUE"
%
\
tr1_cmd
=
"%s %s trainer %s 1 %s %d TRUE
%s
"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps1_ep
,
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps1_ep
,
self
.
_trainers
)
self
.
_trainers
,
sync_mode_str
)
env0
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env0
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env1
=
{
"CUDA_VISIBLE_DEVICES"
:
"1"
}
env1
=
{
"CUDA_VISIBLE_DEVICES"
:
"1"
}
...
...
python/paddle/fluid/tests/unittests/test_dist_mnist.py
浏览文件 @
b4b16d1c
...
@@ -17,10 +17,21 @@ import unittest
...
@@ -17,10 +17,21 @@ import unittest
from
test_dist_base
import
TestDistBase
from
test_dist_base
import
TestDistBase
class
TestDistSeResneXt2x2
(
TestDistBase
):
class
TestDistMnist2x2
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
def
test_se_resnext
(
self
):
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
1e-7
)
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
1e-7
)
class
TestDistMnistAsync
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
200
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
浏览文件 @
b4b16d1c
...
@@ -18,9 +18,20 @@ from test_dist_base import TestDistBase
...
@@ -18,9 +18,20 @@ from test_dist_base import TestDistBase
class
TestDistSeResneXt2x2
(
TestDistBase
):
class
TestDistSeResneXt2x2
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
def
test_se_resnext
(
self
):
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1e-7
)
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1e-7
)
class
TestDistSeResneXt2x2Async
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
100
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_transformer.py
浏览文件 @
b4b16d1c
...
@@ -19,6 +19,9 @@ from test_dist_base import TestDistBase
...
@@ -19,6 +19,9 @@ from test_dist_base import TestDistBase
class
TestDistTransformer2x2
(
TestDistBase
):
class
TestDistTransformer2x2
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
def
test_transformer
(
self
):
def
test_transformer
(
self
):
# TODO(paddle-dev): check if the delta is OK.
# TODO(paddle-dev): check if the delta is OK.
# Usually start around ~8000 and converge to ~5000
# Usually start around ~8000 and converge to ~5000
...
...
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
b4b16d1c
...
@@ -47,7 +47,6 @@ class TranspilerTest(unittest.TestCase):
...
@@ -47,7 +47,6 @@ class TranspilerTest(unittest.TestCase):
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
sgd_optimizer
.
minimize
(
avg_cost
)
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
get_main_program
(
self
):
def
get_main_program
(
self
):
main
=
fluid
.
Program
()
main
=
fluid
.
Program
()
...
@@ -95,8 +94,9 @@ class TranspilerTest(unittest.TestCase):
...
@@ -95,8 +94,9 @@ class TranspilerTest(unittest.TestCase):
def
test_transpiler
(
self
):
def
test_transpiler
(
self
):
main
=
fluid
.
Program
()
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
with
fluid
.
unique_name
.
guard
():
self
.
transpiler_test_impl
()
with
fluid
.
program_guard
(
main
,
startup
):
self
.
transpiler_test_impl
()
class
TestBasicModel
(
TranspilerTest
):
class
TestBasicModel
(
TranspilerTest
):
...
@@ -249,7 +249,6 @@ class TestLRDecay(TranspilerTest):
...
@@ -249,7 +249,6 @@ class TestLRDecay(TranspilerTest):
decay_rate
=
0.1
,
decay_rate
=
0.1
,
staircase
=
True
))
staircase
=
True
))
sgd_optimizer
.
minimize
(
avg_cost
)
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
transpiler_test_impl
(
self
):
def
transpiler_test_impl
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
...
@@ -279,7 +278,6 @@ class TestLRDecayConditional(TranspilerTest):
...
@@ -279,7 +278,6 @@ class TestLRDecayConditional(TranspilerTest):
learning_rate
=
fluid
.
layers
.
piecewise_decay
([
10000
,
20000
],
learning_rate
=
fluid
.
layers
.
piecewise_decay
([
10000
,
20000
],
[
1.0
,
0.5
,
1.0
]))
[
1.0
,
0.5
,
1.0
]))
sgd_optimizer
.
minimize
(
avg_cost
)
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
transpiler_test_impl
(
self
):
def
transpiler_test_impl
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
...
@@ -328,7 +326,6 @@ class TestL2Decay(TranspilerTest):
...
@@ -328,7 +326,6 @@ class TestL2Decay(TranspilerTest):
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
sgd_optimizer
.
minimize
(
avg_cost
)
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
transpiler_test_impl
(
self
):
def
transpiler_test_impl
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
...
@@ -363,7 +360,6 @@ class TestL2DecayWithPiecewise(TranspilerTest):
...
@@ -363,7 +360,6 @@ class TestL2DecayWithPiecewise(TranspilerTest):
momentum
=
0.9
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
sgd_optimizer
.
minimize
(
avg_cost
)
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
transpiler_test_impl
(
self
):
def
transpiler_test_impl
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
...
