Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b463dff4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b463dff4
编写于
12月 24, 2021
作者:
Z
zhiboniu
提交者:
GitHub
12月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
new API inner&outer (#37706)
上级
42cf2bee
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
450 addition
and
0 deletion
+450
-0
python/paddle/__init__.py
python/paddle/__init__.py
+4
-0
python/paddle/fluid/tests/unittests/test_inner.py
python/paddle/fluid/tests/unittests/test_inner.py
+166
-0
python/paddle/fluid/tests/unittests/test_outer.py
python/paddle/fluid/tests/unittests/test_outer.py
+153
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+4
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+123
-0
未找到文件。
python/paddle/__init__.py
浏览文件 @
b463dff4
...
...
@@ -245,6 +245,8 @@ from .tensor.math import diff # noqa: F401
from
.tensor.math
import
angle
# noqa: F401
from
.tensor.math
import
fmax
# noqa: F401
from
.tensor.math
import
fmin
# noqa: F401
from
.tensor.math
import
inner
# noqa: F401
from
.tensor.math
import
outer
# noqa: F401
from
.tensor.random
import
bernoulli
# noqa: F401
from
.tensor.random
import
poisson
# noqa: F401
...
...
@@ -500,6 +502,8 @@ __all__ = [ # noqa
'lgamma'
,
'lerp'
,
'erfinv'
,
'inner'
,
'outer'
,
'square'
,
'divide'
,
'ceil'
,
...
...
python/paddle/fluid/tests/unittests/test_inner.py
0 → 100644
浏览文件 @
b463dff4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
paddle.static
import
Program
,
program_guard
class
TestMultiplyApi
(
unittest
.
TestCase
):
def
_run_static_graph_case
(
self
,
x_data
,
y_data
):
with
program_guard
(
Program
(),
Program
()):
paddle
.
enable_static
()
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
x_data
.
shape
,
dtype
=
x_data
.
dtype
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
y_data
.
shape
,
dtype
=
y_data
.
dtype
)
res
=
paddle
.
inner
(
x
,
y
)
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
outs
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
'x'
:
x_data
,
'y'
:
y_data
},
fetch_list
=
[
res
])
res
=
outs
[
0
]
return
res
def
_run_dynamic_graph_case
(
self
,
x_data
,
y_data
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
res
=
paddle
.
inner
(
x
,
y
)
return
res
.
numpy
()
def
test_multiply
(
self
):
np
.
random
.
seed
(
7
)
# test static computation graph: 3-d array
x_data
=
np
.
random
.
rand
(
2
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
5
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test static computation graph: 2-d array
x_data
=
np
.
random
.
rand
(
200
,
5
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
,
5
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test static computation graph: 1-d array
x_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test dynamic computation graph: 3-d array
x_data
=
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test dynamic computation graph: 2-d array
x_data
=
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test dynamic computation graph: Scalar
x_data
=
np
.
random
.
rand
(
20
,
10
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
rand
(
1
).
astype
(
np
.
float32
).
item
()
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test dynamic computation graph: 2-d array Complex
x_data
=
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
# test dynamic computation graph: 3-d array Complex
x_data
=
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
inner
(
x_data
,
y_data
)))
class
TestMultiplyError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
# test static computation graph: dtype can not be int8
paddle
.
enable_static
()
with
program_guard
(
Program
(),
Program
()):
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
100
],
dtype
=
np
.
int8
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
[
100
],
dtype
=
np
.
int8
)
self
.
assertRaises
(
TypeError
,
paddle
.
inner
,
x
,
y
)
# test static computation graph: inputs must be broadcastable
with
program_guard
(
Program
(),
Program
()):
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
20
,
50
],
dtype
=
np
.
float64
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
[
20
],
dtype
=
np
.
float64
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x
,
y
)
np
.
random
.
seed
(
7
)
# test dynamic computation graph: dtype can not be int8
paddle
.
disable_static
()
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
int8
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
int8
)
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
RuntimeError
,
paddle
.
inner
,
x
,
y
)
# test dynamic computation graph: inputs must be broadcastable
x_data
=
np
.
random
.
rand
(
20
,
5
)
y_data
=
np
.
random
.
rand
(
10
,
2
)
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x
,
y
)
# test dynamic computation graph: dtype must be same
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x
,
y
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x_data
,
y
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
x
=
paddle
.
to_tensor
(
x_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x
,
y_data
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
self
.
assertRaises
(
ValueError
,
paddle
.
inner
,
x_data
,
y_data
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_outer.py
0 → 100644
浏览文件 @
b463dff4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
paddle.static
import
Program
,
program_guard
class
TestMultiplyApi
(
unittest
.
