Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b4a93884
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b4a93884
编写于
6月 10, 2022
作者:
L
limingshu
提交者:
GitHub
6月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize bwd layer_norm kernel with fast method (#42491)
上级
798e2e7e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
92 addition
and
31 deletion
+92
-31
paddle/fluid/operators/fused/fused_layernorm_residual_dropout_bias.h
...d/operators/fused/fused_layernorm_residual_dropout_bias.h
+1
-1
paddle/fluid/operators/layer_norm_kernel.cu.h
paddle/fluid/operators/layer_norm_kernel.cu.h
+83
-29
python/paddle/fluid/tests/unittests/test_layer_norm_op.py
python/paddle/fluid/tests/unittests/test_layer_norm_op.py
+8
-1
未找到文件。
paddle/fluid/operators/fused/fused_layernorm_residual_dropout_bias.h
浏览文件 @
b4a93884
...
...
@@ -541,7 +541,7 @@ void LaunchLayernormResidualDropoutGrad(
if
(
!
is_upscale_in_train
)
{
factor
=
static_cast
<
T
>
(
1.0
f
);
}
ln_bwd_
1024
_kernel_driver
<
ln_bwd_
fast
_kernel_driver
<
T
,
U
,
LayerNormScaleBiasT
<
T
,
U
,
ScaleBiasWithSameTypeX
>
,
MaskType
>
(
dev_ctx
,
rows
,
cols
,
epsilon
,
layernorm_src
,
scale
,
mean
,
var
,
d_out
,
d_residual
,
d_scale
,
d_layernorm_bias
,
mask_data
,
factor
,
d_dropout_src
);
...
...
paddle/fluid/operators/layer_norm_kernel.cu.h
浏览文件 @
b4a93884
...
...
@@ -22,6 +22,8 @@ limitations under the License. */
namespace
cub
=
hipcub
;
#endif
#include <iostream>
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#include "paddle/phi/core/ddim.h"
...
...
@@ -428,7 +430,7 @@ template <
int
THREADS_PER_CTA
=
WARPS_M
*
THREADS_PER_ROW
,
int
ROWS_PER_CTA
=
WARPS_M
,
int
ELTS_PER_ROW_PER_CTA
=
THREADS_PER_ROW
*
VecSize
,
int
LDGS
=
ELTS_PER_ROW
/
ELTS_PER_ROW_PER_CTA
>
__global__
__launch_bounds__
(
THREADS_PER_CTA
)
void
fused_ln_bwd_
1024
_kernel
(
__global__
__launch_bounds__
(
THREADS_PER_CTA
)
void
fused_ln_bwd_
fast
_kernel
(
const
int
rows
,
float
epsilon
,
const
T
*
__restrict__
x_ptr
,
const
ScaleT
*
__restrict__
gamma_ptr
,
const
U
*
__restrict__
mean_ptr
,
const
U
*
__restrict__
var_ptr
,
const
T
*
__restrict__
dout_ptr
,
...
...
@@ -671,7 +673,7 @@ template <
int
ELTS_PER_ROW_PER_CTA
=
THREADS_PER_ROW
*
VecSize
,
int
LDGS
=
ELTS_PER_ROW
/
ELTS_PER_ROW_PER_CTA
,
int
VEC_COLS
=
ELTS_PER_ROW
/
VecSize
>
__global__
__launch_bounds__
(
THREADS_PER_CTA
)
void
ln_bwd_
1024
_final_kernel
(
__global__
__launch_bounds__
(
THREADS_PER_CTA
)
void
ln_bwd_
fast
_final_kernel
(
const
int
rows
,
U
*
__restrict__
dg_part_
,
U
*
__restrict__
db_part_
,
ScaleT
*
__restrict__
dg_
,
ScaleT
*
__restrict__
db_
)
{
using
Vec
=
phi
::
AlignedVector
<
U
,
VecSize
>
;
...
...
@@ -795,7 +797,7 @@ __global__ __launch_bounds__(THREADS_PER_CTA) void ln_bwd_1024_final_kernel(
*/
template
<
typename
T
,
typename
U
,
typename
ScaleT
=
U
,
typename
MaskType
=
uint8_t
>
void
ln_bwd_
1024
_kernel_driver
(
const
phi
::
GPUContext
&
dev_ctx
,
const
int
rows
,
void
ln_bwd_
fast
_kernel_driver
(
const
phi
::
GPUContext
&
dev_ctx
,
const
int
rows
,
const
int
cols
,
float
epsilon
,
const
T
*
x_ptr
,
const
ScaleT
*
scale_ptr
,
const
U
*
mean_ptr
,
const
U
*
var_ptr
,
const
T
*
dout_ptr
,
T
*
dx_ptr
,
...