@@ -393,13 +389,14 @@ class TestDistLookupTableBase(TranspilerTest):
...
@@ -393,13 +389,14 @@ class TestDistLookupTableBase(TranspilerTest):
def
network_with_table
(
self
,
is_sparse
,
is_distributed
):
def
network_with_table
(
self
,
is_sparse
,
is_distributed
):
self
.
table_size
=
1000
self
.
table_size
=
1000
self
.
emb_size
=
64
self
.
emb_size
=
64
self
.
lookup_table_name
=
'shared_w'
def
emb_pool
(
ids
):
def
emb_pool
(
ids
):
emb
=
fluid
.
layers
.
embedding
(
emb
=
fluid
.
layers
.
embedding
(
input
=
ids
,
input
=
ids
,
size
=
[
self
.
table_size
,
self
.
emb_size
],
size
=
[
self
.
table_size
,
self
.
emb_size
],
dtype
=
'float32'
,
dtype
=
'float32'
,
param_attr
=
'shared_w'
,
# share parameter
param_attr
=
self
.
lookup_table_name
,
# share parameter
is_sparse
=
is_sparse
,
is_sparse
=
is_sparse
,
is_distributed
=
is_distributed
)
is_distributed
=
is_distributed
)
pool
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'average'
)
pool
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'average'
)
...
@@ -572,7 +569,7 @@ class TestDistLookupTableSliceSize(TestDistLookupTableBase):
...
@@ -572,7 +569,7 @@ class TestDistLookupTableSliceSize(TestDistLookupTableBase):
def
transpiler_test_impl
(
self
):
def
transpiler_test_impl
(
self
):
config
=
fluid
.
DistributeTranspilerConfig
()
config
=
fluid
.
DistributeTranspilerConfig
()
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
)
pserver1
,
_
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
)
self
.
assertTrue
(
self
.
transpiler
.
has_distributed_lookup_table
)
self
.
assertTrue
(
self
.
transpiler
.
has_distributed_lookup_table
)
lookup_table_var
=
pserver1
.
global_block
().
vars
[
lookup_table_var
=
pserver1
.
global_block
().
vars
[
...
@@ -582,6 +579,21 @@ class TestDistLookupTableSliceSize(TestDistLookupTableBase):
...
@@ -582,6 +579,21 @@ class TestDistLookupTableSliceSize(TestDistLookupTableBase):
self
.
assertEqual
(
row_size
,
calc_row_size
)
self
.
assertEqual
(
row_size
,
calc_row_size
)
class
TestDistArgsInProgram
(
TestDistLookupTableBase
):
def
net_conf
(
self
):
self
.
network_with_table
(
is_sparse
=
True
,
is_distributed
=
True
)
def
transpiler_test_impl
(
self
):
trainer
,
_
=
self
.
get_trainer
()
self
.
assertTrue
(
trainer
.
_is_distributed
)
self
.
assertTrue
(
trainer
.
_is_chief
)
self
.
assertEqual
(
trainer
.
_distributed_lookup_table
,
self
.
lookup_table_name
)
self
.
assertEqual
(
trainer
.
_endpoints
,
[
self
.
pserver1_ep
,
self
.
pserver2_ep
])
class
TestRMSPropOptimizer
(
TranspilerTest
):
class
TestRMSPropOptimizer
(
TranspilerTest
):
def
net_conf
(
self
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
...
@@ -595,7 +607,6 @@ class TestRMSPropOptimizer(TranspilerTest):
...
@@ -595,7 +607,6 @@ class TestRMSPropOptimizer(TranspilerTest):
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
optimizer
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
0.1
)
optimizer
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
0.1
)
optimizer
.
minimize
(
avg_cost
)
optimizer
.
minimize
(
avg_cost
)
return
def
transpiler_test_impl
(
self
):
def
transpiler_test_impl
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
...
@@ -612,5 +623,40 @@ class TestRMSPropOptimizer(TranspilerTest):
...
@@ -612,5 +623,40 @@ class TestRMSPropOptimizer(TranspilerTest):
self
.
assertEqual
(
moment_var
.
shape
,
(
500
,
1000
))
self
.
assertEqual
(
moment_var
.
shape
,
(
500
,
1000
))
class
TestLoadSliceVar
(
TranspilerTest
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'fc_b'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
optimizer
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
0.1
)
optimizer
.
minimize
(
avg_cost
)
def
transpiler_test_impl
(
self
):
pserver
,
_
=
self
.
get_pserver
(
self
.
pserver1_ep
)
pserver2
,
_
=
self
.
get_pserver
(
self
.
pserver2_ep
)
self
.
assertTrue
(
pserver
.
_slice_vars_and_attrs
)
self
.
assertTrue
(
pserver2
.
