Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b465bb0d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b465bb0d
编写于
4月 09, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
4月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix adaptive_pool2d/pool3d error message. test=develop (#23658)
上级
97b09687
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
207 addition
and
79 deletion
+207
-79
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
+16
-9
paddle/fluid/operators/grid_sampler_op.cc
paddle/fluid/operators/grid_sampler_op.cc
+39
-15
paddle/fluid/operators/kldiv_loss_op.cc
paddle/fluid/operators/kldiv_loss_op.cc
+34
-17
paddle/fluid/operators/spectral_norm_op.cc
paddle/fluid/operators/spectral_norm_op.cc
+56
-23
paddle/fluid/operators/temporal_shift_op.cc
paddle/fluid/operators/temporal_shift_op.cc
+31
-12
paddle/fluid/operators/temporal_shift_op.cu
paddle/fluid/operators/temporal_shift_op.cu
+3
-2
python/paddle/fluid/layers/loss.py
python/paddle/fluid/layers/loss.py
+5
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+23
-0
未找到文件。
paddle/fluid/operators/grid_sampler_cudnn_op.cu.cc
浏览文件 @
b465bb0d
...
@@ -30,8 +30,9 @@ template <typename T>
...
@@ -30,8 +30,9 @@ template <typename T>
class
CUDNNGridSampleOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
CUDNNGridSampleOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
"It must use CUDAPlace"
);
platform
::
errors
::
InvalidArgument
(
"It must use CUDAPlace when using CUDA Kernel"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
...
@@ -59,10 +60,13 @@ class CUDNNGridSampleOpKernel : public framework::OpKernel<T> {
...
@@ -59,10 +60,13 @@ class CUDNNGridSampleOpKernel : public framework::OpKernel<T> {
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
DataLayout
::
kNCHW
,
framework
::
vectorize
<
int
>
(
output
->
dims
()));
DataLayout
::
kNCHW
,
framework
::
vectorize
<
int
>
(
output
->
dims
()));
PADDLE_ENFORCE_CUDA_SUCCESS
(
platform
::
dynload
::
cudnnSpatialTfSamplerForward
(
PADDLE_ENFORCE_CUDA_SUCCESS
(
handle
,
cudnn_st_desc
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_input_desc
,
platform
::
dynload
::
cudnnSpatialTfSamplerForward
(
input_data
,
grid_data
,
CudnnDataType
<
T
>::
kZero
(),
cudnn_output_desc
,
handle
,
cudnn_st_desc
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_input_desc
,
output_data
));
input_data
,
grid_data
,
CudnnDataType
<
T
>::
kZero
(),
cudnn_output_desc
,
output_data
),
platform
::
errors
::
InvalidArgument
(
"cudnnSpatialTfSamplerForward in Op(grid_sampler) failed"
));
}
}
};
};
...
@@ -70,8 +74,9 @@ template <typename T>
...
@@ -70,8 +74,9 @@ template <typename T>
class
CUDNNGridSampleGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
CUDNNGridSampleGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
"It must use CUDAPlace"
);
platform
::
errors
::
InvalidArgument
(
"It must use CUDAPlace when using CUDA Kernel"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
...
@@ -117,7 +122,9 @@ class CUDNNGridSampleGradOpKernel : public framework::OpKernel<T> {
...
@@ -117,7 +122,9 @@ class CUDNNGridSampleGradOpKernel : public framework::OpKernel<T> {
input_data
,
CudnnDataType
<
T
>::
kZero
(),
cudnn_input_grad_desc
,
input_data
,
CudnnDataType
<
T
>::
kZero
(),
cudnn_input_grad_desc
,
input_grad_data
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_output_grad_desc
,
input_grad_data
,
CudnnDataType
<
T
>::
kOne
(),
cudnn_output_grad_desc
,
output_grad_data
,
grid_data
,
CudnnDataType
<
T
>::
kZero
(),
output_grad_data
,
grid_data
,
CudnnDataType
<
T
>::
kZero
(),
grid_grad_data
));
grid_grad_data
),
platform
::
errors
::
InvalidArgument
(
"cudnnSpatialTfSamplerBackward in Op(grid_sampler) failed"
));
}
}
};
};
...
...
paddle/fluid/operators/grid_sampler_op.cc
浏览文件 @
b465bb0d
...
@@ -28,31 +28,55 @@ class GridSampleOp : public framework::OperatorWithKernel {
...
@@ -28,31 +28,55 @@ class GridSampleOp : public framework::OperatorWithKernel {
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) of GridSampleOp should not be null."