TestCase
):
def
_run_static_graph_case
(
self
,
x_data
,
y_data
):
with
program_guard
(
Program
(),
Program
()):
paddle
.
enable_static
()
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
x_data
.
shape
,
dtype
=
x_data
.
dtype
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
y_data
.
shape
,
dtype
=
y_data
.
dtype
)
res
=
paddle
.
outer
(
x
,
y
)
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
outs
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
'x'
:
x_data
,
'y'
:
y_data
},
fetch_list
=
[
res
])
res
=
outs
[
0
]
return
res
def
_run_dynamic_graph_case
(
self
,
x_data
,
y_data
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
res
=
paddle
.
outer
(
x
,
y
)
return
res
.
numpy
()
def
test_multiply
(
self
):
np
.
random
.
seed
(
7
)
# test static computation graph: 3-d array
x_data
=
np
.
random
.
rand
(
2
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
5
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test static computation graph: 2-d array
x_data
=
np
.
random
.
rand
(
200
,
5
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
,
5
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test static computation graph: 1-d array
x_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_static_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test dynamic computation graph: 3-d array
x_data
=
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test dynamic computation graph: 2-d array
x_data
=
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test dynamic computation graph: Scalar
x_data
=
np
.
random
.
rand
(
20
,
10
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
rand
(
1
).
astype
(
np
.
float32
).
item
()
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
),
rtol
=
1e4
))
# test dynamic computation graph: 2-d array Complex
x_data
=
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
20
,
50
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
50
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
# test dynamic computation graph: 3-d array Complex
x_data
=
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
5
,
10
,
10
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
+
1J
*
np
.
random
.
rand
(
2
,
10
).
astype
(
np
.
float64
)
res
=
self
.
_run_dynamic_graph_case
(
x_data
,
y_data
)
self
.
assertTrue
(
np
.
allclose
(
res
,
np
.
outer
(
x_data
,
y_data
)))
class
TestMultiplyError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
# test static computation graph: dtype can not be int8
paddle
.
enable_static
()
with
program_guard
(
Program
(),
Program
()):
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
100
],
dtype
=
np
.
int8
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
[
100
],
dtype
=
np
.
int8
)
self
.
assertRaises
(
TypeError
,
paddle
.
outer
,
x
,
y
)
np
.
random
.
seed
(
7
)
# test dynamic computation graph: dtype can not be int8
paddle
.
disable_static
()
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
int8
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
int8
)
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
RuntimeError
,
paddle
.
outer
,
x
,
y
)
# test dynamic computation graph: dtype must be same
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
outer
,
x
,
y
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float64
)
y
=
paddle
.
to_tensor
(
y_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
outer
,
x_data
,
y
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
x
=
paddle
.
to_tensor
(
x_data
)
self
.
assertRaises
(
ValueError
,
paddle
.
outer
,
x
,
y_data
)
# test dynamic computation graph: dtype must be Tensor type
x_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
y_data
=
np
.
random
.
randn
(
200
).
astype
(
np
.
float32
)
self
.
assertRaises
(
ValueError
,
paddle
.
outer
,
x_data
,
y_data
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
b463dff4
...
...
@@ -215,6 +215,8 @@ from .math import diff # noqa: F401
from
.math
import
angle
# noqa: F401
from
.math
import
fmax
# noqa: F401
from
.math
import
fmin
# noqa: F401
from
.math
import
inner
# noqa: F401
from
.math
import
outer
# noqa: F401
from
.random
import
multinomial
# noqa: F401
from
.random
import
standard_normal
# noqa: F401
...
...