_slice_vars_and_attrs
)
for
idx
in
xrange
(
len
(
pserver
.
_slice_vars_and_attrs
)):
self
.
assertEqual
(
pserver
.
_slice_vars_and_attrs
[
idx
][
0
],
pserver2
.
_slice_vars_and_attrs
[
idx
][
0
])
total_numel
=
reduce
(
lambda
x
,
y
:
x
*
y
,
pserver
.
_slice_vars_and_attrs
[
idx
][
0
].
shape
)
self
.
assertEqual
(
total_numel
,
reduce
(
lambda
x
,
y
:
x
*
y
,
pserver
.
_slice_vars_and_attrs
[
idx
][
2
].
shape
)
+
reduce
(
lambda
x
,
y
:
x
*
y
,
pserver2
.
_slice_vars_and_attrs
[
idx
][
2
].
shape
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
浏览文件 @
b4b16d1c
...
@@ -18,9 +18,20 @@ from test_dist_base import TestDistBase
...
@@ -18,9 +18,20 @@ from test_dist_base import TestDistBase
class
TestDistSeResneXt2x2
(
TestDistBase
):
class
TestDistSeResneXt2x2
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
def
test_se_resnext
(
self
):
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_word2vec.py"
,
delta
=
1e-7
)
self
.
check_with_place
(
"dist_word2vec.py"
,
delta
=
1e-7
)
class
TestDistSeResneXt2x2Async
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_word2vec.py"
,
delta
=
1
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fc_op.py
浏览文件 @
b4b16d1c
...
@@ -64,27 +64,47 @@ class TestFCOp(OpTest):
...
@@ -64,27 +64,47 @@ class TestFCOp(OpTest):
self
.
check_output
()
self
.
check_output
()
class
TestFCOp
BiasBoth
(
TestFCOp
):
class
TestFCOp
NoBias
(
TestFCOp
):
def
init_shapes
(
self
,
mb
,
ic
,
oc
,
h
,
w
):
def
init_shapes
(
self
,
mb
,
ic
,
oc
,
h
,
w
):
for
with_bias
in
{
True
,
False
}:
self
.
with_bias
=
False
self
.
with_bias
=
with_bias
self
.
matrix
=
MatrixGenerate
(
mb
,
ic
,
oc
,
h
,
w
)
self
.
matrix
=
MatrixGenerate
(
mb
,
ic
,
oc
,
h
,
w
)
class
TestFCOp1
(
TestFCOpBiasBoth
):
class
TestFCOpWithBias
(
TestFCOp
):
def
init_shapes
(
self
,
mb
,
ic
,
oc
,
h
,
w
):
self
.
with_bias
=
True
self
.
matrix
=
MatrixGenerate
(
mb
,
ic
,
oc
,
h
,
w
)
class
TestFCOp1
(
TestFCOpNoBias
):
def
init_op_type
(
self
):
def
init_op_type
(
self
):
self
.
init_shapes
(
2
,
8
,
10
,
1
,
1
)
self
.
init_shapes
(
2
,
8
,
10
,
1
,
1
)
class
TestFCOp2
(
TestFCOp
BiasBoth
):
class
TestFCOp2
(
TestFCOp
NoBias
):
def
init_op_type
(
self
):
def
init_op_type
(
self
):
self
.
init_shapes
(
4
,
5
,
6
,
2
,
2
)
self
.
init_shapes
(
4
,
5
,
6
,
2
,
2
)
class
TestFCOp4
(
TestFCOp
BiasBoth
):
class
TestFCOp4
(
TestFCOp
NoBias
):
def
init_op_type
(
self
):
def
init_op_type
(
self
):
self
.
init_shapes
(
1
,
32
,
64
,
3
,
3
)
self
.
init_shapes
(
1
,
32
,
64
,
3
,
3
)
class
TestFCOpWithBias1
(
TestFCOpWithBias
):
def
init_op_type
(
self
):
self
.
init_shapes
(
3
,
8
,
10
,
2
,
1
)
class
TestFCOpWithBias2
(
TestFCOpWithBias
):
def
init_op_type
(
self
):
self
.
init_shapes
(
4
,
5
,
6
,
2
,
2
)
class
TestFCOpWithBias3
(
TestFCOpWithBias
):
def
init_op_type
(
self
):
self
.
init_shapes
(
1
,
64
,
32
,
3
,
3
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
0 → 100644
浏览文件 @
b4b16d1c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
test_lstm_op
import
lstm
,
ACTIVATION
def
fc
(
x
,
w
,
b
):
return
np
.