);
platform
::
errors
::
NotFound
(
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grid"
),
"Input(X) of GridSampleOp should not be null."
));
"Input(Grid) of GridSampleOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Grid"
),
true
,
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Output"
),
platform
::
errors
::
NotFound
(
"Output(Output) of GridSampleOp should not be null."
);
"Input(Grid) of GridSampleOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Output"
),
true
,
platform
::
errors
::
NotFound
(
"Output(Output) of GridSampleOp should not be null."
));
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
grid_dims
=
ctx
->
GetInputDim
(
"Grid"
);
auto
grid_dims
=
ctx
->
GetInputDim
(
"Grid"
);
PADDLE_ENFORCE
(
x_dims
.
size
()
==
4
,
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
4
,
"Input(X) of GridSampleOp should be 4-D Tensor."
);
platform
::
errors
::
InvalidArgument
(
PADDLE_ENFORCE
(
grid_dims
.
size
()
==
4
,
"Input(X) of GridSampleOp should be 4-D Tensor, but "
"Input(Grid) of GridSampleOp should be 4-D Tensor."
);
"received X dimension size(%d)"
,
x_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
grid_dims
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"Input(Grid) of GridSampleOp should be 4-D Tensor, "
"but received X dimension size(%d)"
,
grid_dims
.
size
()));
if
(
ctx
->
IsRuntime
()
||
grid_dims
[
3
]
>
0
)
{
if
(
ctx
->
IsRuntime
()
||
grid_dims
[
3
]
>
0
)
{
PADDLE_ENFORCE
(
grid_dims
[
3
]
==
2
,
"Input(Grid) dims[3] should be 2."
);
PADDLE_ENFORCE_EQ
(
grid_dims
[
3
],
2
,
platform
::
errors
::
InvalidArgument
(
"Input(Grid) dimension[3] should be 2, but received %d"
,
grid_dims
[
3
]));
}
}
if
(
ctx
->
IsRuntime
())
{
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
grid_dims
[
0
],
x_dims
[
0
],
PADDLE_ENFORCE_EQ
(
"Input(X) and Input(Grid) dims[0] should be equal."
);
grid_dims
[
0
],
x_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"Input(X) and Input(Grid) dimension[0] should be equal, but "
"received X dimension[0](%d) != Grid dimension[0](%d)"
,
x_dims
[
0
],
grid_dims
[
0
]));
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
grid_dims
[
1
],
x_dims
[
2
],
grid_dims
[
1
],
x_dims
[
2
],
"Input(X) dims[2] and Input(Grid) dims[1] should be equal."
);
platform
::
errors
::
InvalidArgument
(
"Input(X) dims[2] and Input(Grid) dims[1] should be equal, but "
"received X dimension[2](%d) != Grid dimension[1](%d)"
,
x_dims
[
2
],
grid_dims
[
1
]));
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
grid_dims
[
2
],
x_dims
[
3
],
grid_dims
[
2
],
x_dims
[
3
],
"Input(X) dims[3] and Input(Grid) dims[2] should be equal."
);
platform
::
errors
::
InvalidArgument
(
"Input(X) dims[3] and Input(Grid) dims[2] should be equal, but "
"received X dimension[3](%d) != Grid dimension[2](%d)"
,
x_dims
[
3
],
grid_dims
[
2
]));
}
}
ctx
->
SetOutputDim
(
"Output"
,
x_dims
);
ctx
->
SetOutputDim
(
"Output"
,
x_dims
);
...
...
paddle/fluid/operators/kldiv_loss_op.cc
浏览文件 @
b465bb0d
...
@@ -23,30 +23,42 @@ class KLDivLossOp : public framework::OperatorWithKernel {
...
@@ -23,30 +23,42 @@ class KLDivLossOp : public framework::OperatorWithKernel {
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) of KLDivLossOp should not be null."
);
platform
::
errors
::
NotFound
(
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Target"
),
"Input(X) of KLDivLossOp should not be null."
));
"Input(Target) of KLDivLossOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Target"
),
true
,
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Loss"
),
platform
::
errors
::
NotFound
(
"Output(Loss) of KLDivLossOp should not be null."
);
"Input(Target) of KLDivLossOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Loss"
),
true
,
platform
::
errors
::
NotFound
(
"Output(Loss) of KLDivLossOp should not be null."