...
@@ -804,10 +806,10 @@ void ln_bwd_1024_kernel_driver(const phi::GPUContext &dev_ctx, const int rows,
T
factor
=
static_cast
<
T
>
(
0
),
T
*
d_dropout_src_ptr
=
nullptr
)
{
auto
stream
=
dev_ctx
.
stream
();
if
(
cols
==
1024
)
{
if
(
cols
==
1024
||
cols
==
384
||
cols
==
256
)
{
// step-1: compute dx and reduced part results of dscale and dbias.
const
int
WARPS_M
=
4
;
const
int
WARPS_N
=
1
;
const
int
WARPS_M
=
4
;
// how many rows delt in a cta.
const
int
WARPS_N
=
1
;
// how many warps to deal with a row.
const
int
BYTES_PER_LDG
=
16
;
const
int
VecSize
=
BYTES_PER_LDG
/
sizeof
(
T
);
...
...
@@ -839,20 +841,52 @@ void ln_bwd_1024_kernel_driver(const phi::GPUContext &dev_ctx, const int rows,
"To compute fused_dropout_residual_ln grad, d_dropout_src_ptr "
"can't be null"
));
}
fused_ln_bwd_1024_kernel
<
true
,
T
,
U
,
ScaleT
,
MaskType
,
VecSize
,
WARPS_M
,
WARPS_N
,
BYTES_PER_LDG
>
<<<
gridx
,
THREADS_PER_CTA
,
0
,
stream
>>>
(
rows
,
epsilon
,
x_ptr
,
scale_ptr
,
mean_ptr
,
var_ptr
,
dout_ptr
,
dscale_temp_ptr
,
dbias_temp_ptr
,
dx_ptr
,
mask_ptr
,
factor
,
d_dropout_src_ptr
);
#define LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL(vec_size, ele_per_row) \
fused_ln_bwd_fast_kernel<true, T, U, ScaleT, MaskType, vec_size, WARPS_M, \
WARPS_N, BYTES_PER_LDG, ele_per_row> \
<<<gridx, THREADS_PER_CTA, 0, stream>>>( \
rows, epsilon, x_ptr, scale_ptr, mean_ptr, var_ptr, dout_ptr, \
dscale_temp_ptr, dbias_temp_ptr, dx_ptr, mask_ptr, factor, \
d_dropout_src_ptr);
if
(
cols
==
1024
)
{
LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL
(
VecSize
,
1024
);
}
else
{
switch
(
cols
)
{
case
384
:
LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL
(
1
,
384
);
break
;
case
256
:
LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL
(
VecSize
,
256
);
break
;
}
}
#undef LAUNCH_MASK_FUSED_LN_BWD_FAST_KERNEL
}
else
{
fused_ln_bwd_1024_kernel
<
false
,
T
,
U
,
ScaleT
,
MaskType
,
VecSize
,
WARPS_M
,
WARPS_N
,
BYTES_PER_LDG
>
<<<
gridx
,
THREADS_PER_CTA
,
0
,
stream
>>>
(
rows
,
epsilon
,
x_ptr
,
scale_ptr
,
mean_ptr
,
var_ptr
,
dout_ptr
,
dscale_temp_ptr
,
dbias_temp_ptr
,
dx_ptr
);
#define LAUNCH_FUSED_LN_BWD_FAST_KERNEL(vec_size, ele_per_row) \
fused_ln_bwd_fast_kernel<false, T, U, ScaleT, MaskType, vec_size, WARPS_M, \
WARPS_N, BYTES_PER_LDG, ele_per_row> \
<<<gridx, THREADS_PER_CTA, 0, stream>>>( \
rows, epsilon, x_ptr, scale_ptr, mean_ptr, var_ptr, dout_ptr, \
dscale_temp_ptr, dbias_temp_ptr, dx_ptr);
if
(
cols
==
1024
)
{
LAUNCH_FUSED_LN_BWD_FAST_KERNEL
(
VecSize
,
1024
);
}
else
{
switch
(
cols
)
{
case
384
:
LAUNCH_FUSED_LN_BWD_FAST_KERNEL
(
1
,
384
);
break
;
case
256
:
LAUNCH_FUSED_LN_BWD_FAST_KERNEL
(
VecSize
,
256
);
break
;
}
}
#undef LAUNCH_FUSED_LN_BWD_FAST_KERNEL
}
const
int
WARPS_M_2
=
16
;
const
int
WARPS_N_2
=
1
;
const
int
BYTES_PER_LDG_2
=
4
;
...
...