dot
(
x
,
w
)
+
b
def
fusion_lstm
(
x
,
# T x M
lod
,
# 1 x N
wx
=
None
,
# M x 4D
bx
=
None
,
# 1 x 4D
h0
=
None
,
# N x D
c0
=
None
,
# N x D
w_h
=
None
,
# D x 4D
w_b
=
None
,
# 1 x 4D
w_c
=
None
,
# 1 x 3D
is_reverse
=
False
,
act_gate
=
None
,
act_cell
=
None
,
act_cand
=
None
):
return
lstm
(
fc
(
x
,
wx
,
bx
),
lod
,
h0
,
c0
,
w_h
,
w_b
,
w_c
,
is_reverse
,
act_gate
,
act_cell
,
act_cand
)
class
TestLstmOp
(
OpTest
):
def
set_argument
(
self
):
self
.
lod
=
[[
2
,
3
,
2
]]
def
setUp
(
self
):
self
.
op_type
=
'fusion_lstm'
self
.
lod
=
[[
2
,
3
,
2
]]
self
.
M
=
8
self
.
D
=
16
self
.
has_initial_state
=
False
self
.
is_reverse
=
False
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
use_peepholes
=
False
self
.
set_argument
()
T
=
sum
(
self
.
lod
[
0
])
bs
=
len
(
self
.
lod
[
0
])
x
=
np
.
random
.
normal
(
size
=
(
T
,
self
.
M
)).
astype
(
'float64'
)
if
self
.
has_initial_state
:
h0
=
np
.
random
.
normal
(
size
=
(
bs
,
self
.
D
)).
astype
(
'float64'
)
c0
=
np
.
random
.
normal
(
size
=
(
bs
,
self
.
D
)).
astype
(
'float64'
)
else
:
h0
=
np
.
zeros
((
bs
,
self
.
D
)).
astype
(
'float64'
)
c0
=
np
.
zeros
((
bs
,
self
.
D
)).
astype
(
'float64'
)
wh
=
np
.
random
.
normal
(
size
=
(
self
.
D
,
4
*
self
.
D
)).
astype
(
'float64'
)
if
self
.
use_peepholes
:
b
=
np
.
random
.
normal
(
size
=
(
1
,
7
*
self
.
D
)).
astype
(
'float64'
)
else
:
b
=
np
.
random
.
normal
(
size
=
(
1
,
4
*
self
.
D
)).
astype
(
'float64'
)
w_b
=
np
.
copy
(
b
[:,
0
:
4
*
self
.
D
])
w_c
=
b
[:,
4
*
self
.
D
:]
if
self
.
use_peepholes
else
None
# this is the weight of fc
wx
=
np
.
random
.
normal
(
size
=
(
self
.
M
,
4
*
self
.
D
)).
astype
(
'float64'
)
# this is the bias of fc
# and it should be manually added into the bias of this fusion LSTM
bx
=
np
.
random
.
normal
(
size
=
(
1
,
4
*
self
.
D
)).
astype
(
'float64'
)
b
[
0
,
0
:
4
*
self
.
D
]
+=
bx
[
0
,
:]
h
,
c
=
fusion_lstm
(
x
,
self
.
lod
,
wx
,
bx
,
h0
,
c0
,
wh
,
w_b
,
w_c
,
self
.
is_reverse
,
ACTIVATION
[
self
.
act_gate
],
ACTIVATION
[
self
.
act_cell
],
ACTIVATION
[
self
.
act_cand
])
self
.
inputs
=
{
'X'
:
(
x
,
self
.
lod
),
'WeightX'
:
wx
,
'WeightH'
:
wh
,
'Bias'
:
b
}
if
self
.
has_initial_state
:
self
.
inputs
[
'H0'
]
=
h0
self
.
inputs
[
'C0'
]
=
c0
self
.
outputs
=
{
'Hidden'
:
(
h
,
self
.
lod
),
'Cell'
:
(
c
,
self
.
lod
),
}
self
.
attrs
=
{
'use_peepholes'
:
self
.
use_peepholes
,
'is_reverse'
:
self
.
is_reverse
,
'gate_activation'
:
self
.
act_gate
,
'cell_activation'
:
self
.
act_cell
,
'candidate_activation'
:
self
.
act_cand
}
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-8
)
class
TestLstmOpInitReverse
(
TestLstmOp
):
def
set_argument
(
self
):
self
.
has_initial_state
=
True
self
.
is_reverse
=
True
class
TestLstmOpMD1
(
TestLstmOp
):
def
set_argument
(
self
):
self
.
M
=
36
self
.
D
=
8
class
TestLstmOpMD2
(
TestLstmOp
):
def
set_argument
(
self
):
self
.
M
=
8
self
.
D
=
8
class
TestLstmOpMD3
(
TestLstmOp
):
def
set_argument
(
self
):
self
.
M
=
15
self
.
D
=
3
class
TestLstmOpBS1
(
TestLstmOp
):
def
set_argument
(
self
):
self
.
lod
=
[[
3
]]
self
.
D
=
16
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
b4b16d1c
...