));
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_target
=
ctx
->
GetInputDim
(
"Target"
);
auto
dim_target
=
ctx
->
GetInputDim
(
"Target"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
dim_target
.
size
(),
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
dim_target
.
size
(),
"Input(X) rank and Input(Target) rank should be same."
);
platform
::
errors
::
InvalidArgument
(
"Input(X) rank and Input(Target) rank should be "
"same, but received X rank(%d) != Target rank(%d)"
,
dim_x
.
size
(),
dim_target
.
size
()));
for
(
int
i
=
0
;
i
<
dim_x
.
size
();
i
++
)
{
for
(
int
i
=
0
;
i
<
dim_x
.
size
();
i
++
)
{
if
(
ctx
->
IsRuntime
()
||
(
dim_x
[
i
]
>
0
&&
dim_target
[
i
]
>
0
))
{
if
(
ctx
->
IsRuntime
()
||
(
dim_x
[
i
]
>
0
&&
dim_target
[
i
]
>
0
))
{
PADDLE_ENFORCE_EQ
(
dim_x
[
i
],
dim_target
[
i
],
PADDLE_ENFORCE_EQ
(
"Input(X) and Input(Target) should in same shape."
);
dim_x
[
i
],
dim_target
[
i
],
platform
::
errors
::
InvalidArgument
(
"Input(X) and Input(Target) should in same shape. but received "
"X dimension[%d](%d) != Target dimension[%d](%d)"
,
i
,
dim_x
[
i
],
i
,
dim_target
[
i
]));
}
}
}
}
auto
reduction
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"reduction"
);
auto
reduction
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"reduction"
);
PADDLE_ENFORCE
(
auto
reduction_valid
=
"mean"
==
reduction
||
"sum"
==
reduction
||
"mean"
==
reduction
||
"sum"
==
reduction
||
"batchmean"
==
reduction
||
"batchmean"
==
reduction
||
"none"
==
reduction
;
"none"
==
reduction
,
PADDLE_ENFORCE_EQ
(
"Attr(reduction) can only be 'none'|'batchmean'|'sum'|'mean'."
);
reduction_valid
,
true
,
platform
::
errors
::
InvalidArgument
(
"Attr(reduction) can only be 'none'|'batchmean'|'sum'|'mean'."
));
if
(
"none"
==
reduction
)
{
if
(
"none"
==
reduction
)
{
ctx
->
SetOutputDim
(
"Loss"
,
dim_x
);
ctx
->
SetOutputDim
(
"Loss"
,
dim_x
);
...
@@ -123,10 +135,15 @@ class KLDivLossOpGrad : public framework::OperatorWithKernel {
...
@@ -123,10 +135,15 @@ class KLDivLossOpGrad : public framework::OperatorWithKernel {
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Target"
),
"Input(Target) should not be null"
);
ctx
->
HasInput
(
"X"
),
true
,
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Loss"
)),
platform
::
errors
::
NotFound
(
"Input(X) should not be null"
));
"Input(Loss@GRAD) should not be null"
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Target"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Target) should not be null"
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Loss"
)),
true
,
platform
::
errors
::
NotFound
(
"Input(Loss@GRAD) should not be null"
));
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
dim_x
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
dim_x
);
...
...
paddle/fluid/operators/spectral_norm_op.cc
浏览文件 @
b465bb0d
...
@@ -26,26 +26,45 @@ class SpectralNormOp : public framework::OperatorWithKernel {
...
@@ -26,26 +26,45 @@ class SpectralNormOp : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
PADDLE_ENFORCE_EQ
(
"Input(Weight) of SpectralNormOp should not be null."
);
ctx
->
HasInput
(
"Weight"
),
true
,
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"U"
),
platform
::
errors
::
NotFound
(
"Input(U) of SpectralNormOp should not be null."
);
"Input(Weight) of SpectralNormOp should not be null."
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"V"
),
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"U"
),
true
,
"Input(V) of SpectralNormOp should not be null."
);
platform
::
errors
::
NotFound
(
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Input(U) of SpectralNormOp should not be null."
));
"Output(Out) of SpectralNormOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"V"
),
true
,
platform
::
errors
::
NotFound
(
"Input(V) of SpectralNormOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
platform
::
errors
::
NotFound
(
"Output(Out) of SpectralNormOp should not be null."