@@ -323,6 +325,8 @@ tensor_method_func = [ #noqa
'fmax'
,
'fmin'
,
'mm'
,
'inner'
,
'outer'
,
'divide'
,
'floor_divide'
,
'remainder'
,
...
...
python/paddle/tensor/math.py
浏览文件 @
b463dff4
...
...
@@ -1195,6 +1195,129 @@ def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
return
out
def
inner
(
x
,
y
,
name
=
None
):
"""
Inner product of two input Tensor.
Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.
Args:
x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].
Examples:
.. code-block:: python
import paddle
x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
out = paddle.inner(x, y)
print(out)
# ([[14, 32, 50],
# [32, 77, 122]])
"""
if
x
.
size
==
1
or
y
.
size
==
1
:
return
multiply
(
x
,
y
)
else
:
xshape
=
x
.
shape
yshape
=
y
.
shape
dstshape
=
list
(
xshape
[:
-
1
])
+
list
(
yshape
[:
-
1
])
if
len
(
dstshape
)
==
0
:
dstshape
=
[
1
]
nx
=
x
.
reshape
((
-
1
,
xshape
[
-
1
]))
ny
=
y
.
reshape
((
-
1
,
yshape
[
-
1
]))
if
in_dygraph_mode
():
return
_C_ops
.
matmul_v2
(
nx
,
ny
.
T
).
reshape
(
dstshape
)
def
__check_input
(
x
,
y
):
var_names
=
{
'x'
:
x
,
'y'
:
y
}
for
name
,
val
in
var_names
.
items
():
check_variable_and_dtype
(
val
,
name
,
[
'float16'
,
'float32'
,
'float64'
],
'inner'
)
x_shape
=
list
(
xshape
)
y_shape
=
list
(
yshape
)
# check the inner 2 dimensions
if
x_shape
[
-
1
]
!=
y_shape
[
-
1
]:
if
not
((
x_shape
[
-
1
]
==
-
1
)
or
(
y_shape
[
-
1
]
==
-
1
)):
raise
ValueError
(
"After performing an optional transpose, Input X's last dim should be "
"equal to Y's last dim for multiplication "
"prerequisites. But received X's shape: %s, Y's shape: %s
\n
"
%
(
x_shape
,
y_shape
))
__check_input
(
nx
,
ny
)
helper
=
LayerHelper
(
'inner'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
nx
.
dtype
)
helper
.
append_op
(
type
=
'matmul_v2'
,
inputs
=
{
'X'
:
nx
,
'Y'
:
ny
.
T
},
outputs
=
{
'Out'
:
out
})
return
out
.
reshape
(
dstshape
)
def
outer
(
x
,
y
,
name
=
None
):
"""
Outer product of two Tensors.
Input is flattened if not already 1-dimensional.
Args:
x (Tensor): An N-D Tensor or a Scalar Tensor.
y (Tensor): An N-D Tensor or a Scalar Tensor.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: The outer-product Tensor.
Examples:
.. code-block:: python
import paddle
x = paddle.arange(1, 4).astype('float32')
y = paddle.arange(1, 6).astype('float32')
out = paddle.outer(x, y)
print(out)
# ([[1, 2, 3, 4, 5],
# [2, 4, 6, 8, 10],
# [3, 6, 9, 12, 15]])
"""
nx
=
x
.
reshape
((
-
1
,
1
))
ny
=
y
.
reshape
((
1
,
-
1
))
if
in_dygraph_mode
():
return
_C_ops
.
matmul_v2
(
nx
,
ny
)
def
__check_input
(
x
,
y
):
var_names
=
{
'x'
:
x
,
'y'
:
y
}
for
name
,
val
in
var_names
.
items
():
check_variable_and_dtype
(
val
,
name
,
[
'float16'
,
'float32'
,
'float64'
],
'inner'
)
__check_input
(
nx
,
ny
)
helper
=
LayerHelper
(
'outer'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
nx
.
dtype
)
helper
.
append_op
(
type
=
'matmul_v2'
,
inputs
=
{
'X'
:
nx
,
'Y'
:
ny
},
outputs
=
{
'Out'
:
out
})
return
out
def
logsumexp
(
x
,
axis
=
None
,
keepdim
=
False
,
name
=
None
):
r
"""
This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录