@@ -347,6 +347,25 @@ class TestBook(unittest.TestCase):
...
@@ -347,6 +347,25 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
loss
)
self
.
assertIsNotNone
(
loss
)
print
(
str
(
program
))
print
(
str
(
program
))
def
test_scatter
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
3
,
3
],
append_batch_size
=
False
,
dtype
=
'float32'
)
idx
=
layers
.
data
(
name
=
'idx'
,
shape
=
[
2
],
append_batch_size
=
False
,
dtype
=
'int32'
)
updates
=
layers
.
data
(
name
=
'updates'
,
shape
=
[
2
,
3
],
append_batch_size
=
False
,
dtype
=
'float32'
)
out
=
layers
.
scatter
(
input
=
x
,
index
=
idx
,
updates
=
updates
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_lod_reset
(
self
):
def
test_lod_reset
(
self
):
program
=
Program
()
program
=
Program
()
with
program_guard
(
program
):
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_squeeze_op.py
浏览文件 @
b4b16d1c
...
@@ -41,7 +41,7 @@ class TestSqueezeOp(OpTest):
...
@@ -41,7 +41,7 @@ class TestSqueezeOp(OpTest):
self
.
new_shape
=
(
3
,
5
)
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
False
}
self
.
attrs
=
{
"axes"
:
self
.
axes
}
# Correct: There is mins axis.
# Correct: There is mins axis.
...
@@ -68,49 +68,5 @@ class TestSqueezeOp3(TestSqueezeOp):
...
@@ -68,49 +68,5 @@ class TestSqueezeOp3(TestSqueezeOp):
self
.
new_shape
=
(
3
,
5
,
1
,
4
)
self
.
new_shape
=
(
3
,
5
,
1
,
4
)
# Correct: Inplace.
class
TestSqueezeOpInplace1
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
(
0
,
2
)
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. There is mins axis.
class
TestSqueezeOpInplace2
(
TestSqueezeOp
):
def
inti_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
(
0
,
-
2
)
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. No axes input.
class
TestSqueezeOpInplace3
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
1
,
3
,
1
,
5
)
self
.
axes
=
()
self
.
new_shape
=
(
3
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inpalce. Just part of axes be squeezed.
class
TestSqueezeOpInplace4
(
TestSqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
1
,
5
,
1
,
4
,
1
)
self
.
axes
=
(
1
,
-
1
)
self
.
new_shape
=
(
3
,
5
,
1
,
4
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
浏览文件 @
b4b16d1c
...
@@ -41,7 +41,7 @@ class TestUnsqueezeOp(OpTest):
...
@@ -41,7 +41,7 @@ class TestUnsqueezeOp(OpTest):
self
.
new_shape
=
(
3
,
1
,
1
,
5
)
self
.
new_shape
=
(
3
,
1
,
1
,
5
)
def
init_attrs
(
self
):
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
False
}
self
.
attrs
=
{
"axes"
:
self
.
axes
}
# Correct: Single input index.
# Correct: Single input index.
...
@@ -76,38 +76,5 @@ class TestUnsqueezeOp4(TestUnsqueezeOp):
...
@@ -76,38 +76,5 @@ class TestUnsqueezeOp4(TestUnsqueezeOp):
self
.
new_shape
=
(
3
,
1
,
1
,
2
,
5
,
1
)
self
.
new_shape
=
(
3
,
1
,
1
,
2
,
5
,
1
)
# Correct: Inplace.
class
TestUnsqueezeOpInplace1
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
0
,
2
)
self
.
new_shape
=
(
1
,
3
,
1
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. There is mins index.
class
TestUnsqueezeOpInplace2
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
0
,
-
2
)
self
.
new_shape
=
(
1
,
3
,
1
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
# Correct: Inplace. There is duplicated axis.
class
TestUnsqueezeOpInplace3
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
2
,
5
)
self
.
axes
=
(
0
,
3
,
3
)
self
.
new_shape
=
(
1
,
3
,
2
,
1
,
1
,
5
)
def
init_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
True
}
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/trainer.py
浏览文件 @
b4b16d1c
...
@@ -285,11 +285,12 @@ class Trainer(object):
...
@@ -285,11 +285,12 @@ class Trainer(object):
self
.
_load_checkpoint
()
self
.
_load_checkpoint
()
if
param_path
and
os
.
path
.
isdir
(
param_path
):
if
param_path
and
os
.
path
.
isdir
(
param_path
):
# load params from param_path into scope
with
self
.
_prog_and_scope_guard
():
io
.
load_persistables
(
# load params from param_path into scope
executor
=
exe
,
io
.
load_persistables
(
dirname
=
param_path
,
executor
=
exe
,
main_program
=
self
.
startup_program
)
dirname
=
param_path
,
main_program
=
self
.
startup_program
)
def
_transpile_nccl2_dist
(
self
):
def
_transpile_nccl2_dist
(
self
):
# PADDLE_TRAINER_IPS
# PADDLE_TRAINER_IPS
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
b4b16d1c
...