));
auto
dim_weight
=
ctx
->
GetInputDim
(
"Weight"
);
auto
dim_weight
=
ctx
->
GetInputDim
(
"Weight"
);
auto
rank_weight
=
dim_weight
.
size
();
auto
rank_weight
=
dim_weight
.
size
();
PADDLE_ENFORCE
(
rank_weight
>=
2
&&
rank_weight
<=
5
,
PADDLE_ENFORCE_GE
(
rank_weight
,
2
,
"The rank of Input(Weights) can only be 2, 3,"
platform
::
errors
::
InvalidArgument
(
"4, 5 for fc, conv1d, conv2d, conv3d layers."
);
"The rank of Input(Weights) should be greater equal "
"than 2, but received Weight rank(%d)"
,
rank_weight
));
PADDLE_ENFORCE_LE
(
rank_weight
,
5
,
platform
::
errors
::
InvalidArgument
(
"The rank of Input(Weights) should be less equal "
"than 5, but received Weight rank(%d)"
,
rank_weight
));
int
dim
=
ctx
->
Attrs
().
Get
<
int
>
(
"dim"
);
int
dim
=
ctx
->
Attrs
().
Get
<
int
>
(
"dim"
);
int
power_iters
=
ctx
->
Attrs
().
Get
<
int
>
(
"power_iters"
);
int
power_iters
=
ctx
->
Attrs
().
Get
<
int
>
(
"power_iters"
);
PADDLE_ENFORCE
(
dim
==
0
||
dim
==
1
,
"Attr(dim) can only be 0 or 1"
);
auto
dim_valid
=
dim
==
0
||
dim
==
1
;
PADDLE_ENFORCE
(
power_iters
>=
0
,
PADDLE_ENFORCE_EQ
(
"Attr(power_iters) should be larger equal then 0"
);
dim_valid
,
true
,
platform
::
errors
::
InvalidArgument
(
"Attr(dim) can only be 0 or 1, but received %d"
,
dim
));
PADDLE_ENFORCE_GE
(
power_iters
,
0
,
platform
::
errors
::
InvalidArgument
(
"Attr(power_iters) should be greater equal then 0, but received %d"
,
power_iters
));
int
h
=
dim_weight
[
dim
];
int
h
=
dim_weight
[
dim
];
int
w
=
1
;
int
w
=
1
;
...
@@ -59,15 +78,22 @@ class SpectralNormOp : public framework::OperatorWithKernel {
...
@@ -59,15 +78,22 @@ class SpectralNormOp : public framework::OperatorWithKernel {
if
(
ctx
->
IsRuntime
()
||
(
dim_u
[
0
]
>
0
&&
h
>
0
))
{
if
(
ctx
->
IsRuntime
()
||
(
dim_u
[
0
]
>
0
&&
h
>
0
))
{
PADDLE_ENFORCE_EQ
(
dim_u
[
0
],
h
,
PADDLE_ENFORCE_EQ
(
dim_u
[
0
],
h
,
"Input(U) dims[0] should be equal to "
platform
::
errors
::
InvalidArgument
(
"Input(Weight) dims[Attr(dim)]"
);
"Input(U) dimension[0] should be equal to "
"Input(Weight) dimension[Attr(dim)], but received "
"U dimension[0](%d) != Weight dimension[%d](%d)"
,
dim_u
[
0
],
dim
,
h
));
}
}
if
(
ctx
->
IsRuntime
()
||
(
dim_v
[
0
]
>
0
&&
w
>
0
))
{
if
(
ctx
->
IsRuntime
()
||
(
dim_v
[
0
]
>
0
&&
w
>
0
))
{
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
dim_v
[
0
],
w
,
dim_v
[
0
],
w
,
"Input(V) dims[0] should be equal to "
platform
::
errors
::
InvalidArgument
(
"the product of Input(Weight) dims except dims[Attr(dim)]"
);
"Input(V) dimension[0] should be equal to the product of "
"Input(Weight) dimension except dimension[Attr(dim)], but "
"received V dimension[0](%d) != product of Input(Weight) "
"dimension(%d)"
,
dim_v
[
0
],
w
));
}
}
ctx
->
SetOutputDim
(
"Out"
,
dim_weight
);
ctx
->
SetOutputDim
(
"Out"
,
dim_weight
);
...
@@ -194,11 +220,18 @@ class SpectralNormOpGrad : public framework::OperatorWithKernel {
...