@@ -865,18 +899,36 @@ void ln_bwd_1024_kernel_driver(const phi::GPUContext &dev_ctx, const int rows,
WARPS_M_2
*
THREADS_PER_ROW_2
;
// 16 * 32 = 512
const
int
ROWS_PER_CTA_2
=
WARPS_M_2
;
// 16
const
int
gridx_2
=
static_cast
<
int
>
(
std
::
ceil
(
1024
/
static_cast
<
float
>
(
THREADS_PER_ROW_2
*
VecSize_2
)));
// #blocks: 32,#threads_per_block: 512
// Note: it is not supported for double type.
if
(
sizeof
(
U
)
>
4
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Only support float and fp16 type"
));
}
else
{
ln_bwd_1024_final_kernel
<
U
,
ScaleT
,
VecSize_2
,
WARPS_M_2
,
WARPS_N_2
,
BYTES_PER_LDG_2
>
<<<
gridx_2
,
THREADS_PER_CTA_2
,
0
,
stream
>>>
(
gridx
,
dscale_temp_ptr
,
dbias_temp_ptr
,
dscale_ptr
,
dbias_ptr
);
int
gridx_2
=
0
;
#define LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL(vec_size, ele_per_row) \
gridx_2 = static_cast<int>(std::ceil( \
ele_per_row / static_cast<float>(THREADS_PER_ROW_2 * vec_size))); \
ln_bwd_fast_final_kernel<U, ScaleT, vec_size, WARPS_M_2, WARPS_N_2, \
BYTES_PER_LDG_2, ele_per_row> \
<<<gridx_2, THREADS_PER_CTA_2, 0, stream>>>( \
gridx, dscale_temp_ptr, dbias_temp_ptr, dscale_ptr, dbias_ptr);
if
(
cols
==
1024
)
{
LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL
(
VecSize_2
,
1024
);
}
else
{
switch
(
cols
)
{
case
384
:
LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL
(
1
,
384
);
break
;
case
256
:
LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL
(
VecSize_2
,
256
);
break
;
}
}
#undef LAUNCH_LN_BWD_BETA_GAMMMA_KERNEL
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
...
...
@@ -1484,15 +1536,17 @@ static void LayerNormBackward(
case
7
:
// d_x != nullptr, d_scale != nullptr, d_bias != nullptr
{
#ifdef PADDLE_WITH_CUDA
bool
can_call_
1024
_kernel
=
false
;
bool
can_call_
fast
_kernel
=
false
;
// todo: rule out double type.
if
(
feature_size
==
1024
&&
sizeof
(
T
)
<=
4
)
{
can_call_1024_kernel
=
true
;
if
((
feature_size
==
1024
||
feature_size
==
384
||
feature_size
==
256
)
&&
sizeof
(
T
)
<=
4
)
{
can_call_fast_kernel
=
true
;
}
VLOG
(
6
)
<<
"can_call_1024_kernel = "
<<
can_call_1024_kernel
;
if
(
can_call_1024_kernel
)
{
ln_bwd_1024_kernel_driver
<
VLOG
(
6
)
<<
"can_call_fast_kernel = "
<<
can_call_fast_kernel
;
if
(
can_call_fast_kernel
)
{
ln_bwd_fast_kernel_driver
<
T
,
U
,
LayerNormScaleBiasT
<
T
,
U
,
ScaleBiasWithSameTypeX
>>
(
dev_ctx
,
batch_size
,
feature_size
,
epsilon
,
x
,
scale
,
mean
,
var
,
d_y
,
d_x
,
d_scale
,
d_bias
);
...
...
python/paddle/fluid/tests/unittests/test_layer_norm_op.py
浏览文件 @
b4a93884
...
...
@@ -247,7 +247,6 @@ class TestLayerNormOp(unittest.TestCase):
def
test_check_forward_backward_with_scale_and_bias
(
self
):
self
.
check_forward_backward
(
shape
=
[
1
,
3
,
4
,
5
],
begin_norm_axis
=
1
)
self
.
check_forward_backward
(
shape
=
[
2
,
3
,
4
,
5
],
begin_norm_axis
=
1
)
self
.
check_forward_backward
(
shape
=
[
2
,
3
,
4
,
5
],
begin_norm_axis
=
1
,
...
...
@@ -288,6 +287,14 @@ class TestLayerNormOp(unittest.TestCase):
begin_norm_axis
=
1
,
has_scale
=
True
,
has_bias
=
True
)
self
.
check_forward_backward
(
shape
=
[
1
,
128
,
256
,
256
],
begin_norm_axis
=
3
,
has_scale
=
True
,
has_bias
=
True
)
self
.
check_forward_backward
(
shape
=
[
1
,
256
,
384
],
begin_norm_axis
=
2
,
has_scale
=
True
,
has_bias
=
True
)
class
TestLayerNormAPI
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录