@@ -215,6 +215,13 @@ class DistributeTranspiler(object):
...
@@ -215,6 +215,13 @@ class DistributeTranspiler(object):
for
param_var
,
grad_var
in
self
.
params_grads
:
for
param_var
,
grad_var
in
self
.
params_grads
:
self
.
param_name_to_grad_name
[
param_var
.
name
]
=
grad_var
.
name
self
.
param_name_to_grad_name
[
param_var
.
name
]
=
grad_var
.
name
# add distributed attrs to program
self
.
origin_program
.
_is_distributed
=
True
self
.
origin_program
.
_endpoints
=
self
.
pserver_endpoints
self
.
origin_program
.
_is_chief
=
self
.
trainer_id
==
0
self
.
origin_program
.
_distributed_lookup_table
=
self
.
table_name
if
self
.
table_name
else
None
# split and create vars, then put splited vars in dicts for later use.
# step 1: split and create vars, then put splited vars in dicts for later use.
# step 1: split and create vars, then put splited vars in dicts for later use.
self
.
_init_splited_vars
()
self
.
_init_splited_vars
()
...
@@ -369,7 +376,7 @@ class DistributeTranspiler(object):
...
@@ -369,7 +376,7 @@ class DistributeTranspiler(object):
# FIXME(gongwb): delete not need ops.
# FIXME(gongwb): delete not need ops.
# note that: some parameter is not trainable and those ops can't be deleted.
# note that: some parameter is not trainable and those ops can't be deleted.
for
varname
,
splited_var
in
s
elf
.
param_var_mapping
.
iteritems
(
):
for
varname
,
splited_var
in
s
ix
.
iteritems
(
self
.
param_var_mapping
):
# Get the eplist of recv vars
# Get the eplist of recv vars
eps
=
[]
eps
=
[]
for
var
in
splited_var
:
for
var
in
splited_var
:
...
@@ -406,7 +413,7 @@ class DistributeTranspiler(object):
...
@@ -406,7 +413,7 @@ class DistributeTranspiler(object):
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
})
for
varname
,
splited_var
in
s
elf
.
param_var_mapping
.
iteritems
(
):
for
varname
,
splited_var
in
s
ix
.
iteritems
(
self
.
param_var_mapping
):
#add concat ops to merge splited parameters received from parameter servers.
#add concat ops to merge splited parameters received from parameter servers.
if
len
(
splited_var
)
<=
1
:
if
len
(
splited_var
)
<=
1
:
continue
continue
...
@@ -590,6 +597,8 @@ class DistributeTranspiler(object):
...
@@ -590,6 +597,8 @@ class DistributeTranspiler(object):
checkpoint_block_id
=
self
.
_create_checkpoint_save_block
(
checkpoint_block_id
=
self
.
_create_checkpoint_save_block
(
pserver_program
,
table_opt_block
.
idx
)
pserver_program
,
table_opt_block
.
idx
)
pserver_program
.
_distributed_lookup_table
=
self
.
table_name
# NOTE: if has_distributed_lookup_table is False, then prefetch_block will
# NOTE: if has_distributed_lookup_table is False, then prefetch_block will
# not be executed, so it's safe to use optimize_block to hold the place
# not be executed, so it's safe to use optimize_block to hold the place
if
self
.
has_distributed_lookup_table
:
if
self
.
has_distributed_lookup_table
:
...
@@ -616,6 +625,10 @@ class DistributeTranspiler(object):
...
@@ -616,6 +625,10 @@ class DistributeTranspiler(object):
outputs
=
{},
outputs
=
{},
attrs
=
attrs
)
attrs
=
attrs
)
# add distributed attrs
pserver_program
.
_slice_vars_and_attrs
=
self
.
_get_slice_vars_and_attrs
(
endpoint
)
pserver_program
.
_sync_with_cpp
()
pserver_program
.
_sync_with_cpp
()
return
pserver_program
return
pserver_program
...
@@ -689,8 +702,31 @@ class DistributeTranspiler(object):
...
@@ -689,8 +702,31 @@ class DistributeTranspiler(object):
inputs
=
new_inputs
,
inputs
=
new_inputs
,
outputs
=
new_outputs
,
outputs
=
new_outputs
,
attrs
=
op
.
all_attrs
())
attrs
=
op
.
all_attrs
())
# add slice vars
s_prog
.
_slice_vars_and_attrs
=
self
.
_get_slice_vars_and_attrs
(
endpoint
)
return
s_prog
return
s_prog
def
_get_slice_vars_and_attrs
(
self
,
endpoint
):
slice_vars_and_attrs
=
[]
block_suffix
=
"block"
for
param
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]:
orig_var_name
,
block_name
,
_
=
self
.