@@ -194,11 +220,18 @@ class SpectralNormOpGrad : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(Weight) should not be null"
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"U"
),
"Input(U) should not be null"
);
ctx
->
HasInput
(
"Weight"
),
true
,
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"V"
),
"Input(V) should not be null"
);
platform
::
errors
::
NotFound
(
"Input(Weight) should not be null"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
PADDLE_ENFORCE_EQ
(
"Input(Out@GRAD) should not be null"
);
ctx
->
HasInput
(
"U"
),
true
,
platform
::
errors
::
NotFound
(
"Input(U) should not be null"
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"V"
),
true
,
platform
::
errors
::
NotFound
(
"Input(V) should not be null"
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
true
,
platform
::
errors
::
NotFound
(
"Input(Out@GRAD) should not be null"
));
auto
dim_x
=
ctx
->
GetInputDim
(
"Weight"
);
auto
dim_x
=
ctx
->
GetInputDim
(
"Weight"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Weight"
)))
{
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Weight"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Weight"
),
dim_x
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Weight"
),
dim_x
);
...
...
paddle/fluid/operators/temporal_shift_op.cc
浏览文件 @
b465bb0d
...
@@ -27,26 +27,45 @@ class TemporalShiftOp : public framework::OperatorWithKernel {
...
@@ -27,26 +27,45 @@ class TemporalShiftOp : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) of TemporalShiftOp should not be null."
);
platform
::
errors
::
NotFound
(
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
"Input(X) of TemporalShiftOp should not be null."
));
"Output(Out) of TemporalShiftOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
platform
::
errors
::
NotFound
(
"Output(Out) of TemporalShiftOp should not be null."
));
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"Input(X) rank should be 4 in shape of [N*T, C, H, W]."
);
platform
::
errors
::
InvalidArgument
(
"Input(X) rank should be 4 in shape of [N*T, C, H, "
"W], but received X rank(%d)"
,
dim_x
.
size
()));
int
seg_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"seg_num"
);
int
seg_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"seg_num"
);
float
shift_ratio
=
ctx
->
Attrs
().
Get
<
float
>
(
"shift_ratio"
);
float
shift_ratio
=
ctx
->
Attrs
().
Get
<
float
>
(
"shift_ratio"
);
PADDLE_ENFORCE_GT
(
seg_num
,
0
,
"Attr(seg_num) should be greater than 0."
);
PADDLE_ENFORCE_GT
(
PADDLE_ENFORCE_GT
(
shift_ratio
,
0.
,
seg_num
,
0
,
"Attr(shift_ratio) should be greater than 0"
);
platform
::
errors
::
InvalidArgument
(
PADDLE_ENFORCE_LT
(
shift_ratio
,
0.5
,
"Attr(seg_num) should be greater than 0, but received %d"
,
"Attr(shift_ratio) should be less than 0.5"
);
seg_num
));
PADDLE_ENFORCE_GT
(
shift_ratio
,
0.
,
platform
::
errors
::
InvalidArgument
(
"Attr(shift_ratio) should be greater than 0, but received %d"
,
shift_ratio
));
PADDLE_ENFORCE_LT
(
shift_ratio
,
0.5
,
platform
::
errors
::
InvalidArgument
(
"Attr(shift_ratio) should be less than 0.5, but received %d"
,
shift_ratio
));
if
(
ctx
->
IsRuntime
())
{
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
dim_x
[
0
]
%
seg_num
,
0
,
dim_x
[
0
]
%
seg_num
,
0
,
platform
::
errors
::
InvalidArgument
(
"Input(X) dims[0] should be divided exactly by Attr(seg_num)."
);
"Input(X) dimension[0] should be divided exactly "
"by Attr(seg_num), but received X dimension[0](%d) "
"mod seg_num(%d) != 0"
,
dim_x
[
0
],
seg_num
));
}
}
ctx
->
SetOutputDim
(
"Out"
,
dim_x
);
ctx
->
SetOutputDim
(
"Out"
,
dim_x
);
...
...
paddle/fluid/operators/temporal_shift_op.cu
浏览文件 @
b465bb0d
...
@@ -90,8 +90,9 @@ template <typename T>
...
@@ -90,8 +90,9 @@ template <typename T>
class
TemporalShiftOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
class
TemporalShiftOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
"This kernel only runs on GPU device."
);
platform
::
errors
::
InvalidArgument
(
"This kernel only runs on GPU device."
));
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
int
t
=
ctx
.
Attr
<
int
>
(
"seg_num"
);
int
t
=
ctx
.
Attr
<
int
>
(
"seg_num"
);
...
...
python/paddle/fluid/layers/loss.py
浏览文件 @
b465bb0d
...
@@ -21,7 +21,7 @@ from .layer_function_generator import templatedoc
...