_get_varname_parts
(
param
.
name
)
if
not
block_name
:
continue
block_idx
=
int
(
block_name
.
split
(
block_suffix
)[
1
])
orig_var
=
self
.
origin_program
.
global_block
().
vars
[
orig_var_name
]
skip_numel
=
0
slice_vars
=
self
.
param_var_mapping
[
orig_var_name
]
for
slice_var
in
slice_vars
[:
block_idx
]:
skip_numel
+=
reduce
(
lambda
x
,
y
:
x
*
y
,
slice_var
.
shape
)
slice_vars_and_attrs
.
append
([
orig_var
,
skip_numel
,
param
])
return
slice_vars_and_attrs
# ====================== private transpiler functions =====================
# ====================== private transpiler functions =====================
def
_has_distributed_lookup_table
(
self
):
def
_has_distributed_lookup_table
(
self
):
...
@@ -1209,8 +1245,8 @@ class DistributeTranspiler(object):
...
@@ -1209,8 +1245,8 @@ class DistributeTranspiler(object):
elif
op_type
==
"momentum"
:
elif
op_type
==
"momentum"
:
if
varkey
==
"Velocity"
:
if
varkey
==
"Velocity"
:
return
param_shape
return
param_shape
elif
op_type
==
""
:
elif
op_type
==
"
rmsprop
"
:
if
varkey
==
"Moment"
:
if
varkey
in
[
"Moment"
,
"MeanSquare"
]
:
return
param_shape
return
param_shape
elif
op_type
==
"sgd"
:
elif
op_type
==
"sgd"
:
pass
pass
...
@@ -1289,8 +1325,6 @@ class DistributeTranspiler(object):
...
@@ -1289,8 +1325,6 @@ class DistributeTranspiler(object):
pserver_block
=
program
.
global_block
()
pserver_block
=
program
.
global_block
()
new_inputs
=
collections
.
OrderedDict
()
new_inputs
=
collections
.
OrderedDict
()
# update param/grad shape first, then other inputs like
# moment can use the updated shape
def
_get_param_block
(
opt_op
):
def
_get_param_block
(
opt_op
):
# param is already created on global program
# param is already created on global program
param_block
=
None
param_block
=
None
...
@@ -1303,22 +1337,6 @@ class DistributeTranspiler(object):
...
@@ -1303,22 +1337,6 @@ class DistributeTranspiler(object):
for
key
in
opt_op
.
input_names
:
for
key
in
opt_op
.
input_names
:
if
key
==
"Grad"
:
if
key
==
"Grad"
:
new_inputs
[
key
]
=
merged_var
new_inputs
[
key
]
=
merged_var
# For RMSProp optimizer
elif
key
==
"Moment"
or
key
==
"MeanSquare"
:
param_block
=
_get_param_block
(
opt_op
)
if
not
param_block
:
return
moment_var
=
origin_program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
tmpvar
=
pserver_block
.
create_var
(
name
=
moment_var
.
name
,
persistable
=
moment_var
.
persistable
,
dtype
=
moment_var
.
dtype
,
# change to use same shape as param
# TODO(typhoonzero): didn't append .block in the var name,
# may affect checkpoint saving? Need to verify.
shape
=
param_block
.
shape
)
new_inputs
[
key
]
=
tmpvar
elif
key
==
"Param"
:
elif
key
==
"Param"
:
param_block
=
_get_param_block
(
opt_op
)
param_block
=
_get_param_block
(
opt_op
)
if
not
param_block
:
if
not
param_block
:
...
@@ -1346,7 +1364,7 @@ class DistributeTranspiler(object):
...
@@ -1346,7 +1364,7 @@ class DistributeTranspiler(object):
for
key
in
opt_op
.
input_names
:
for
key
in
opt_op
.
input_names
:
new_shape
=
None
new_shape
=
None
if
key
in
[
"Param"
,
"Grad"
,
"LearningRate"
,
"Moment"
,
"MeanSquare"
]:
if
key
in
[
"Param"
,
"Grad"
,
"LearningRate"
]:
continue
continue
var
=
self
.
origin_program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
var
=
self
.
origin_program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
# update accumulator variable shape
# update accumulator variable shape
...
...
python/setup.py.in
浏览文件 @
b4b16d1c
...
@@ -159,18 +159,20 @@ if '${WITH_MKL}' == 'ON':
...
@@ -159,18 +159,20 @@ if '${WITH_MKL}' == 'ON':
shutil.copy('${MKLML_LIB}', libs_path)
shutil.copy('${MKLML_LIB}', libs_path)
shutil.copy('${MKLML_IOMP_LIB}', libs_path)
shutil.copy('${MKLML_IOMP_LIB}', libs_path)
package_data['paddle.libs']+=['libmklml_intel.so','libiomp5.so']
package_data['paddle.libs']+=['libmklml_intel.so','libiomp5.so']
if '${WITH_MKLDNN}' == 'ON':
if '${CMAKE_BUILD_TYPE}' == 'Release':
# TODO(typhoonzero): use install_name_tool to patch mkl libs once
# only change rpath in Release mode.
# we can support mkl on mac.
if '${WITH_MKLDNN}' == 'ON':
#
# TODO(typhoonzero): use install_name_tool to patch mkl libs once
# change rpath of libmkldnn.so.0, add $ORIGIN/ to it.
# we can support mkl on mac.
# The reason is that all thirdparty libraries in the same directory,
#
# thus, libmkldnn.so.0 will find libmklml_intel.so and libiomp5.so.
# change rpath of libmkldnn.so.0, add $ORIGIN/ to it.
command = "patchelf --set-rpath '$ORIGIN/' ${MKLDNN_SHARED_LIB}"
# The reason is that all thirdparty libraries in the same directory,
if os.system(command) != 0:
# thus, libmkldnn.so.0 will find libmklml_intel.so and libiomp5.so.
raise Exception("patch libmkldnn.so failed, command: %s" % command)
command = "patchelf --set-rpath '$ORIGIN/' ${MKLDNN_SHARED_LIB}"
package_data['paddle.libs']+=['libmkldnn.so.0']
if os.system(command) != 0:
shutil.copy('${MKLDNN_SHARED_LIB}', libs_path)
raise Exception("patch libmkldnn.so failed, command: %s" % command)
package_data['paddle.libs']+=['libmkldnn.so.0']
shutil.copy('${MKLDNN_SHARED_LIB}', libs_path)
# remove unused paddle/libs/__init__.py
# remove unused paddle/libs/__init__.py
os.remove(libs_path+'/__init__.py')
os.remove(libs_path+'/__init__.py')
package_dir['paddle.libs']=libs_path
package_dir['paddle.libs']=libs_path
...
@@ -179,20 +181,22 @@ package_dir['paddle.libs']=libs_path
...
@@ -179,20 +181,22 @@ package_dir['paddle.libs']=libs_path
# The reason is that libwarpctc.so, libiomp5.so etc are in paddle.libs, and
# The reason is that libwarpctc.so, libiomp5.so etc are in paddle.libs, and
# core.so is in paddle.fluid, thus paddle/fluid/../libs will pointer to above libraries.
# core.so is in paddle.fluid, thus paddle/fluid/../libs will pointer to above libraries.
# This operation will fix https://github.com/PaddlePaddle/Paddle/issues/3213
# This operation will fix https://github.com/PaddlePaddle/Paddle/issues/3213
if "@APPLE@" == "1":
if '${CMAKE_BUILD_TYPE}' == 'Release':
command = "install_name_tool -id \"@loader_path/../libs/\" ${PADDLE_BINARY_DIR}/python/paddle/fluid/core.so"
# only change rpath in Release mode, since in Debug mode, core.so is too large to be changed.
else:
command = "patchelf --set-rpath '$ORIGIN/../libs/' ${PADDLE_BINARY_DIR}/python/paddle/fluid/core.so"
if os.system(command) != 0:
raise Exception("patch core.so failed, command: %s" % command)
if '${WITH_FLUID_ONLY}'== 'OFF':
# change rpath of _swig_paddle.so.
if "@APPLE@" == "1":
if "@APPLE@" == "1":
command = "install_name_tool -id \"@loader_path/../
paddle/libs/\" ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddl
e.so"
command = "install_name_tool -id \"@loader_path/../
libs/\" ${PADDLE_BINARY_DIR}/python/paddle/fluid/cor
e.so"
else:
else:
command = "patchelf --set-rpath '$ORIGIN/../
paddle/libs/' ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddl
e.so"
command = "patchelf --set-rpath '$ORIGIN/../
libs/' ${PADDLE_BINARY_DIR}/python/paddle/fluid/cor
e.so"
if os.system(command) != 0:
if os.system(command) != 0:
raise Exception("patch _swig_paddle.so failed, command: %s" % command)
raise Exception("patch core.so failed, command: %s" % command)
if '${WITH_FLUID_ONLY}'== 'OFF':
# change rpath of _swig_paddle.so.
if "@APPLE@" == "1":
command = "install_name_tool -id \"@loader_path/../paddle/libs/\" ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddle.so"
else:
command = "patchelf --set-rpath '$ORIGIN/../paddle/libs/' ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddle.so"
if os.system(command) != 0:
raise Exception("patch _swig_paddle.so failed, command: %s" % command)
setup(name='${PACKAGE_NAME}',
setup(name='${PACKAGE_NAME}',
version='${PADDLE_VERSION}',
version='${PADDLE_VERSION}',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录