@@ -21,7 +21,7 @@ from .layer_function_generator import templatedoc
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
from
..framework
import
Variable
,
in_dygraph_mode
from
..framework
import
Variable
,
in_dygraph_mode
from
..
import
core
from
..
import
core
from
..data_feeder
import
check_variable_and_dtype
from
..data_feeder
import
check_variable_and_dtype
,
check_type
from
..param_attr
import
ParamAttr
from
..param_attr
import
ParamAttr
from
..initializer
import
NumpyArrayInitializer
,
Constant
from
..initializer
import
NumpyArrayInitializer
,
Constant
from
..
import
core
from
..
import
core
...
@@ -1580,6 +1580,10 @@ def kldiv_loss(x, target, reduction='mean', name=None):
...
@@ -1580,6 +1580,10 @@ def kldiv_loss(x, target, reduction='mean', name=None):
loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
"""
"""
helper
=
LayerHelper
(
'kldiv_loss'
,
**
locals
())
helper
=
LayerHelper
(
'kldiv_loss'
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'kldiv_loss'
)
check_variable_and_dtype
(
target
,
'target'
,
[
'float32'
,
'float64'
],
'kldiv_loss'
)
check_type
(
reduction
,
'reduction'
,
str
,
'kldiv_loss'
)
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'kldiv_loss'
,
type
=
'kldiv_loss'
,
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b465bb0d
...
@@ -2361,6 +2361,12 @@ def adaptive_pool2d(input,
...
@@ -2361,6 +2361,12 @@ def adaptive_pool2d(input,
pool_size=[3, 3],
pool_size=[3, 3],
pool_type='max')
pool_type='max')
"""
"""
check_variable_and_dtype(
input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
'adaptive_pool2d')
check_type(pool_type, 'pool_type', str, 'adaptive_pool2d')
check_type(pool_size, 'pool_size', (int, list, tuple), 'adaptive_pool2d')
check_type(require_index, 'require_index', bool, 'adaptive_pool2d')
if pool_type not in ["max", "avg"]:
if pool_type not in ["max", "avg"]:
raise ValueError(
raise ValueError(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
...
@@ -2516,6 +2522,12 @@ def adaptive_pool3d(input,
...
@@ -2516,6 +2522,12 @@ def adaptive_pool3d(input,
pool_size=[3, 3, 3],
pool_size=[3, 3, 3],
pool_type='max')
pool_type='max')
"""
"""
check_variable_and_dtype(
input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
'adaptive_pool3d')
check_type(pool_type, 'pool_type', str, 'adaptive_pool3d')
check_type(pool_size, 'pool_size', (int, list, tuple), 'adaptive_pool3d')
check_type(require_index, 'require_index', bool, 'adaptive_pool3d')
if pool_type not in ["max", "avg"]:
if pool_type not in ["max", "avg"]:
raise ValueError(
raise ValueError(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
...
@@ -3568,6 +3580,11 @@ def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
...
@@ -3568,6 +3580,11 @@ def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
"""
"""
helper = LayerHelper('spectral_norm', **locals())
helper = LayerHelper('spectral_norm', **locals())
check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
'spectral_norm')
check_type(dim, 'dim', int, 'spectral_norm')
check_type(power_iters, 'power_iters', int, 'spectral_norm')
check_type(eps, 'eps', float, 'spectral_norm')
dtype = weight.dtype
dtype = weight.dtype
# create intput and parameters
# create intput and parameters
...
@@ -12246,6 +12263,9 @@ def grid_sampler(x, grid, name=None):
...
@@ -12246,6 +12263,9 @@ def grid_sampler(x, grid, name=None):
"""
"""
helper = LayerHelper("grid_sampler", **locals())
helper = LayerHelper("grid_sampler", **locals())
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler')
check_variable_and_dtype(grid, 'grid', ['float32', 'float64'],
'grid_sampler')
if not isinstance(x, Variable):
if not isinstance(x, Variable):
return ValueError("The x should be a Variable")
return ValueError("The x should be a Variable")
...
@@ -12601,6 +12621,9 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
...
@@ -12601,6 +12621,9 @@ def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
"""
"""
helper = LayerHelper("temporal_shift", **locals())
helper = LayerHelper("temporal_shift", **locals())
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'temporal_shift')
check_type(seg_num, 'seg_num', int, 'temporal_shift')
check_type(shift_ratio, 'shift_ratio', float, 'temporal_shift')
out = helper.create_variable_for_type_inference(dtype=x.dtype)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录